

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)(thiocyanato- κN)copper(II) perchlorate

Qian Li,^a Dong Zhang,^b Chun-Ling Chen^b and Lin Yan^{c,d}*

^aInstitute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, ^bInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, ^cInstitute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China, and ^dKey Laboratory of Natural Medicine and Immunal Engineering, Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: yanlin_online@163.com

Received 4 August 2009; accepted 5 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.116; data-to-parameter ratio = 11.7.

The asymmetric unit of title compound, [Cu(NCS)- $(C_{10}H_8N_2)_2$]ClO₄, contains a bis(2,2'-bipyridine)(isothiocyanato)copper(II) cation and a perchlorate anion. In the cation, the Cu²⁺ ion is coordinated by four N atoms from two bidentate 2,2'-bipyridine molecules and an N atom from an isothiocyanate anion, resulting in a distorted CuN₅ pyramidal configuration. The crystal structure is stabilized by weak intermolecular C-H···O and C-H···S hydrogen bonds, and weak π - π interactions between 2,2'-bipyridine rings [centroid-centroid distance = 3.908 (4) Å]. The perchlorate counteranion is disordered over two positions in a 0.66:0.34 ratio.

Related literature

For the potenial applications of metal-organic coordination compounds in catalysis, non-linear optics, gas absorption, luminescene and magnetism, see: Kitagawa & Matsuda (2007); Maspoch *et al.* (2007).

V = 2229.6 (5) Å³

Mo $K\alpha$ radiation

 $0.21 \times 0.15 \times 0.13 \text{ mm}$

10831 measured reflections

3917 independent reflections

2370 reflections with $I > 2\sigma(I)$

 $\mu = 1.23 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.043$

Z = 4

Experimental

Crystal data

 $[Cu(NCS)(C_{10}H_8N_2)_2]ClO_4$ $M_r = 533.46$ Monoclinic, $P2_1/c$ a = 15.151 (2) Å b = 8.9518 (13) Å c = 19.0409 (17) Å $\beta = 120.306$ (7)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\rm min} = 0.782, T_{\rm max} = 0.856$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	44 restraints
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
3917 reflections	$\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$
335 parameters	

Table 1

Selected geometric parameters (Å, °).

Cu1-N5	1.968 (4)	Cu1-N2	2.058 (4)
Cu1-N4	1.985 (3)	Cu1-N3	2.102 (4)
Cu1-N1	1.992 (4)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7A\cdots O4'^{i}$	0.93	2.55	3.176 (15)	125
C10-H10A···S1 ⁱⁱ	0.93	2.85	3.587 (6)	137
$C18-H18A\cdotsO1'^{iii}$	0.93	2.45	3.335 (13)	159

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y + 1, z; (iii) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2856).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.
- Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, m1061 [doi:10.1107/S1600536809031067]

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)(thiocyanato- κN)copper(II) perchlorate

Qian Li, Dong Zhang, Chun-Ling Chen and Lin Yan

S1. Comment

Recently, more attentions have been paid to metal-organic coordination compounds (MOCPs) due to their potenial applications in catalysis, nonlinear optics, gas absorption, luminescene and magnetism (Maspoch *et al.* 2007, Kitagawa & Matsuda 2007). In the field of coordination chemistry, dual-ligand or multidentate ligands are usually engaged in the costruction of MOCPs, among which N,*N*-bidentate ligands (such as 2,2'-bipyridine) is familiar chelate ligand. Herein, we report the structure of the title compound (I) containing organic dual ligands.

The title compound (I) consists of one $[Cu(C_{10}H_8N_2)_2(SCN)]^+$ complex cations, one disordered $[ClO_4]^-$ anion (Fig.1). In the molecular structure, the Cu²⁺ centre is coordinated by five N atoms, among which four N atoms come from two bidentate 2,2'-bipyridine molecule and another one N atom from an isothiocyanato anion. The environment of the Cu²⁺ cation is in a distorted pyramidal geometry with Cu–N bond lengths ranging from 1.968 (4) to 2.102 (4) Å (Table 1).

