Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis{µ-2-[1-(2-Pyridylmethylimino)ethyl]phenolato}bis[azidocopper(II)]

## Jun Zhang, Xiao-Dan Chen, Huai-Hong Zhang and **Bai-Wang Sun\***

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chmsunbw@seu.edu.cn

Received 10 July 2009; accepted 31 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.062; data-to-parameter ratio = 12.5.

The title compound,  $[Cu_2(C_{14}H_{13}N_2O)_2(N_3)_2]$ , was synthesized by the reaction of Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O with the Schiff base 2-[1-(2-pyridylmethylimino)ethyl]phenol (HL) in methanol-water solution, adding NaN<sub>3</sub> as the bridging ligand. The asymmetric unit contains one half-molecule, the other half being generated by the inversion center. Each Cu<sup>II</sup> atom shows a slightly distorted trigonal-pyramidal geometry formed by two N atoms and one O atom from one Schiff base ligand, by another O atom of a second Schiff base ligand and by an azide N atom. The crystal structure is stabilized by intermolecular  $C-H \cdots N$  hydrogen bonds.

### **Related literature**

For the potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture of transition metal compounds containing Schiff base ligands, see: Li & Zhang (2004); You & Zhu (2004). For the synthesis, see: Pointeau et al. (1986).



# **Experimental**

#### Crystal data

| $[Cu_2(C_{14}H_{13}N_2O)_2(N_3)_2]$ | V = 1351.6 (3) Å <sup>3</sup>             |
|-------------------------------------|-------------------------------------------|
| $M_r = 661.67$                      | Z = 2                                     |
| Monoclinic, $P2_1/n$                | Mo $K\alpha$ radiation                    |
| a = 10.1066 (12)  Å                 | $\mu = 1.62 \text{ mm}^{-1}$              |
| b = 8.0545 (10)  Å                  | $T = 298 { m K}$                          |
| c = 16.7027 (18)  Å                 | $0.20 \times 0.12 \times 0.09 \text{ mm}$ |
| $\beta = 96.251 \ (1)^{\circ}$      |                                           |

## Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)  $T_{\min} = 0.737, T_{\max} = 0.868$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.035$ | 190 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.062$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$  |
| 2379 reflections                | $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ |

6641 measured reflections

 $R_{\rm int} = 0.042$ 

2379 independent reflections

1720 reflections with  $I > 2\sigma(I)$ 

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H  | $H \cdots A$ | $D{\cdots}A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------|------|--------------|--------------|---------------------------|
| $C9 - H9B \cdots N5^{i}$ | 0.97 | 2.55         | 3.399 (5)    | 147                       |
| C14−H14…N3               | 0.93 | 2.55         | 3.052 (4)    | 114                       |

Symmetry code: (i) -x, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2842).

#### References

Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.

Pointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem. 312, 263-276.

Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.

# supporting information

Acta Cryst. (2009). E65, m1136 [doi:10.1107/S1600536809030475]

# Bis{u-2-[1-(2-Pyridylmethylimino)ethyl]phenolato}bis[azidocopper(II)]

# Jun Zhang, Xiao-Dan Chen, Huai-Hong Zhang and Bai-Wang Sun

# S1. Comment

Transition metal compounds containing Schiff base ligands have been of great interest since many years. These compounds play an important role in the development of coordination chemistry related to their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (You & Zhu, 2004; Li & Zhang, 2004). We have focused on the synthesis of Schiff base complexes which is formed by 2-(pyridin-2-ylethyliminomethyl)phenol (HL1) and some metal salts. To enrich our studies on schiff bases, we used HL (Pointeau, *et al.*, 1986) instead of HL1 and gained the title compound. So, we reported this dinuclear copper(II) complex here.

The structure analyses show that complex crystallizes in monoclinic space group P21/n. The asymmetric unit contains only half of the unique molecule, and the other half is related by the inversion center (Fig.1). The molecule of the title compound is composed of two  $Cu^{II}$  atoms, two schiff base ligand 2-[1-(pyridin-2-ylmethylimino)-ethyl]-phenol and two azidos. Each  $Cu^{II}$  atom shows a slightly distorted trigonal-bipyramidal geometry formed by two N atoms and one O atom from one schiff base ligand (You & Zhu, 2004), the another O atom of the second schiff base, together with another N atom from azido.

