organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-6-methyl-1,3-benzothiazoledecanedioic acid (2/1)

Xiang-Jun Shi, Zhi-Chao Wang, Qiang Chen and Xiao-Jun Zhao*

College of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance of Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

Received 11 August 2009; accepted 12 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 15.1.

Co-crystallization of 2-amino-6-methyl-1,3-benzothiazole with decanedioic acid under hydrothermal conditions afforded the title 2:1 co-crystal, 2C₈H₈N₂S·C₁₀H₁₈O₄. The decanedioic acid molecule is located on an inversion centre. In the crystal, intermolecular N-H···O and O-H···O hydrogen bonds connect the components into a two-dimensional wave-like layer structure extending parallel to (100).

Related literature

For molecular self-assembly and crystal engineering, see: Sun & Cui (2008); Hunter (1993); Yang et al. (2005). For the solid structures and properties of metal complexes of aminobenzothiazole and its derivatives, see: Lynch et al. (1998, 1999); Sun & Cui (2008); Popović et al. (2002); Antiñolo et al. (2007); Dong et al. (2002); Chen et al. (2008); Zhang et al. (2009). For the structures of decanedioic acid-based metal complexes and co-crystals, see: Xian et al. (2009); Braga et al. (2006); Aakeröy et al. (2007).

Experimental

Crystal data

 $2C_8H_8N_2S \cdot C_{10}H_{18}O_4$ M = 530.71Monoclinic, $P2_1/n$ a = 5.3791 (5) Å b = 21.822 (2) Å c = 11.9431 (11) Å $\beta = 91.6660 \ (10)^{\circ}$

V = 1401.3 (2) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 293 K $0.32\,\times\,0.24\,\times\,0.22$ mm

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.931, T_{\max} = 0.952$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	164 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
2470 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H1···N1	0.82	1.78	2.597 (2)	171
$N2-H2A\cdots O2$	0.86	2.09	2.914 (2)	161
$N2-H2B\cdotsO1^{i}$	0.86	2.14	2.954 (2)	157

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from Tianjin Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5031).

References

- Aakeröy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46 - 54
- Antiñolo, A., García-Yuste, S., Otero, A., Pérez-Flores, J. C., López-Solera, I. & Rodríguez, A. M. (2007). J. Organomet. Chem. 692, 3328-3339.
- Braga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877-3879
- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany,
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 12, 1951-1962.
- Dong, H. S., Quan, B. & Tian, H. Q. (2002). J. Mol. Struct. 641, 147-152.
- Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.
- Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695-703.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.
- Popović, Z., Pavlović, G., Soldin, Z., Tralić-Kulenović, V. & Racané, L. (2002). Acta Cryst. C59, m4-m6.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526-1532.
- Xian, H. D., Li, H. Q., Shi, X., Liu, J. F. & Zhao, G. L. (2009). Inorg. Chem. Commun. 12, 177-180.
- Yang, X. D., Wu, D. Q., Ranford, J. D. & Vittal, J. J. (2005). Cryst. Growth Des. 5, 41-43.
- Zhang, N., Liu, K.-S. & Zhao, X.-J. (2009). Acta Cryst. E65, 01398.

7545 measured reflections

 $R_{\rm int} = 0.024$

2470 independent reflections

1822 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, o2188 [doi:10.1107/S1600536809031857]

2-Amino-6-methyl-1,3-benzothiazole-decanedioic acid (2/1)

Xiang-Jun Shi, Zhi-Chao Wang, Qiang Chen and Xiao-Jun Zhao

S1. Comment

During the past decades, molecular self-/assembly by classical coordination bonds and/or intermolecular non-covalent interactions such as hydrogen-bonding, $\pi \cdots \pi$ stacking, electrostatic interactions and so on, has been becoming more and more attractive in biology, biochemistry and new material fields (Sun *et al.*, 2008; Hunter, 1993; Yang *et al.*, 2005).

