metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(\eta^4$ -Cycloocta-1,5-diene)diiodidoplatinum(II)

Marie-Hélène Thibault and Frédéric-Georges Fontaine*

Département de Chimie, Pavillon Alexandre-Vachon, Local 2257, 1045 Avenue de la Médecine, Université Laval, Québec, Canada G1V 0A6 Correspondence e-mail: frederic.fontaine@chm.ulaval.ca

Received 21 July 2009; accepted 28 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.028; wR factor = 0.073; data-to-parameter ratio = 25.8.

The monoclinic title complex, $[PtI_2(C_8H_{12})]$, characterized by a twisted cyclooctadiene ring, is similar to its Cl and Br orthorhombic homologues. The observed Pt-I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the expected range for PtI₂ complexes. The C=C double bonds in the molecule differ significantly [1.373 (10) and 1.403 (10) Å]. As expected for a platinum(II) complex, the Pt^{II} atom is in a square-planar environment ($\Sigma Pt_{\alpha} = 359.71^{\circ}$).

Related literature

For related structures, see: Thibault et al. (2009); Syed et al. (1984); Wiedermann et al. (2005).

Experimental

Crystal data $[PtI_2(C_8H_{12})]$

 $M_r = 557.07$

Monoclinic, $P2_1/n$
a = 8.3063 (13) Å
b = 10.8918 (17) Å
c = 12.939 (2) Å
$\beta = 106.892 \ (2)^{\circ}$
V = 1120.1 (3) Å ³
Data collection

Bruker APEXII CCD	13155 measured reflections
diffractometer	2714 independent reflections
Absorption correction: integration	2488 reflections with $I > 2\sigma(I)$
(XPREP; Bruker, 2005)	$R_{\rm int} = 0.042$
$T_{\min} = 0.023, \ T_{\max} = 0.049$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 105 parameters $wR(F^2) = 0.073$ H-atom parameters constrained $\Delta \rho_{\rm max} = 2.65 \text{ e } \text{\AA}^-$ S = 1.09 $\Delta \rho_{\rm min} = -1.77$ e Å⁻³ 2714 reflections

Z = 4

.

Mo $K\alpha$ radiation

 $0.58 \times 0.56 \times 0.42 \text{ mm}$

with $I > 2\sigma(I)$

 $\mu = 17.98 \text{ mm}^{-1}$

T = 296 K

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to NSERC (Canada), CFI (Canada), FQRNT (Québec), and Université Laval for financial support. M.-H. Thibault acknowledges FQRNT for a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2283).

References

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). XPREP and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.
- Thibault, M.-H., Lucier, B. E. G., Schurko, R. W. & Fontaine, F.-G. (2009). Dalton Trans. doi:10.1039/b907737e.
- Wiedermann, J., Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (deposition number CCDC 273860). CCDC, Union Road, Cambridge, England.

supporting information

Acta Cryst. (2009). E65, m1028 [doi:10.1107/S1600536809029997]

$(\eta^4$ -Cycloocta-1,5-diene)diiodidoplatinum(II)

Marie-Hélène Thibault and Frédéric-Georges Fontaine

S1. Comment

The title compound crystallizes in the P2(1)/n space group (Figure 1). Comparison with its dichloro- and dibromoderivatives shows an important difference as the latter both crystallize in a P2(1)2(1)2(1) space group.

The general aspect of the diiodo complex is similar to the $PtCl_2$ (Syed *et al.* 1984) and $PtBr_2$ (Wiedermann *et al.* 2005) complexes with a twisted cyclooctadiene ring. Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the range expected for PtI_2 complexes. The C=C double bonds C3—C4 and C6—C7 are of significantly different lenghts (1.373 (10) and 1.403 (10) Å respectively). As expected for platinum(II) complexes, the platinum atom is in a square planar environment (ΣPt_a = 359.71°).

S2. Experimental

Diiodo(1,5-cyclooctadiene)platinum(II) was purchased from Strem chemicals and used as received. Crystals were grown by slow evaportion of a codPtI₂ solution in CH₂Cl₂.

S3. Refinement

All hydrogen atoms were placed in idealized position and refined using a riding model with d(C-H) = 0.98 Å, $U_{iso}=1.2U_{eq}$ (C) for vinylic protons and 0.97 Å, $U_{iso}=1.2U_{eq}$ (C) for methylene protons.

Figure 1

The molecular structure of **1** showing the numbering scheme adopted. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level.

