Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2-Formylphenyl)benzenesulfonamide

S. Thenmozhi, ${ }^{\text {a }}$ S. Ranjith, ${ }^{\text {a }}$ A. SubbiahPandi, ${ }^{\text {a }}{ }^{*}$ V. Dhayalan ${ }^{\text {b }}$ and A. K. MohanaKrishnan ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ${ }^{\mathbf{b}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: a_spandian@yahoo.com

Received 28 July 2009; accepted 17 August 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.040 ; w R$ factor $=0.119 ;$ data-to-parameter ratio $=23.7$.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$, the two aromatic rings are oriented at an angle of $88.18(8)^{\circ}$. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed, each of which generates an $S(6)$ ring motif. In the crystal, molecules are linked into $C(7)$ chains along [010] by intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The structure is further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the sulfonylbound phenyl ring.

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007); Chohan et al. (2007); Brown (1971); Pomarnacka \& Kozlarska-Kedra (2003); Sethu Sankar et al. (2002). For related structures, see: Bassindale (1984); Cotton \& Stokley (1970); Usha et al. (2005); Zhu et al. (2008). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$a=7.7656$ (2) \AA
$M_{r}=261.29$
$b=9.0080(2) \AA$
$c=9.5855$ (2) A
$\alpha=86.293(1)^{\circ}$
$\beta=77.912(1)^{\circ}$
$\gamma=68.826(1)^{\circ}$
$V=611.35(2) \AA^{3}$
$Z=2$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.768, T_{\text {max }}=0.956$

> Mo $K \alpha$ radiation
> $\mu=0.26 \mathrm{~mm}^{-1}$
> $T=293 \mathrm{~K}$
> $0.21 \times 0.19 \times 0.17 \mathrm{~mm}$

> 15490 measured reflections 3960 independent reflections 3228 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.119$
$S=1.02$
3960 reflections
167 parameters
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.80(2)$	$1.99(2)$	$2.6751(19)$	$144(2)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.46	$3.0879(18)$	125
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}{ }^{\mathrm{i}}$	0.93	2.56	$3.2691(19)$	133
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 5 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.93	2.80	$3.700(2)$	162

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+2,-z+1 . C g 1$ is the centroid of the C8-C13 ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

ST and AS thank Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2869).

References

Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brown, G. M. (1971). Adv. Biochem. 35, 35-40.
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chohan, Z. H. \& Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369-379.
Cotton, F. A. \& Stokley, P. F. (1970). J. Chem. Soc. 92, 294-302.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Pomarnacka, E. \& Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.
Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2002). Acta Cryst. C58, o277-o279. Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. \& Srinivasan, P. C. (2005). Acta Cryst. E61, o1916-o1918.
Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. \& Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.

Zhu, H.-Y., Wu, Z. \& Jiang, S. (2008). Acta Cryst. E64, o596.

supporting information

Acta Cryst. (2009). E65, o2210 [doi:10.1107/S1600536809032681]

\mathbf{N}-(2-Formylphenyl)benzenesulfonamide

S. Thenmozhi, S. Ranjith, A. SubbiahPandi, V. Dhayalan and A. K. MohanaKrishnan

S1. Comment

Sulfonamides have been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activities. Sulfonamides particularly sulfadiazine and sulfadoxine have been used clinically as antimalarial agents (Zareef et al., 2007). Due to their significant pharmacological applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based drug chemistry (Chohan et al., 2007). Sulfonamide derivates are well known drugs and are used to control diseases caused by bacterial infections. The antibacterial action of this group of drugs is exerted by the complete inhibition of dihydropteroate synthase enzyme towards the p-amino benzonate (Brown, 1971). Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka \& Kozlarska-Kedra, 2003). The sulfonamides inhibit the growth of bacterial organism and are also useful for treating urinary and gastrointestinal infections (Sethu Sankar et al., 2002). In view of this medicinal importance, the crystal structure determination of the title compound (Fig.1) was carried out and the results are presented here.
Atom S 1 has a distorted tetrahedral configuration. The widening of angle $\mathrm{O} 1 — \mathrm{~S} 1-\mathrm{O} 2\left[119.76(7)^{\circ}\right]$ and narrowing of angle C8—S1—N1 [106.08 (6) $)^{\circ}$ from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The two aromatic rings are oriented at an angle of 88.18 (8) ${ }^{\circ}$. The angles around atom S 1 deviate significantly from the regular tetrahedral value, with the largest deviation of 119.7 (7) ${ }^{\circ}$ for $\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$ angle. This may be due to non-bonding interactions between S-O bonds (Cotton \& Stokley, 1970). The aldyhyde group is coplanar with the benzene ring, as evidenced by the torsion angle $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$ of $-2.2(3)^{\circ}$. The geometrical parameters agree well with those reported for related sulfonamide structures (Usha et al., 2005; Zhu et al., 2008). Intramolecular N1—H1‥O3 and $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds are observed, each of which generates an $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995).
Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving atoms C 3 and O 2 link molecules into $\mathrm{C}(7)$ chains running along the [010] (Fig. 2). The crystal packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the sulfonyl-bound phenyl ring.