In addition, the crystal structure is stability by weak intermolecular C—H···O and C—H···S hydrogen bonds (Table 2), and weak π - π interactions between 2,2'-bipyridine rings with centroid-to centroid distance of 3.908 (4) Å.

S2. Experimental

2,2'-Bipyridine (1 mol, 0.16 g) was suspended in 20 ml

ethanol solution, to which $Cu(ClO_4)$ $2H_2O$ (0.5 mmol, 0.19 g) was added, and then KSCN (0.5 mmol, 0.5 g) were added to the mixture. It was stirred under reflux for 4 h. The solution was cooled and filtered, and the filtrate was kept at the room temperature. After ten days, green blocks of (I) were obtained.

S3. Refinement

H atoms were treated as riding, with C—H distances of 0.93 Å, and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)(thiocyanato- κN)copper(II) perchlorate

Crystal data

$[Cu(NCS)(C_{10}H_8N_2)_2]ClO_4$	F(000) = 1084
$M_r = 533.46$	$D_{\rm x} = 1.589 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2091 reflections
a = 15.151 (2) Å	$\theta = 2.5 - 20.5^{\circ}$
b = 8.9518(13) Å	$\mu = 1.23 \text{ mm}^{-1}$
c = 19.0409 (17) Å	T = 293 K
$\beta = 120.306 \ (7)^{\circ}$	Block, green
$V = 2229.6 (5) Å^3$	$0.21 \times 0.15 \times 0.13 \text{ mm}$
Z = 4	
Data collection	

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator and a scans

Graphite monochromator $R_{int} = 0$ φ and ω scans $\theta_{max} =$ Absorption correction: multi-scanh = -9(SADABS; Sheldrick, 2001)k = -1 $T_{min} = 0.782, T_{max} = 0.856$ l = -22

10831 measured reflections 3917 independent reflections 2370 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 18$ $k = -10 \rightarrow 10$ $l = -22 \rightarrow 20$ Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.03	H-atom parameters constrained
3917 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0453P)^2]$
335 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
44 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.60 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.28304 (4)	0.52479 (6)	0.58542 (3)	0.0504 (2)	
S1	0.21213 (11)	0.09251 (15)	0.69020 (9)	0.0736 (4)	
N1	0.4011 (3)	0.4415 (4)	0.5796 (2)	0.0489 (10)	
N2	0.3811 (3)	0.7044 (4)	0.6288 (2)	0.0478 (9)	
N3	0.1728 (3)	0.5378 (4)	0.4610 (2)	0.0475 (9)	
N4	0.1701 (3)	0.6262 (4)	0.5907 (2)	0.0488 (9)	
N5	0.2680 (3)	0.3429 (5)	0.6365 (3)	0.0659 (12)	
C1	0.4060 (4)	0.3036 (5)	0.5556 (3)	0.0588 (13)	
H1A	0.3494	0.2416	0.5375	0.071*	
C2	0.4912 (4)	0.2495 (6)	0.5565 (3)	0.0637 (14)	
H2A	0.4918	0.1535	0.5381	0.076*	
C3	0.5754 (4)	0.3400 (6)	0.5852 (3)	0.0657 (14)	
H3A	0.6348	0.3055	0.5875	0.079*	
C4	0.5712 (4)	0.4814 (5)	0.6103 (3)	0.0576 (13)	
H4A	0.6278	0.5439	0.6300	0.069*	
C5	0.4828 (3)	0.5312 (5)	0.6062 (3)	0.0453 (11)	
C6	0.4705 (3)	0.6823 (5)	0.6308 (3)	0.0456 (11)	
C7	0.5427 (4)	0.7926 (5)	0.6539 (3)	0.0552 (13)	
H7A	0.6031	0.7753	0.6537	0.066*	
C8	0.5246 (4)	0.9294 (6)	0.6772 (3)	0.0651 (14)	
H8A	0.5732	1.0050	0.6941	0.078*	
C9	0.4346 (4)	0.9526 (5)	0.6753 (3)	0.0666 (14)	
H9A	0.4209	1.0440	0.6911	0.080*	
C10	0.3643 (4)	0.8385 (5)	0.6498 (3)	0.0584 (13)	
H10A	0.3021	0.8559	0.6471	0.070*	