Acting as one of the excellent building blocks with multiple hydrogen-bonding sites and metal ion binding donors, aminobenzothiazole and its derivatives have been extensively utilized in the new materials, biochemistry and agriculture chemistry, due to the lower toxicity, high biological activity as well as excellent chemical reactivity (Lynch *et al.*, 1998; Lynch *et al.*, 1999; Sun *et al.*, 2008; Popović *et al.*, 2002; Antiñolo *et al.*, 2007; Dong *et al.*, 2002; Chen *et al.*, 2008). On the other hand, the long decanedioic acid with adjustable deprotonated form and flexible aliphatic chain has also exhibited novel functions such as dianion templating (Xian *et al.*, 2009) and heterosynthons with nitrogen-containing compounds (Braga *et al.*, 2006; Aakeröy *et al.*, 2007) in the fields of metal complexes and molecular co-crystals.

Thus, as a continuation of molecular assembly behavior in the solid state, in the present paper, the rigid 2-amino-6methyl-1,3-benzothiazole (Ambt) and flexible decanedioic acid were selected as building blocks to cocrystallize. As a result, an intermolecular hydrogen bonded adduct, (I), was obtained under the hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of (**I**) comprises one neutral Ambt molecule with no crystallographically imposed symmetry and half a decanedioic acid located on a centre of inversion. Obviously, no proton transfer was observed for the neutral cocrystal, which is much different from the 2-aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate (Zhang *et al.*, 2009). The exocyclic amino group of Ambt is roughly coplanar with the benzothiazole ring. Similarily, the carboxylic residues of decanedioic acid are also co-planar with their long aliphatic chain. In the packing structure of **I**, two pairs of the intermolecuar O1—H1 …N1 and N2—H2A …O2 hydrogen-bonding interactions (Table 1) connect the two Ambt molecules and one decanedioic acid.

S2. Experimental

To an aqueous solution of Ambt (40.4 mg, 0.2 mmol) was slowly added an aqueous solution of decanedioic acid (20.2 mg, 0.1 mmol) with constant stirring. After further stirring for about ten minutes, the resulting mixture was sealed in a stainless steel vessel and heated at 140 °C for 3 days. After the mixture was cooled to room temperature at a rate of 5 °C / h, pale-yellow block-shaped crystals suitable for X-ray diffraction were obtained directly, washed with ethanol and dried in air.Yield: 34% based on Ambt. Anal. calcd for $C_{13}H_{17}N_2O_2S$: C, 58.84; H, 6.46; N, 10.56%. Found: C, 58.78; H, 6.56; N,10.70%.

S3. Refinement

H-atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C-H = 0.93 Å, O-H = 0.82 Å, and N-H = 0.86 Å. all H atoms were allocated displacement parameters related to

those of their parent atoms $[U_{iso}(H)] = 1.2 U_{eq} (C, N, O)$

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawnat the 30% probability level. The dashed lines indicate intermolecular hydrogen bonds.[Symmetry code: (A) 4 - x, 1 - y, -z]

Figure 2

The two-dimensional layer of (I) formed by N-H···O and O-H ···O hydrogen bonding interactions.

2-Amino-6-methyl-1,3-benzothiazole-decanedioic acid (2/1)

Crystal data
$2C_8H_8N_2S\cdot C_{10}H_{18}O_4$
$M_r = 530.71$
Monoclinic, $P2_1/n$
<i>a</i> = 5.3791 (5) Å
b = 21.822 (2) Å
<i>c</i> = 11.9431 (11) Å
$\beta = 91.666 (1)^{\circ}$
V = 1401.3 (2) Å ³
Z = 2