In the structure, there are intra and intermolecular C-H···N hydrogen bond interactions (Table 2).

# **S2.** Experimental

The title compound was synthesized by Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O, schiff base ligand 2-[1-(pyridin-2'-ylmethylimino)-ethyl]-phenol and sodium azide. All chemicals used (reagent grade) were commercially available. 2'-hydroxyacetophenone(0.136 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 ml) containing 2-aminoethylpyri dine (0.108 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min. at room temperature, and then Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O (0.241 g, 1 mmol) and sodium azide (0.13 g, 2 mmol) in aqueous solution (5 ml) was added with stirring homogeneously. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

# **S3. Refinement**

H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.93-0.97Å and  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ .



# Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

# Bis{µ-2-[1-(2-Pyridylmethylimino)ethyl]phenolato}bis[azidocopper(II)]

| Crystal data                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Cu_{2}(C_{14}H_{13}N_{2}O)_{2}(N_{3})_{2}]$<br>$M_{r} = 661.67$<br>Monoclinic, $P2_{1}/n$<br>Hall symbol: -P 2yn<br>a = 10.1066 (12)  Å<br>b = 8.0545 (10)  Å<br>c = 16.7027 (18)  Å<br>$\beta = 96.251 (1)^{\circ}$<br>$V = 1351.6 (3) \text{ Å}^{3}$<br>Z = 2 | F(000) = 676<br>$D_x = 1.626 \text{ Mg m}^{-3}$<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 13380 reflections<br>$\theta = 3.0-27.6^{\circ}$<br>$\mu = 1.62 \text{ mm}^{-1}$<br>T = 298  K<br>Prism, dark green<br>$0.20 \times 0.12 \times 0.09 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                   |
| Rigaku SCXmini<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 8.192 pixels mm <sup>-1</sup><br>Thin–slice $\omega$ scans                                                                         | Absorption correction: multi-scan<br>( <i>CrystalClear</i> ; Rigaku, 2005)<br>$T_{min} = 0.737$ , $T_{max} = 0.868$<br>6641 measured reflections<br>2379 independent reflections<br>1720 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.042$                                                   |