S2. Experimental

N-[2-(Hydroxymethyl)phenyl]benzenesulfonamide ($2 \mathrm{~g}, 7.6 \mathrm{mmol}$) was added to a solution of pyridinium chlorochromate ($3.25 \mathrm{~g}, 15.11 \mathrm{mmol}$) in dry dichloromethane $(20 \mathrm{ml})$ at room temperature and the reaction mixture was stirred for 4 h . The solvent was removed to obtain a crude aldehyde as a white solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

S3. Refinement

Atom H 1 was located in a difference map and refined freely. All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H $=0.93 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bonds are shown as dashed lines.

Figure 2
Part of a $\mathrm{C}(7)$ chain in the title compound.

\mathbf{N}-(2-Formylphenyl)benzenesulfonamide

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=261.29$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.7656$ (2) Å
$b=9.0080(2) \AA$
$c=9.5855(2) \AA$
$\alpha=86.293(1)^{\circ}$
$\beta=77.912(1)^{\circ}$
$\gamma=68.826(1)^{\circ}$
$V=611.35$ (2) \AA^{3}

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.768, T_{\text {max }}=0.956$
$Z=2$
$F(000)=272$
$D_{\mathrm{x}}=1.419 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3960 reflections
$\theta=2.2-31.3^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.21 \times 0.19 \times 0.17 \mathrm{~mm}$

15490 measured reflections
3960 independent reflections
3228 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=31.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.02$
3960 reflections
167 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0582 P)^{2}+0.1353 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.001$
> $\Delta \rho_{\text {max }}=0.31$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.19429(17)$	$0.98956(14)$	$0.61966(13)$	$0.0409(2)$
C2	$0.1595(2)$	$1.10035(15)$	$0.72614(15)$	$0.0470(3)$
H2	0.1207	1.0779	0.8210	0.056^{*}
C3	$0.1827(2)$	$1.24378(17)$	$0.69056(18)$	$0.0563(3)$
H3	0.1595	1.3170	0.7626	0.068^{*}
C4	$0.2392(3)$	$1.2813(2)$	$0.5513(2)$	$0.0695(5)$
H4	0.2547	1.3783	0.5292	0.083^{*}
C5	$0.2722(3)$	$1.1734(2)$	$0.44619(19)$	$0.0675(4)$
H5	0.3085	1.1987	0.3517	0.081^{*}
C6	$0.2529(2)$	$1.02670(18)$	$0.47720(15)$	$0.0503(3)$
C7	$0.2926(3)$	$0.9189(3)$	$0.35857(18)$	$0.0692(5)$
H7	0.3264	0.9554	0.2677	0.083^{*}
C8	$0.36455(18)$	$0.70690(14)$	$0.85278(13)$	$0.0413(3)$
C9	$0.5123(2)$	$0.57064(16)$	$0.79634(16)$	$0.0519(3)$
H9	0.4963	0.5055	0.7325	0.062^{*}
C10	$0.6827(2)$	$0.5337(2)$	$0.83658(19)$	$0.0628(4)$
H10	0.7829	0.4425	0.7999	0.075^{*}
C11	$0.7062(2)$	$0.6304(2)$	$0.93052(19)$	$0.0621(4)$
H11	0.8225	0.6047	0.9563	0.074^{*}
C12	$0.5587(2)$	$0.7649(2)$	$0.98675(18)$	$0.0599(4)$
H12	0.5758	0.8296	1.0503	0.072^{*}
C13	$0.3853(2)$	$0.80416(16)$	$0.94909(15)$	$0.0487(3)$
H13	0.2847	0.8941	0.9877	0.058^{*}
N1	$0.16942(19)$	$0.84378(14)$	$0.64708(14)$	$0.0509(3)$