F(000) = 564 $D_x = 1.258 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1765 reflections $\theta = 2.5-22.8^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 293 KBlock, pale-yellow $0.32 \times 0.24 \times 0.22 \text{ mm}$ Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.931, T_{\max} = 0.952$ Refinement	7545 measured reflections 2470 independent reflections 1822 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -6 \rightarrow 6$ $k = -25 \rightarrow 21$ $l = -14 \rightarrow 14$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.05	H-atom parameters constrained
2470 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.3107P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
S 1	0.47667 (11)	0.17050 (3)	0.20230 (5)	0.0647 (2)	
01	1.1513 (3)	0.27012 (7)	-0.03449 (11)	0.0595 (4)	
H1	1.0456	0.2531	0.0026	0.089*	
O2	1.2105 (3)	0.32343 (7)	0.12223 (12)	0.0662 (4)	
N1	0.8009 (3)	0.21067 (7)	0.06387 (13)	0.0502 (4)	
N2	0.8217 (3)	0.25824 (8)	0.23838 (14)	0.0628 (5)	
H2A	0.9420	0.2815	0.2189	0.075*	
H2B	0.7643	0.2610	0.3046	0.075*	
C1	0.7248 (4)	0.21790 (9)	0.16608 (16)	0.0495 (5)	
C2	0.4781 (4)	0.13827 (9)	0.06865 (17)	0.0536 (5)	
C3	0.3269 (4)	0.09285 (10)	0.02272 (19)	0.0658 (6)	
H3A	0.2024	0.0754	0.0648	0.079*	
C4	0.3619 (4)	0.07353 (10)	-0.0861 (2)	0.0647 (6)	
C5	0.5474 (4)	0.10135 (11)	-0.14663 (18)	0.0650 (6)	
H5A	0.5703	0.0889	-0.2201	0.078*	
C6	0.6984 (4)	0.14661 (10)	-0.10228 (17)	0.0599 (6)	

H6A	0.8214	0.1643	-0.1449	0.072*
C7	0.6645 (4)	0.16541 (9)	0.00673 (16)	0.0488 (5)
C8	0.1999 (6)	0.02374 (13)	-0.1383 (2)	0.0920 (9)
H8A	0.0819	0.0101	-0.0850	0.138*
H8B	0.3023	-0.0101	-0.1597	0.138*
H8C	0.1130	0.0397	-0.2033	0.138*
C9	1.2624 (4)	0.31276 (9)	0.02632 (16)	0.0469 (5)
C10	1.4559 (4)	0.34752 (9)	-0.03539 (16)	0.0511 (5)