| $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ | $k = -9 \rightarrow 9$                                   |
|---------------------------------------------------------------------|----------------------------------------------------------|
| $h = -12 \rightarrow 7$                                             | $l = -19 \rightarrow 19$                                 |
| Refinement                                                          |                                                          |
| Refinement on $F^2$                                                 | Secondary atom site location: difference Fourier         |
| Least-squares matrix: full                                          | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.035$                                     | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.062$                                                   | neighbouring sites                                       |
| S = 1.02                                                            | H-atom parameters constrained                            |
| 2379 reflections                                                    | $w = 1/[\sigma^2(F_o^2) + (0.0192P)^2]$                  |
| 190 parameters                                                      | where $P = (F_0^2 + 2F_c^2)/3$                           |
| 0 restraints                                                        | $(\Delta/\sigma)_{ m max} < 0.001$                       |
| Primary atom site location: structure-invariant                     | $\Delta  ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$    |
| direct methods                                                      | $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|---------------|-----------------------------|--|
| Cul | 0.00744 (4)  | 0.69734 (4) | 0.00638 (2)   | 0.03343 (13)                |  |
| N1  | -0.0002(2)   | 0.6887 (3)  | 0.12413 (13)  | 0.0349 (6)                  |  |
| N2  | -0.1427 (2)  | 0.8584 (3)  | 0.01237 (14)  | 0.0324 (6)                  |  |
| N3  | 0.0263 (3)   | 0.7564 (3)  | -0.10588 (15) | 0.0448 (7)                  |  |
| N4  | 0.1145 (3)   | 0.7080 (3)  | -0.14292 (14) | 0.0391 (7)                  |  |
| N5  | 0.1975 (3)   | 0.6669 (4)  | -0.18111 (16) | 0.0579 (9)                  |  |
| 01  | 0.14375 (17) | 0.5289 (2)  | 0.01510 (10)  | 0.0333 (5)                  |  |
| C1  | 0.0637 (3)   | 0.6042 (5)  | 0.26461 (17)  | 0.0594 (10)                 |  |
| H1A | 0.1024       | 0.6932      | 0.2975        | 0.089*                      |  |
| H1B | 0.1029       | 0.5008      | 0.2834        | 0.089*                      |  |
| H1C | -0.0305      | 0.6009      | 0.2678        | 0.089*                      |  |
| C2  | 0.0898 (3)   | 0.6322 (4)  | 0.17764 (17)  | 0.0374 (8)                  |  |
| C3  | 0.2216 (3)   | 0.5861 (4)  | 0.15511 (17)  | 0.0359 (8)                  |  |
| C4  | 0.2396 (3)   | 0.5298 (4)  | 0.07618 (17)  | 0.0347 (8)                  |  |
| C5  | 0.3666 (3)   | 0.4732 (4)  | 0.06349 (19)  | 0.0417 (8)                  |  |
| Н5  | 0.3788       | 0.4258      | 0.0141        | 0.050*                      |  |
| C6  | 0.4741 (3)   | 0.4850 (4)  | 0.1214 (2)    | 0.0530 (9)                  |  |
| H6  | 0.5573       | 0.4477      | 0.1104        | 0.064*                      |  |
| C7  | 0.4584 (4)   | 0.5521 (4)  | 0.1957 (2)    | 0.0583 (11)                 |  |
| H7  | 0.5314       | 0.5661      | 0.2340        | 0.070*                      |  |
| C8  | 0.3338 (4)   | 0.5977 (4)  | 0.21236 (19)  | 0.0482 (9)                  |  |
| H8  | 0.3230       | 0.6379      | 0.2634        | 0.058*                      |  |
| C9  | -0.1311 (3)  | 0.7385 (4)  | 0.14550 (18)  | 0.0443 (9)                  |  |
|     |              |             |               |                             |  |