$(\eta^4$ -Cycloocta-1,5-diene)diiodidoplatinum(II)

Crystal data	
$[PtI_2(C_8H_{12})]$	F(000) = 976
$M_r = 557.07$	$D_{\rm x} = 3.303 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8928 reflections
a = 8.3063 (13) Å	$\theta = 2.5 - 28.1^{\circ}$
b = 10.8918 (17) Å	$\mu = 17.98 \text{ mm}^{-1}$
c = 12.939 (2) Å	T = 296 K
$\beta = 106.892 \ (2)^{\circ}$	Rectangulaire, yellow
V = 1120.1 (3) Å ³	$0.58 \times 0.56 \times 0.42 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD	13155 measured reflections
diffractometer	2714 independent reflections
Radiation source: fine-focus sealed tube	2488 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
ω scans	$\theta_{\rm max} = 28.1^{\circ}, \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: integration	$h = -10 \rightarrow 10$
(XPREP; Bruker, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.023, \ T_{\max} = 0.049$	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 1.2011P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
2714 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
105 parameters	$\Delta \rho_{\rm max} = 2.65 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -1.77 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.00188 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.24239 (2)	0.111767 (17)	0.248867 (13)	0.02846 (9)
I1	0.54151 (5)	0.14392 (4)	0.38327 (4)	0.05103 (13)
I2	0.37225 (5)	0.08198 (4)	0.08927 (3)	0.05224 (13)
C3	-0.0015 (7)	0.0311 (6)	0.1590 (5)	0.0481 (13)
Н3	0.0045	-0.0247	0.1008	0.07 (2)*
C2	-0.0933 (8)	-0.0214 (6)	0.2341 (6)	0.0600 (17)
H2A	-0.1348	-0.1026	0.2091	0.072*
H2B	-0.1898	0.0300	0.2316	0.072*
C6	0.1178 (7)	0.1941 (6)	0.3600 (5)	0.0453 (13)
H6	0.1898	0.2488	0.4142	0.09 (3)*
C7	0.1446 (8)	0.0687 (7)	0.3837 (5)	0.0492 (14)
H7	0.2319	0.0518	0.4515	0.040 (15)*
C4	-0.0014 (8)	0.1533 (7)	0.1329 (6)	0.0539 (16)
H4	0.0043	0.1683	0.0594	0.09 (3)*
C1	0.0170 (9)	-0.0302 (7)	0.3499 (6)	0.0645 (18)
H1A	-0.0545	-0.0288	0.3973	0.077*
H1B	0.0746	-0.1087	0.3597	0.077*
C5	-0.0526 (8)	0.2486 (6)	0.2996 (6)	0.0620 (18)
H5A	-0.1407	0.1991	0.3142	0.074*
H5B	-0.0607	0.3306	0.3270	0.074*
C8	-0.0825 (9)	0.2558 (7)	0.1778 (7)	0.076 (2)
H8A	-0.2027	0.2544	0.1425	0.091*
H8B	-0.0394	0.3335	0.1606	0.091*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.02846 (13)	0.02936 (13)	0.02927 (14)	0.00017 (6)	0.01107 (9)	-0.00161 (6)
I1	0.0321 (2)	0.0726 (3)	0.0459 (2)	-0.00714 (15)	0.00754 (17)	-0.00476 (18)
I2	0.0537 (3)	0.0707 (3)	0.0402 (2)	0.00935 (18)	0.02613 (18)	-0.00156 (18)
C3	0.040 (3)	0.056 (3)	0.045 (3)	-0.011 (2)	0.007 (2)	-0.015 (3)
C2	0.056 (4)	0.055 (4)	0.073 (4)	-0.024 (3)	0.025 (3)	-0.020 (3)
C6	0.042 (3)	0.056 (3)	0.045 (3)	-0.006 (2)	0.023 (2)	-0.019 (3)
С7	0.040 (3)	0.083 (4)	0.029 (3)	-0.005 (3)	0.017 (2)	0.001 (3)
C4	0.031 (3)	0.082 (5)	0.047 (4)	0.013 (3)	0.008 (3)	0.008 (3)
C1	0.066 (4)	0.062 (4)	0.075 (5)	-0.012 (3)	0.037 (4)	0.013 (3)
C5	0.045 (3)	0.045 (3)	0.102 (6)	0.003 (2)	0.032 (3)	-0.023 (3)
C8	0.051 (4)	0.076 (5)	0.102 (6)	0.027 (3)	0.022 (4)	0.029 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Pt1—C7	2.179 (5)	C6—C5	1.525 (9)
Pt1—C4	2.188 (6)	С6—Н6	0.9800
Pt1—C6	2.193 (5)	C7—C1	1.485 (9)
Pt1—C3	2.205 (5)	С7—Н7	0.9800
Pt1—I1	2.6094 (5)	C4—C8	1.505 (10)
Pt1—I2	2.6130 (5)	C4—H4	0.9800
C3—C4	1.373 (10)	C1—H1A	0.9700
C3—C2	1.511 (8)	C1—H1B	0.9700
С3—Н3	0.9800	C5—C8	1.525 (11)
C2—C1	1.516 (10)	С5—Н5А	0.9700
C2—H2A	0.9700	С5—Н5В	0.9700
C2—H2B	0.9700	C8—H8A	0.9700
C6—C7	1.403 (10)	C8—H8B	0.9700
C7—Pt1—C4	96.2 (3)	Pt1—C6—H6	114.3
C7—Pt1—C6	37.4 (3)	C6-C7-C1	126.0 (6)
C4—Pt1—C6	81.2 (2)	C6—C7—Pt1	71.8 (3)
C7—Pt1—C3	80.6 (2)	C1—C7—Pt1	108.7 (4)
C4—Pt1—C3	36.4 (3)	С6—С7—Н7	114.0
C6—Pt1—C3	88.4 (2)	С1—С7—Н7	114.0
C7—Pt1—I1	89.98 (16)	Pt1—C7—H7	114.0
C4—Pt1—I1	160.3 (2)	C3—C4—C8	126.3 (6)
C6—Pt1—I1	92.71 (15)	C3C4Pt1	72.4 (3)
C3—Pt1—I1	162.96 (17)	C8—C4—Pt1	108.5 (5)
C7—Pt1—I2	160.3 (2)	C3—C4—H4	113.8
C4—Pt1—I2	89.78 (19)	C8—C4—H4	113.8
C6—Pt1—I2	162.00 (17)	Pt1—C4—H4	113.8
C3—Pt1—I2	93.50 (15)	C7—C1—C2	114.8 (5)
I1—Pt1—I2	90.662 (19)	C7—C1—H1A	108.6
C4—C3—C2	124.1 (6)	C2—C1—H1A	108.6
C4—C3—Pt1	71.1 (3)	C7—C1—H1B	108.6