C11	0.1745 (4)	0.4783 (5)	0.3972 (3)	0.0570 (13)	
H11A	0.2310	0.4217	0.4067	0.068*	
C12	0.0976 (4)	0.4968 (5)	0.3191 (3)	0.0642 (14)	
H12A	0.1007	0.4517	0.2764	0.077*	
C13	0.0156 (4)	0.5828 (6)	0.3046 (3)	0.0702 (15)	
H13A	-0.0374	0.5987	0.2516	0.084*	
C14	0.0126 (4)	0.6453 (5)	0.3689 (3)	0.0617 (14)	
H14A	-0.0424	0.7049	0.3600	0.074*	
C15	0.0910 (3)	0.6196 (5)	0.4464 (3)	0.0462 (11)	
C16	0.0909 (3)	0.6708 (5)	0.5202 (3)	0.0467 (11)	
C17	0.0122 (4)	0.7529 (6)	0.5185 (3)	0.0660 (15)	
H17A	-0.0420	0.7867	0.4694	0.079*	
C18	0.0157 (4)	0.7834 (6)	0.5909 (4)	0.0721 (16)	
H18A	-0.0365	0.8384	0.5908	0.087*	
C19	0.0945 (4)	0.7339 (5)	0.6616 (4)	0.0675 (15)	
H19A	0.0970	0.7527	0.7107	0.081*	
C20	0.1706 (4)	0.6553 (5)	0.6597 (3)	0.0612 (14)	
H20A	0.2250	0.6206	0.7085	0.073*	
C21	0.2448 (3)	0.2379 (5)	0.6594 (3)	0.0514 (12)	
C11	0.24431 (10)	0.98729 (15)	0.40224 (9)	0.0726 (4)	
O1′	0.1951 (6)	1.1109 (9)	0.4087 (6)	0.190 (5)	0.66
O2′	0.1768 (7)	0.8670 (8)	0.3661 (5)	0.193 (5)	0.66
O3′	0.3286 (6)	0.9451 (11)	0.4777 (4)	0.177 (5)	0.66
O4′	0.2788 (8)	1.0206 (15)	0.3457 (6)	0.268 (7)	0.66
O1	0.1870 (7)	0.9781 (12)	0.4423 (6)	0.0755 (10)	0.34
O2	0.2143 (8)	0.8817 (10)	0.3404 (6)	0.0728 (10)	0.34
O3	0.3518 (6)	0.9693 (14)	0.4598 (7)	0.0730 (10)	0.34
O4	0.2356 (9)	1.1359 (8)	0.3709 (6)	0.0730 (10)	0.34

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0461 (4)	0.0518 (4)	0.0585 (4)	0.0054 (3)	0.0303 (3)	0.0020 (3)
S 1	0.0721 (10)	0.0594 (9)	0.1024 (12)	0.0078 (7)	0.0536 (9)	0.0197 (8)
N1	0.049 (2)	0.045 (2)	0.057 (2)	0.0044 (19)	0.030 (2)	-0.0022 (19)
N2	0.047 (2)	0.043 (2)	0.056 (3)	0.0038 (18)	0.028 (2)	-0.0002 (19)
N3	0.046 (2)	0.052 (2)	0.051 (2)	0.0014 (19)	0.029 (2)	0.0017 (19)
N4	0.047 (2)	0.054 (2)	0.054 (3)	0.0036 (19)	0.032 (2)	0.001 (2)
N5	0.058 (3)	0.068 (3)	0.077 (3)	0.003 (2)	0.038 (3)	0.009 (2)
C1	0.063 (3)	0.048 (3)	0.071 (4)	0.004 (3)	0.038 (3)	-0.003 (3)
C2	0.071 (4)	0.054 (3)	0.074 (4)	0.018 (3)	0.042 (3)	0.001 (3)
C3	0.057 (4)	0.073 (4)	0.075 (4)	0.020 (3)	0.039 (3)	0.002 (3)
C4	0.043 (3)	0.066 (3)	0.064 (3)	0.006 (2)	0.027 (3)	0.000 (3)
C5	0.040 (3)	0.049 (3)	0.047 (3)	0.004 (2)	0.022 (2)	0.003 (2)
C6	0.041 (3)	0.051 (3)	0.039 (3)	0.004 (2)	0.016 (2)	0.004 (2)
C7	0.042 (3)	0.058 (3)	0.063 (3)	-0.003 (2)	0.024 (3)	-0.003 (3)
C8	0.052 (3)	0.056 (3)	0.075 (4)	-0.007 (3)	0.023 (3)	-0.003 (3)
C9	0.077 (4)	0.050 (3)	0.065 (4)	0.005 (3)	0.031 (3)	-0.009 (3)