| H9A | -0.1217     | 0.7914     | 0.1980        | 0.053*      |
|-----|-------------|------------|---------------|-------------|
| H9B | -0.1871     | 0.6413     | 0.1483        | 0.053*      |
| C10 | -0.1947 (3) | 0.8571 (4) | 0.08326 (18)  | 0.0366 (8)  |
| C11 | -0.2990 (3) | 0.9584 (4) | 0.0981 (2)    | 0.0496 (10) |
| H11 | -0.3332     | 0.9548     | 0.1475        | 0.060*      |
| C12 | -0.3517 (3) | 1.0650 (4) | 0.0388 (2)    | 0.0528 (10) |
| H12 | -0.4217     | 1.1350     | 0.0478        | 0.063*      |
| C13 | -0.3000 (3) | 1.0671 (4) | -0.0340 (2)   | 0.0473 (9)  |
| H13 | -0.3352     | 1.1373     | -0.0752       | 0.057*      |
| C14 | -0.1951 (3) | 0.9631 (4) | -0.04483 (19) | 0.0421 (8)  |
| H14 | -0.1593     | 0.9658     | -0.0938       | 0.050*      |
|     |             |            |               |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|--------------|--------------|---------------|
| Cul | 0.0379 (2)  | 0.0380 (2)  | 0.0248 (2)  | 0.0016 (2)   | 0.00541 (15) | -0.00083 (19) |
| N1  | 0.0380 (16) | 0.0401 (16) | 0.0275 (14) | -0.0004 (13) | 0.0078 (11)  | -0.0019 (13)  |
| N2  | 0.0352 (16) | 0.0305 (15) | 0.0317 (15) | -0.0032 (11) | 0.0049 (12)  | -0.0038 (11)  |
| N3  | 0.0442 (18) | 0.061 (2)   | 0.0314 (15) | 0.0104 (14)  | 0.0125 (13)  | 0.0084 (13)   |
| N4  | 0.0471 (19) | 0.0414 (17) | 0.0282 (15) | -0.0024 (15) | 0.0017 (13)  | 0.0035 (13)   |
| N5  | 0.063 (2)   | 0.066 (2)   | 0.0480 (18) | 0.0109 (17)  | 0.0234 (16)  | -0.0012 (16)  |
| 01  | 0.0343 (12) | 0.0404 (14) | 0.0245 (11) | 0.0027 (10)  | 0.0009 (9)   | -0.0022 (9)   |
| C1  | 0.075 (3)   | 0.076 (3)   | 0.029 (2)   | 0.009 (2)    | 0.0094 (17)  | 0.0074 (18)   |
| C2  | 0.053 (2)   | 0.0332 (19) | 0.0261 (18) | -0.0024 (16) | 0.0044 (16)  | -0.0019 (14)  |
| C3  | 0.042 (2)   | 0.0366 (19) | 0.0282 (18) | -0.0008 (16) | -0.0008 (15) | 0.0049 (14)   |
| C4  | 0.0376 (19) | 0.032 (2)   | 0.0349 (19) | -0.0034 (14) | 0.0051 (15)  | 0.0039 (14)   |
| C5  | 0.039 (2)   | 0.047 (2)   | 0.0389 (19) | 0.0029 (17)  | 0.0041 (15)  | 0.0007 (16)   |
| C6  | 0.039 (2)   | 0.060(2)    | 0.058 (2)   | 0.0060 (19)  | -0.0008 (17) | 0.006 (2)     |
| C7  | 0.047 (2)   | 0.069 (3)   | 0.053 (3)   | -0.0019 (19) | -0.0188 (18) | 0.004 (2)     |
| C8  | 0.061 (3)   | 0.049 (2)   | 0.033 (2)   | -0.0034 (19) | -0.0043 (17) | 0.0018 (16)   |
| C9  | 0.049 (2)   | 0.053 (2)   | 0.0342 (19) | 0.0045 (17)  | 0.0166 (16)  | 0.0016 (16)   |
| C10 | 0.038 (2)   | 0.035 (2)   | 0.037 (2)   | -0.0054 (15) | 0.0083 (15)  | -0.0065 (15)  |
| C11 | 0.048 (2)   | 0.051 (3)   | 0.051 (2)   | 0.0052 (18)  | 0.0162 (18)  | -0.0071 (18)  |
| C12 | 0.042 (2)   | 0.052 (2)   | 0.065 (3)   | 0.0054 (18)  | 0.0059 (19)  | -0.016 (2)    |
| C13 | 0.044 (2)   | 0.039 (2)   | 0.056 (2)   | -0.0018 (17) | -0.0072 (17) | 0.0015 (17)   |
| C14 | 0.046 (2)   | 0.042 (2)   | 0.038 (2)   | -0.0022 (16) | 0.0022 (15)  | -0.0026 (16)  |
|     |             |             |             |              |              |               |

Geometric parameters (Å, °)

| Cu1—O1              | 1.9278 (18) | C4—C5  | 1.399 (4) |  |
|---------------------|-------------|--------|-----------|--|
| Cu1—N3              | 1.964 (2)   | C5—C6  | 1.377 (4) |  |
| Cu1—N1              | 1.978 (2)   | С5—Н5  | 0.9300    |  |
| Cu1—N2              | 2.007 (2)   | C6—C7  | 1.379 (4) |  |
| Cu1—O1 <sup>i</sup> | 2.3799 (19) | С6—Н6  | 0.9300    |  |
| N1-C2               | 1.287 (4)   | C7—C8  | 1.369 (4) |  |
| N1-C9               | 1.463 (3)   | С7—Н7  | 0.9300    |  |
| N2-C14              | 1.340 (4)   | C8—H8  | 0.9300    |  |
| N2-C10              | 1.347 (3)   | C9—C10 | 1.503 (4) |  |
|                     |             |        |           |  |