C2 C2 Dt1	111.7(4)	C2 C1 H1P	108.6
$C_2 = C_3 = H_2$	111.7 (+)		108.0
$C_4 = C_5 = H_2$	114.1	$\frac{111}{111}$	107.3 112 4 (5)
	114.1	$C_0 = C_0 = C_0$	113.4 (3)
PtI—C3—H3	114.1	Co-Co-HSA	108.9
	112.7 (5)	C6—C5—H5A	108.9
C3—C2—H2A	109.0	C8—C5—H5B	108.9
C1—C2—H2A	109.0	C6—C5—H5B	108.9
C3—C2—H2B	109.0	H5A—C5—H5B	107.7
C1—C2—H2B	109.0	C4—C8—C5	113.9 (6)
H2A—C2—H2B	107.8	C4—C8—H8A	108.8
C7—C6—C5	123.8 (5)	C5—C8—H8A	108.8
C7C6Pt1	70.7 (3)	C4—C8—H8B	108.8
C5-C6-Pt1	111.6 (4)	С5—С8—Н8В	108.8
С7—С6—Н6	114.3	H8A—C8—H8B	107.7
С5—С6—Н6	114.3		
C7—Pt1—C3—C4	114.0 (4)	I2—Pt1—C7—C6	-173.6 (4)
C6Pt1C3C4	77.2 (4)	C4—Pt1—C7—C1	56.1 (5)
I1—Pt1—C3—C4	171.3 (4)	C6—Pt1—C7—C1	122.8 (6)
I2—Pt1—C3—C4	-84.9 (4)	C3—Pt1—C7—C1	23.0 (5)
C7—Pt1—C3—C2	-6.1 (5)	I1—Pt1—C7—C1	-142.7 (5)
C4—Pt1—C3—C2	-120.2 (6)	I2—Pt1—C7—C1	-50.8 (8)
C6—Pt1—C3—C2	-43.0 (5)	C2—C3—C4—C8	3.5 (11)
I1—Pt1—C3—C2	51.1 (8)	Pt1-C3-C4-C8	-100.4(7)
I2—Pt1—C3—C2	155.0 (4)	C2—C3—C4—Pt1	103.9 (6)
C4—C3—C2—C1	-93.3 (8)	C7—Pt1—C4—C3	-65.0 (4)
Pt1—C3—C2—C1	-12.0 (7)	C6—Pt1—C4—C3	-99.4 (4)
C4—Pt1—C6—C7	112.4 (4)	I1—Pt1—C4—C3	-172.5 (4)
C3—Pt1—C6—C7	76.6 (4)	I2—Pt1—C4—C3	96.2 (4)
I1—Pt1—C6—C7	-86.4 (3)	C7—Pt1—C4—C8	58.2 (5)
I2—Pt1—C6—C7	173.0 (4)	C6—Pt1—C4—C8	23.8 (5)
C7—Pt1—C6—C5	-119.7 (6)	C3—Pt1—C4—C8	123.2 (7)
C4—Pt1—C6—C5	-7.2 (4)	I1—Pt1—C4—C8	-49.2 (9)
C3—Pt1—C6—C5	-43.1 (4)	I2—Pt1—C4—C8	-140.6(5)
I1—Pt1—C6—C5	153.9 (4)	C6—C7—C1—C2	43.1 (9)
I2—Pt1—C6—C5	53.4 (7)	Pt1—C7—C1—C2	-37.6 (8)
C5—C6—C7—C1	3.3 (9)	C3—C2—C1—C7	33.5 (9)
Pt1-C6-C7-C1	-100.3 (6)	C7—C6—C5—C8	-91.6 (7)
C5—C6—C7—Pt1	103.6 (5)	Pt1-C6-C5-C8	-11.0(7)
C4—Pt1—C7—C6	-66.7 (4)	C3—C4—C8—C5	43.9 (10)
C3—Pt1—C7—C6	-99.8 (4)	Pt1-C4-C8-C5	-37.5 (8)
I1—Pt1—C7—C6	94.5 (3)	C6—C5—C8—C4	32.8 (9)
			(-)