C10	0.056 (3)	0.053 (3)	0.071 (4)	0.006 (3)	0.036 (3)	-0.002 (3)
C11	0.059 (3)	0.065 (3)	0.061 (3)	0.002 (3)	0.040 (3)	0.000 (3)
C12	0.070 (4)	0.078 (4)	0.057 (4)	-0.012 (3)	0.041 (3)	-0.008 (3)
C13	0.056 (4)	0.090 (4)	0.057 (4)	-0.013 (3)	0.022 (3)	0.007 (3)
C14	0.048 (3)	0.072 (4)	0.061 (4)	0.005 (3)	0.024 (3)	0.006 (3)
C15	0.044 (3)	0.042 (3)	0.056 (3)	-0.001 (2)	0.028 (3)	0.002 (2)
C16	0.037 (3)	0.047 (3)	0.058 (3)	-0.001 (2)	0.026 (3)	-0.002 (2)
C17	0.049 (3)	0.072 (4)	0.075 (4)	0.013 (3)	0.030 (3)	0.004 (3)
C18	0.063 (4)	0.070 (4)	0.103 (5)	0.004 (3)	0.057 (4)	-0.014 (4)
C19	0.075 (4)	0.065 (4)	0.085 (4)	-0.009 (3)	0.057 (4)	-0.013 (3)
C20	0.063 (3)	0.069 (3)	0.060 (3)	0.000 (3)	0.037 (3)	-0.002 (3)
C21	0.040 (3)	0.053 (3)	0.064 (3)	0.010 (2)	0.029 (3)	0.001 (3)
Cl1	0.0573 (8)	0.0714 (9)	0.0791 (10)	0.0056 (7)	0.0270 (8)	-0.0106 (7)
01′	0.128 (7)	0.134 (7)	0.300 (13)	0.047 (6)	0.102 (8)	-0.069 (7)
O2′	0.201 (10)	0.176 (8)	0.174 (9)	-0.140 (8)	0.072 (7)	-0.028 (7)
O3′	0.183 (9)	0.215 (10)	0.062 (5)	0.082 (8)	0.008 (6)	0.001 (5)
O4′	0.224 (13)	0.41 (2)	0.259 (14)	-0.040 (12)	0.189 (13)	0.037 (12)
01	0.0592 (14)	0.0735 (14)	0.0817 (15)	0.0063 (13)	0.0267 (13)	-0.0106 (13)
O2	0.0582 (14)	0.0710 (14)	0.0786 (15)	0.0059 (13)	0.0266 (13)	-0.0119 (13)
O3	0.0569 (13)	0.0713 (14)	0.0797 (15)	0.0063 (13)	0.0263 (13)	-0.0118 (13)
O4	0.0577 (13)	0.0715 (14)	0.0796 (15)	0.0058 (13)	0.0270 (13)	-0.0097 (13)

Geometric parameters (Å, °)