|                                 |                          |                                    | 0.0500            |
|---------------------------------|--------------------------|------------------------------------|-------------------|
| N3—N4                           | 1.204 (3)                | С9—Н9А                             | 0.9700            |
| N4—N5                           | 1.156 (3)                | С9—Н9В                             | 0.9700            |
| 01—C4                           | 1.328 (3)                | C10—C11                            | 1.377 (4)         |
| O1—Cu1 <sup>i</sup>             | 2.3799 (19)              | C11—C12                            | 1.373 (4)         |
| C1—C2                           | 1.521 (4)                | C11—H11                            | 0.9300            |
| C1—H1A                          | 0.9600                   | C12—C13                            | 1.375 (4)         |
| C1—H1B                          | 0.9600                   | C12—H12                            | 0.9300            |
| C1—H1C                          | 0.9600                   | C13—C14                            | 1.378 (4)         |
| C2—C3                           | 1.471 (4)                | С13—Н13                            | 0.9300            |
| C3—C8                           | 1.404 (4)                | C14—H14                            | 0.9300            |
| C3—C4                           | 1.424 (4)                |                                    |                   |
|                                 |                          |                                    |                   |
| 01—Cu1—N3                       | 95.73 (9)                | C5-C4-C3                           | 117.1 (3)         |
| 01— $Cu1$ — $N1$                | 90.30 (9)                | C6-C5-C4                           | 122.5(3)          |
| N3—Cu1—N1                       | 167 49 (11)              | С6—С5—Н5                           | 118 7             |
| $\Omega_1 - C_{u1} - N_2$       | 171 51 (8)               | C4—C5—H5                           | 118.7             |
| $N_3 = Cu_1 = N_2$              | 171.51(0)<br>92 50 (10)  | $C_{1}$                            | 120.0(3)          |
| $N_1 = C_{11} = N_2$            | 92.30 (10)<br>82.03 (10) | C5_C6_H6                           | 120.0 (3)         |
| $n_1 = c_{u_1} = n_2$           | 82.03 (10)               | C7 C6 H6                           | 120.0             |
| $N_{2} = C_{1} = O_{1}$         | 00.74 (0)                | $C^{2} = C^{2} = C^{2}$            | 120.0             |
| $N_3 = Cu_1 = O_1^2$            | 99.74 (9)                | $C_{8}$                            | 119.1 (3)         |
| $NI = CuI = OI^{\dagger}$       | 91.66 (8)                | C8—C/—H/                           | 120.4             |
| $N2-Cu1-O1^{2}$                 | 91.47 (8)                | C6—C/—H/                           | 120.4             |
| C2—N1—C9                        | 121.1 (2)                | C/C8C3                             | 122.4 (3)         |
| C2—N1—Cu1                       | 127.0 (2)                | С7—С8—Н8                           | 118.8             |
| C9—N1—Cu1                       | 111.55 (18)              | С3—С8—Н8                           | 118.8             |
| C14—N2—C10                      | 118.1 (3)                | N1—C9—C10                          | 109.6 (2)         |
| C14—N2—Cu1                      | 127.9 (2)                | N1—C9—H9A                          | 109.8             |
| C10—N2—Cu1                      | 114.1 (2)                | С10—С9—Н9А                         | 109.8             |
| N4—N3—Cu1                       | 124.5 (2)                | N1—C9—H9B                          | 109.8             |
| N5—N4—N3                        | 176.9 (3)                | С10—С9—Н9В                         | 109.8             |
| C4—O1—Cu1                       | 120.63 (17)              | H9A—C9—H9B                         | 108.2             |
| C4—O1—Cu $1^i$                  | 121.52 (17)              | N2-C10-C11                         | 122.2 (3)         |
| Cu1—O1—Cu1 <sup>i</sup>         | 94.91 (7)                | N2—C10—C9                          | 115.8 (3)         |
| C2—C1—H1A                       | 109.5                    | C11—C10—C9                         | 122.0 (3)         |
| C2—C1—H1B                       | 109.5                    | C12—C11—C10                        | 119.1 (3)         |
| H1A—C1—H1B                      | 109.5                    | C12—C11—H11                        | 120.5             |
| C2—C1—H1C                       | 109.5                    | C10—C11—H11                        | 120.5             |
| H1A—C1—H1C                      | 109.5                    | C11—C12—C13                        | 119.4 (3)         |
| H1B-C1-H1C                      | 109.5                    | C11—C12—H12                        | 120.3             |
| N1-C2-C3                        | 120 2 (3)                | C13 - C12 - H12                    | 120.3             |
| N1 - C2 - C1                    | 120.2(3)                 | $C_{12}$ $C_{13}$ $C_{14}$         | 120.3<br>118.7(3) |
| $C_{3}$ $C_{2}$ $C_{1}$         | 1122.2(3)                | $C_{12}$ $C_{13}$ $H_{13}$         | 120.7             |
| $C_{3}$ $C_{4}$                 | 117.0(3)<br>118 5 (3)    | $C_{12} = C_{13} = H_{13}$         | 120.7             |
| $C_{8}$ $C_{3}$ $C_{7}$         | 110.5 (3)                | $N_{2}$ $C_{14}$ $C_{13}$ $C_{13}$ | 120.7             |
| $C_{4} = C_{2} = C_{2}$         | 119.7(3)<br>1210(2)      | N2 $C14$ $H14$                     | 122.0 (3)         |
| $C_{4}$ $C_{5}$ $C_{4}$ $C_{5}$ | 121.9(3)                 | $1N2 - C14 - \Pi14$                | 110./             |
| 01 - 04 - 03                    | 119.1 (3)                | U13—U14—H14                        | 118./             |
| 01 - 04 - 03                    | 123.8 (3)                |                                    |                   |