H10A	1.3758	0.3681	-0.0987	0.061*
H10B	1.5740	0.3185	-0.0648	0.061*
C11	1.5968 (4)	0.39443 (9)	0.03408 (16)	0.0509 (5)
H11A	1.6931	0.3735	0.0924	0.061*
H11B	1.4788	0.4210	0.0701	0.061*
C12	1.7698 (4)	0.43316 (9)	-0.03430 (17)	0.0517 (5)
H12A	1.8855	0.4064	-0.0713	0.062*
H12B	1.6726	0.4544	-0.0920	0.062*
C13	1.9159 (4)	0.47985 (9)	0.03387 (16)	0.0511 (5)
H13A	2.0164	0.4585	0.0901	0.061*
H13B	1.8000	0.5058	0.0727	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0678 (4)	0.0744 (4)	0.0529 (3)	-0.0197 (3)	0.0191 (3)	0.0042 (3)
O1	0.0673 (10)	0.0637 (9)	0.0484 (8)	-0.0271 (7)	0.0198 (7)	-0.0071 (7)
O2	0.0763 (11)	0.0750 (10)	0.0484 (8)	-0.0275 (8)	0.0207 (7)	-0.0107 (7)
N1	0.0517 (10)	0.0565 (10)	0.0428 (9)	-0.0120 (8)	0.0086 (7)	0.0036 (7)
N2	0.0740 (13)	0.0691 (12)	0.0460 (9)	-0.0193 (10)	0.0129 (9)	-0.0042 (9)
C1	0.0512 (12)	0.0513 (11)	0.0464 (11)	-0.0036 (9)	0.0074 (9)	0.0084 (9)
C2	0.0538 (12)	0.0549 (12)	0.0524 (11)	-0.0087 (10)	0.0061 (9)	0.0091 (10)
C3	0.0606 (14)	0.0675 (14)	0.0695 (14)	-0.0214 (12)	0.0070 (11)	0.0113 (12)
C4	0.0671 (15)	0.0618 (13)	0.0646 (14)	-0.0132 (12)	-0.0080 (11)	0.0024 (11)
C5	0.0712 (15)	0.0740 (15)	0.0497 (12)	-0.0096 (12)	-0.0002 (11)	-0.0010 (11)
C6	0.0615 (14)	0.0691 (14)	0.0495 (12)	-0.0136 (11)	0.0063 (10)	0.0034 (10)
C7	0.0482 (12)	0.0515 (11)	0.0465 (11)	-0.0050 (9)	0.0012 (9)	0.0087 (9)
C8	0.097 (2)	0.0889 (19)	0.0893 (18)	-0.0331 (17)	-0.0044 (16)	-0.0102 (16)
C9	0.0476 (12)	0.0457 (11)	0.0477 (11)	-0.0043 (9)	0.0069 (9)	0.0008 (9)
C10	0.0518 (12)	0.0497 (11)	0.0525 (12)	-0.0099 (9)	0.0122 (9)	-0.0013 (9)
C11	0.0491 (12)	0.0511 (12)	0.0527 (11)	-0.0076 (9)	0.0057 (9)	0.0029 (9)
C12	0.0474 (12)	0.0519 (12)	0.0561 (12)	-0.0085 (9)	0.0078 (9)	-0.0001 (9)
C13	0.0482 (12)	0.0515 (12)	0.0538 (11)	-0.0069 (9)	0.0053 (9)	0.0040 (9)