O1	$0.00479(14)$	$0.85915(13)$	$0.90061(12)$	$0.0576(3)$
O2	$0.13222(17)$	$0.60899(13)$	$0.76162(14)$	$0.0649(3)$
O3	$0.2861(2)$	$0.78653(18)$	$0.36620(14)$	$0.0795(4)$
S1	$0.14948(5)$	$0.75289(4)$	$0.79852(4)$	$0.04575(11)$
H1	$0.199(3)$	$0.790(2)$	$0.5767(19)$	$0.064(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0388(6)$	$0.0369(5)$	$0.0461(6)$	$-0.0096(4)$	$-0.0123(5)$	$-0.0046(5)$
C2	$0.0562(7)$	$0.0365(6)$	$0.0482(7)$	$-0.0149(5)$	$-0.0113(6)$	$-0.0055(5)$
C3	$0.0638(9)$	$0.0377(6)$	$0.0699(9)$	$-0.0173(6)$	$-0.0180(7)$	$-0.0056(6)$
C4	$0.0839(12)$	$0.0498(8)$	$0.0803(11)$	$-0.0310(8)$	$-0.0182(10)$	$0.0112(8)$
C5	$0.0769(11)$	$0.0679(10)$	$0.0581(9)$	$-0.0294(9)$	$-0.0116(8)$	$0.0132(8)$
C6	$0.0475(7)$	$0.0533(8)$	$0.0471(7)$	$-0.0125(6)$	$-0.0117(6)$	$-0.0036(6)$
C7	$0.0711(10)$	$0.0802(12)$	$0.0485(8)$	$-0.0171(9)$	$-0.0081(7)$	$-0.0160(8)$
C8	$0.0431(6)$	$0.0316(5)$	$0.0466(6)$	$-0.0155(4)$	$0.0004(5)$	$0.0003(4)$
C9	$0.0505(7)$	$0.0380(6)$	$0.0589(8)$	$-0.0127(5)$	$0.0027(6)$	$-0.0044(5)$
C10	$0.0474(7)$	$0.0506(8)$	$0.0725(10)$	$-0.0056(6)$	$0.0036(7)$	$0.0057(7)$
C11	$0.0481(7)$	$0.0680(10)$	$0.0680(9)$	$-0.0209(7)$	$-0.0118(7)$	$0.0184(8)$
C12	$0.0638(9)$	$0.0618(9)$	$0.0604(9)$	$-0.0276(7)$	$-0.0175(7)$	$0.0038(7)$
C13	$0.0518(7)$	$0.0414(6)$	$0.0511(7)$	$-0.0160(5)$	$-0.0062(6)$	$-0.0039(5)$
N1	$0.0662(7)$	$0.0391(5)$	$0.0508(6)$	$-0.0199(5)$	$-0.0134(5)$	$-0.0108(5)$
O1	$0.0440(5)$	$0.0534(6)$	$0.0689(7)$	$-0.0164(4)$	$0.0051(5)$	$-0.0129(5)$
O2	$0.0657(7)$	$0.0436(5)$	$0.0938(8)$	$-0.0315(5)$	$-0.0089(6)$	$-0.0106(5)$
O3	$0.0860(9)$	$0.0802(9)$	$0.0672(8)$	$-0.0192(7)$	$-0.0129(7)$	$-0.0333(7)$
S1	$0.04451(18)$	$0.03489(16)$	$0.0591(2)$	$-0.01869(12)$	$-0.00239(14)$	$-0.00769(12)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