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | O1—Cu1—N1—C2                             | 20.2 (3)   | C1—C2—C3—C4                | 149.0 (3)  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|----------------------------|------------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | N3—Cu1—N1—C2                             | -98.8 (6)  | Cu1—O1—C4—C5               | -146.9 (2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N2—Cu1—N1—C2                             | -163.5 (3) | Cu1 <sup>i</sup> C4C5      | 94.4 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1 <sup>i</sup> —Cu1—N1—C2               | 105.2 (3)  | Cu1—O1—C4—C3               | 32.9 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1—Cu1—N1—C9                             | -153.2 (2) | Cu1 <sup>i</sup> —O1—C4—C3 | -85.7 (3)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | N3—Cu1—N1—C9                             | 87.8 (5)   | C8—C3—C4—O1                | -173.3 (3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N2—Cu1—N1—C9                             | 23.2 (2)   | C2-C3-C4-O1                | 6.6 (5)    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | O1 <sup>i</sup> —Cu1—N1—C9               | -68.1 (2)  | C8—C3—C4—C5                | 6.5 (4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N3—Cu1—N2—C14                            | -2.0 (3)   | C2—C3—C4—C5                | -173.6 (3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N1—Cu1—N2—C14                            | 166.7 (3)  | O1—C4—C5—C6                | 173.6 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | $O1^{i}$ —Cu1—N2—C14                     | -101.8 (2) | C3—C4—C5—C6                | -6.2 (5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N3—Cu1—N2—C10                            | 177.8 (2)  | C4—C5—C6—C7                | 1.1 (5)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N1—Cu1—N2—C10                            | -13.5 (2)  | C5—C6—C7—C8                | 3.6 (5)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1 <sup>i</sup> —Cu1—N2—C10              | 78.0 (2)   | C6—C7—C8—C3                | -3.1 (5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1—Cu1—N3—N4                             | -9.5 (3)   | C4—C3—C8—C7                | -2.1 (5)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                     | N1—Cu1—N3—N4                             | 109.0 (5)  | C2—C3—C8—C7                | 178.0 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N2—Cu1—N3—N4                             | 172.6 (3)  | C2—N1—C9—C10               | 158.1 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1 <sup>i</sup> —Cu1—N3—N4               | -95.5 (3)  | Cu1—N1—C9—C10              | -28.1 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N3—Cu1—O1—C4                             | 129.3 (2)  | C14—N2—C10—C11             | 0.3 (4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N1—Cu1—O1—C4                             | -39.7 (2)  | Cu1—N2—C10—C11             | -179.6 (2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | O1 <sup>i</sup> —Cu1—O1—C4               | -131.4 (2) | C14—N2—C10—C9              | -179.4 (3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N3—Cu1—O1—Cu1 <sup>i</sup>               | -99.33 (9) | Cu1—N2—C10—C9              | 0.8 (3)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | N1—Cu1—O1—Cu1 <sup>i</sup>               | 91.64 (8)  | N1—C9—C10—N2               | 17.9 (4)   |