Geometric parameters (Å, °)

S1—C2	1.744 (2)	C6—C7	1.382 (3)	
S1—C1	1.753 (2)	C6—H6A	0.9300	
O1—C9	1.313 (2)	C8—H8A	0.9600	
O1—H1	0.8200	C8—H8B	0.9600	

O2—C9	1.209 (2)	C8—H8C	0.9600
N1—C1	1.308 (2)	C9—C10	1.499 (3)
N1—C7	1.397 (2)	C10—C11	1.508 (3)
N2—C1	1.329 (2)	C10—H10A	0.9700
N2—H2A	0.8600	C10—H10B	0.9700
N2—H2B	0.8600	C11-C12	1514(3)
$C^2 - C^3$	1 385 (3)	C11—H11A	0.9700
$C^2 - C^7$	1 395 (3)	C11—H11B	0.9700
$C_2 = C_1$	1 385 (3)	C12-C13	1.510(3)
C3_H3A	0.9300	C12 - C13	0.9700
C_{4} C_{5}	1 388 (3)	C12 H12R	0.9700
$C_4 = C_5$	1.516 (3)	C_{12} C_{13} C_{13}	1.513(4)
$C_{4} = C_{8}$	1.310(3) 1.375(2)	C_{13} H_{13}	0.0700
$C_{5} = C_{0}$	1.373(3)	C12 H12P	0.9700
Сэ—пэА	0.9300	С13—п13В	0.9700
C2—S1—C1	89.34 (9)	C4—C8—H8C	109.5
С9—О1—Н1	109.5	H8A—C8—H8C	109.5
C1—N1—C7	111.53 (16)	H8B—C8—H8C	109.5
C1—N2—H2A	120.0	O2—C9—O1	123.13 (17)
C1—N2—H2B	120.0	O2—C9—C10	123.42 (18)
H2A—N2—H2B	120.0	O1—C9—C10	113.44 (16)
N1-C1-N2	123.95 (18)	C9-C10-C11	114.71 (16)
N1-C1-S1	114.85 (15)	C9-C10-H10A	108.6
N2-C1-S1	121 18 (15)	C11—C10—H10A	108.6
C_{3} $-C_{2}$ $-C_{7}$	121.10(12)	C9-C10-H10B	108.6
C_{3} C_{2} S_{1}	129.25 (16)	C11—C10—H10B	108.6
C7-C2-S1	109.65 (15)	H_{10A} $-C_{10}$ $-H_{10B}$	107.6
$C_{4} - C_{3} - C_{2}$	109.03(13) 119.7(2)	C10-C11-C12	112.90 (16)
C4 - C3 - H3A	120.2	C10 $C11$ $H11A$	109.0
$C_2 = C_3 = H_3 \Delta$	120.2	C12— $C11$ — $H11A$	109.0
$C_2 = C_3 = M_3 A$	120.2 118 4 (2)	C_{12} C_{11} H_{11} H	109.0
$C_3 = C_4 = C_3$	110.4(2) 120.8(2)	C_{12} C_{11} H_{11B}	109.0
$C_{5} = C_{4} = C_{8}$	120.8(2)		109.0
$C_{5} - C_{4} - C_{6}$	120.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0
C6 C5 U5A	122.0 (2)	$C_{12} = C_{12} = C_{11}$	115.64 (10)
C_{0} C_{5} U_{5} A	118./	C13 - C12 - H12A	108.8
C4—C5—H5A	118./	C12 - C12 - H12A	108.8
C_{2}	118.9 (2)	C13—C12—H12B	108.8
С5—С6—Н6А	120.6	CII—CI2—HI2B	108.8
С/—С6—Н6А	120.6	H12A—C12—H12B	107.7
C6-C/-C2	119.34 (19)	$C12-C13-C13^{+}$	114.4 (2)
C6—C7—N1	126.03 (18)	С12—С13—Н13А	108.7
C2—C7—N1	114.63 (17)	C13 ¹ —C13—H13A	108.7
C4—C8—H8A	109.5	C12—C13—H13B	108.7
C4—C8—H8B	109.5	C13 ¹ —C13—H13B	108.7
H8A—C8—H8B	109.5	H13A—C13—H13B	107.6
C7—N1—C1—N2	-179 62 (19)	C5—C6—C7—C?	-0.2(3)
C7 - N1 - C1 - S1	-0.5(2)	C_{5} C_{6} C_{7} N_{1}	-1798(2)
	0.0 (2)		1,2.0 (2)

C2—S1—C1—N1	0.29 (17)	C3—C2—C7—C6	0.0 (3)	
C2—S1—C1—N2	179.42 (18)	S1—C2—C7—C6	-179.96 (17)	
C1—S1—C2—C3	-180.0 (2)	C3—C2—C7—N1	179.69 (19)	
C1—S1—C2—C7	0.02 (16)	S1—C2—C7—N1	-0.3 (2)	
C7—C2—C3—C4	0.5 (3)	C1—N1—C7—C6	-179.8 (2)	
S1—C2—C3—C4	-179.45 (19)	C1—N1—C7—C2	0.5 (3)	
C2—C3—C4—C5	-0.9 (4)	O2—C9—C10—C11	4.3 (3)	
C2—C3—C4—C8	179.8 (2)	O1-C9-C10-C11	-176.76 (17)	
C3—C4—C5—C6	0.8 (4)	C9-C10-C11-C12	-173.70 (17)	
C8—C4—C5—C6	-179.9 (2)	C10-C11-C12-C13	-179.12 (17)	
C4—C5—C6—C7	-0.2 (4)	C11-C12-C13-C13 ⁱ	-178.3 (2)	

Symmetry code: (i) -x+4, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.78	2.597 (2)	171
N2—H2A···O2	0.86	2.09	2.914 (2)	161
N2—H2 B ···O1 ⁱⁱ	0.86	2.14	2.954 (2)	157

Symmetry code: (ii) x-1/2, -y+1/2, z+1/2.