Cu1—N5	1.968 (4)	C11—C12	1.360 (7)
Cu1—N4	1.985 (3)	C11—H11A	0.9300
Cu1—N1	1.992 (4)	C12—C13	1.365 (6)
Cu1—N2	2.058 (4)	C12—H12A	0.9300
Cu1—N3	2.102 (4)	C13—C14	1.369 (6)
S1—C21	1.605 (5)	C13—H13A	0.9300
N1-C1	1.331 (5)	C14—C15	1.368 (6)
N1-C5	1.342 (5)	C14—H14A	0.9300
N2-C10	1.331 (5)	C15—C16	1.478 (6)
N2—C6	1.349 (5)	C16—C17	1.387 (6)
N3—C11	1.339 (5)	C17—C18	1.380 (7)
N3—C15	1.342 (5)	C17—H17A	0.9300
N4—C16	1.332 (5)	C18—C19	1.347 (7)
N4—C20	1.335 (5)	C18—H18A	0.9300
N5-C21	1.163 (5)	C19—C20	1.368 (6)
C1—C2	1.371 (6)	C19—H19A	0.9300
C1—H1A	0.9300	C20—H20A	0.9300
C2—C3	1.371 (6)	Cl1—O1′	1.374 (5)
C2—H2A	0.9300	Cl1—O2	1.395 (7)
C3—C4	1.366 (6)	Cl1—O2′	1.403 (5)
С3—НЗА	0.9300	Cl1—O3′	1.409 (5)
C4—C5	1.376 (6)	Cl1—O1	1.419 (6)
C4—H4A	0.9300	Cl1—O4	1.437 (7)
С5—С6	1.473 (6)	Cl1—O3	1.442 (7)

C6—C7	1.372 (6)	Cl1—O4′	1.446 (6)
С7—С8	1.377 (6)	01′—04	1.180 (11)
С7—Н7А	0.9300	01′—01	1.385 (11)
C8—C9	1.362 (7)	02′—02	0.927 (11)
C8—H8A	0.9300	02′—01	1.701 (11)
C9—C10	1.375 (6)	03′—03	0.638 (17)
С9—Н9А	0.9300	O4′—O4	1.429 (12)
С10—Н10А	0.9300	04′—02	1.553 (12)
N5—Cu1—N4	92.02 (16)	N3—C15—C16	114.5 (4)
N5—Cu1—N1	92.83 (16)	C14—C15—C16	123.8 (4)
N4—Cu1—N1	174.75 (15)	N4—C16—C17	120.5 (4)
N5—Cu1—N2	133.48 (16)	N4—C16—C15	115.7 (4)
N4—Cu1—N2	95.11 (14)	C17—C16—C15	123.7 (5)
N1—Cu1—N2	80.08 (15)	C18—C17—C16	118.9 (5)
N5—Cu1—N3	112.25 (16)	С18—С17—Н17А	120.6
N4—Cu1—N3	79.43 (15)	С16—С17—Н17А	120.6
N1—Cu1—N3	100.55 (14)	C19 - C18 - C17	120.1 (5)
N2—Cu1—N3	114 25 (14)	C19—C18—H18A	119.9
C1 - N1 - C5	119.0 (4)	C17 - C18 - H18A	119.9
C1-N1-Cu1	125.0(3)	C18 - C19 - C20	118.5 (5)
C_{5} N1—Cul	125.0(3)	C18 - C19 - H19A	120.8
$C10 - N^2 - C6$	117.8 (4)	C_{20} C_{19} H_{19A}	120.8
C10 - N2 - C01	128.0 (3)	N4-C20-C19	120.0 122.7(5)
C6 N2 Cu1	120.0(3) 114.1(3)	N4 C20 H20A	122.7 (5)
$C_{11} N_{2} C_{15}$	117.1(3) 117.8(4)	C_{10} C_{20} H_{20A}	118.7
$C_{11} = N_{3} = C_{13}$	117.0(4) 120.2(2)	N5 C21 S1	110.7
C15 N2 Cu1	129.2(3)	$N_{3} = C_{21} = S_{1}$	179.3(0)
C_{13} C	112.9(3) 110.2(4)	01 - C11 - 02	131.4(0)
$C_{10} = N_4 = C_{20}$	119.5(4)	01 - 01 - 02	111.0(3)
$C_{10} = N_4 = C_{11}$	110.3(3) 124.2(2)	02 - CH - 02	38.7(3)
C_{20} N4 C_{11}	124.2(3)	01 - 01 - 03	112.2(3)
$C_2 I = N_3 = C_1 I$	170.0(4)	02 - CH - 03	114.9 (6)
NI = CI = UIA	122.0 (3)	02 - C11 - 03	110.8(3)
NI-CI-HIA	118./		59.4 (5)
C_2 — C_1 — HIA	118./	02-CII-OI	112.8 (6)
C1 = C2 = C3	118.5 (5)	02 - C11 - 01	/4.1 (5)
C1 - C2 - H2A	120.7		85.6 (5)
$C_3 = C_2 = H_2 A$	120.7	OI - CII - O4	49.6 (5)
C4 - C3 - C2	119.2 (5)	02 - C11 - O4	110.7 (6)
C4—C3—H3A	120.4	02'	128.0 (6)
С2—С3—НЗА	120.4	03'	121.2 (6)
C3—C4—C5	119.8 (5)	Ol—Cll—O4	108.9 (5)
C3—C4—H4A	120.1	01′—C11—03	118.5 (7)
С5—С4—Н4А	120.1	02-01-03	109.2 (6)
NI	120.9 (4)	02′—CII—O3	123.4 (7)
N1C5C6	115.4 (4)	03'—Cl1—O3	25.8 (7)
C4—C5—C6	123.8 (4)	01-01-03	110.4 (6)
N2—C6—C7	122.0 (4)	O4—Cl1—O3	104.5 (6)