| C9-N1-C2-C3-178.8 (3)N2-C10-C11-C12-0.2 (5)Cu1-N1-C2-C38.5 (4)C9-C10-C11-C12179.4 (3)C9-N1-C2-C13.6 (5)C10-C11-C12-C130.5 (5)Cu1-N1-C2-C1-169.1 (2)C11-C12-C13-C14-0.9 (5)N1-C2-C3-C8151.1 (3)C10-N2-C14-C13-0.7 (4)C1-C2-C3-C8-31.2 (4)Cu1-N2-C14-C13179.1 (2)N1-C2-C3-C4-28.7 (4)C12-C13-C14-N21.0 (5) | O1 <sup>i</sup> —Cu1—O1—Cu1 <sup>i</sup> | 0.0        | N1-C9-C10-C11              | -161.8 (3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | C9—N1—C2—C3                              | -178.8 (3) | N2-C10-C11-C12             | -0.2 (5)   |
| C9-N1-C2-C1 $3.6 (5)$ C10-C11-C12-C13 $0.5 (5)$ Cu1-N1-C2-C1 $-169.1 (2)$ C11-C12-C13-C14 $-0.9 (5)$ N1-C2-C3-C8 $151.1 (3)$ C10-N2-C14-C13 $-0.7 (4)$ C1-C2-C3-C8 $-31.2 (4)$ Cu1-N2-C14-C13 $179.1 (2)$ N1-C2-C3-C4 $-28.7 (4)$ C12-C13-C14-N2 $1.0 (5)$                                               | Cu1—N1—C2—C3                             | 8.5 (4)    | C9—C10—C11—C12             | 179.4 (3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     | C9—N1—C2—C1                              | 3.6 (5)    | C10-C11-C12-C13            | 0.5 (5)    |
| N1C2C3C8       151.1 (3)       C10N2C14C13       -0.7 (4)         C1C2C3C8       -31.2 (4)       Cu1N2C14C13       179.1 (2)         N1C2C3C4       -28.7 (4)       C12C13C14N2       1.0 (5)                                                                                                            | Cu1—N1—C2—C1                             | -169.1 (2) | C11—C12—C13—C14            | -0.9 (5)   |
| C1C2C3C8-31.2 (4)Cu1N2C14C13179.1 (2)N1C2C3C4-28.7 (4)C12C13C14N21.0 (5)                                                                                                                                                                                                                                 | N1—C2—C3—C8                              | 151.1 (3)  | C10—N2—C14—C13             | -0.7 (4)   |
| N1—C2—C3—C4 –28.7 (4) C12—C13—C14—N2 1.0 (5)                                                                                                                                                                                                                                                             | C1—C2—C3—C8                              | -31.2 (4)  | Cu1—N2—C14—C13             | 179.1 (2)  |
|                                                                                                                                                                                                                                                                                                          | N1—C2—C3—C4                              | -28.7 (4)  | C12—C13—C14—N2             | 1.0 (5)    |

Symmetry code: (i) -x, -y+1, -z.

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|-------------|-------|-----------|-------------------------|
| C9—H9 <i>B</i> ···N5 <sup>i</sup> | 0.97        | 2.55  | 3.399 (5) | 147                     |
| C14—H14…N3                        | 0.93        | 2.55  | 3.052 (4) | 114                     |

Symmetry code: (i) -x, -y+1, -z.