C1-C2	1.3900 (17)	C8-C9	1.3871 (18)
C1-N1	1.3957 (17)	C8-S1	1.7515 (14)
C1-C6	1.4052 (19)	C9-C10	1.375 (2)
C2-C3	1.3797 (19)	C9—H9	0.93
C2-H2	0.93	C10-C11	1.374 (3)
C3-C4	1.375 (2)	C10-H10	0.93
C3-H3	0.93	C11-C12	1.376 (2)
C4-C5	1.365 (3)	C11-H11	0.93
C4-H4	0.93	C12-C13	1.383 (2)
C5-C6	1.390 (2)	C12-H12	0.93
C5-H5	0.93	C13-H13	0.93
C6-C7	1.453 (2)	N1-S1	1.6265 (13)
C7-O3	1.208 (2)	N1-H1	0.798 (18)
C7-H7	0.93	O1-S1	1.4212 (10)
C8-C13	1.3838 (18)	$\mathrm{O} 2-\mathrm{S} 1$	1.4241 (10)
C2-C1-N1	123.02 (12)	C10-C9-C8	118.75 (15)
C2-C1-C6	118.86 (12)	C10-C9-H9	120.6

supporting information

N1-C1-C6	118.10 (12)
C3-C2-C1	119.78 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.69 (15)
C4-C3-H3	119.2
C2-C3-H3	119.2
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	118.78 (15)
C5-C4-H4	120.6
C3-C4-H4	120.6
C4-C5-C6	121.51 (16)
C4-C5-H5	119.2
C6-C5-H5	119.2
C5-C6-C1	119.37 (14)
C5-C6-C7	117.69 (16)
C1-C6-C7	122.94 (15)
O3-C7-C6	126.49 (17)
O3-C7-H7	116.8
C6-C7-H7	116.8
C13-C8-C9	121.35 (13)
C13-C8-S1	120.66 (10)
C9-C8-S1	117.98 (11)
N1-C1-C2-C3	-178.37 (13)
C6-C1-C2-C3	0.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.2 (2)
C2-C3-C4-C5	0.3 (3)
C3-C4-C5-C6	-1.1 (3)
C4-C5-C6-C1	1.4 (3)
C4-C5-C6-C7	-179.47 (18)
C2- $21-\mathrm{C} 6-\mathrm{C} 5$	-0.8 (2)
N1-C1-C6-C5	177.67 (14)
C2- $21-\mathrm{C} 6-\mathrm{C} 7$	-179.97 (14)
N1-C1-C6-C7	-1.4 (2)
C5-C6-C7-O3	178.68 (18)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	-2.2 (3)
C13-C8-C9-C10	-0.7 (2)
S1-C8-C9-C10	179.30 (11)
C8-C9-C10-C11	-0.2 (2)

C8-C9-H9	120.6
C11-C10-C9	120.54 (15)
C11-C10-H10	119.7
C9-C10-H10	119.7
C10-C11-C12	120.40 (15)
C10-C11-H11	119.8
C12-C11-H11	119.8
C11-C12-C13	120.29 (16)
C11-C12-H12	119.9
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.9
C12-C13-C8	118.66 (14)
C12-C13-H13	120.7
C8-C13-H13	120.7
C1-N1-S1	128.49 (9)
C1-N1-H1	112.3 (14)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1$	116.5 (13)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	119.76 (7)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	109.04 (7)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	103.70 (7)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 8$	108.57 (7)
O2-S1-C8	108.83 (7)
N1-S1-C8	106.08 (6)
C9-C10-C11-C12	0.6 (2)
C10-C11-C12-C13	-0.1 (2)
C11-C12-C13-C8	-0.9 (2)
C9-C8-C13-C12	1.3 (2)
S1-C8-C13-C12	-178.76 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	-16.6 (2)
C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	164.92 (11)
C1-N1-S1-O1	52.78 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	-178.56 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 8$	-63.97 (14)
C13-C8-S1-O1	-19.79 (13)
C9-C8-S1-O1	160.20 (10)
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{S} 1-\mathrm{O} 2$	-151.70 (11)
C9-C8-S1-O2	28.29 (13)
C13-C8-S1-N1	97.27 (11)
C9-C8-S1-N1	-82.73 (11)

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 3$	$0.80(2)$	$1.99(2)$	$2.6751(19)$	$144(2)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.46	$3.0879(18)$	125

supporting information

$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.56	$3.2691(19)$	133
$\mathrm{C} 5 — \mathrm{H} 5 \cdots{ }^{\mathrm{C}} 1^{\mathrm{ii}}$	0.93	2.80	$3.700(2)$	162

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+2,-z+1$.