N2—C6—C5	114.3 (4)	O1'—C11—O4'	108.5 (5)
C7—C6—C5	123.6 (4)	O2—Cl1—O4′	66.3 (6)
C6—C7—C8	119.2 (4)	O2'—Cl1—O4'	104.0 (5)
С6—С7—Н7А	120.4	O3'—Cl1—O4'	109.4 (5)
С8—С7—Н7А	120.4	O1—C11—O4′	164.2 (6)
C9—C8—C7	119.1 (5)	O4—Cl1—O4′	59.4 (5)
С9—С8—Н8А	120.4	O3—C11—O4′	84.0 (7)
С7—С8—Н8А	120.4	O4—O1′—Cl1	68.0 (4)
C8—C9—C10	118.8 (5)	04—01′—01	129.8 (6)
С8—С9—Н9А	120.6	Cl1—O1′—O1	61.9 (4)
С10—С9—Н9А	120.6	O2—O2′—Cl1	70.2 (6)
N2—C10—C9	123.0 (5)	O2—O2′—O1	123.5 (7)
N2-C10-H10A	118.5	Cl1—O2′—O1	53.4 (3)
C9—C10—H10A	118.5	O3—O3′—C11	80.0 (9)
N3—C11—C12	123.1 (5)	O4—O4′—Cl1	60.0 (4)
N3—C11—H11A	118.4	O4—O4′—O2	102.7 (6)
C12—C11—H11A	118.4	Cl1—O4′—O2	55.3 (4)
C11—C12—C13	118.7 (5)	01′—01—Cl1	58.7 (4)
C11—C12—H12A	120.7	O1'—O1—O2'	95.7 (6)
C13—C12—H12A	120.7	Cl1—O1—O2′	52.5 (3)
C12—C13—C14	119.2 (5)	O2'—O2—Cl1	71.1 (6)
C12—C13—H13A	120.4	O2'—O2—O4'	127.8 (8)
C14—C13—H13A	120.4	Cl1—O2—O4′	58.4 (4)
C15—C14—C13	119.6 (5)	O3'—O3—Cl1	74.2 (9)
C15—C14—H14A	120.2	O1'—O4—O4'	122.4 (7)
C13—C14—H14A	120.2	O1'O4Cl1	62.4 (4)
N3—C15—C14	121.6 (4)	O4'—O4—Cl1	60.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C7—H7 <i>A</i> ····O4′ ⁱ	0.93	2.55	3.176 (15)	125
C10—H10A…S1 ⁱⁱ	0.93	2.85	3.587 (6)	137
C18—H18A…O1′ ⁱⁱⁱ	0.93	2.45	3.335 (13)	159

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*, -*y*+2, -*z*+1.