

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-(Biphenyl-4,4'-divldioxy)diacetic acid N,N-dimethylformamide solvate

Yu-Juan Cao

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: caoyj@scnu.edu.cn

Received 29 May 2009; accepted 4 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 8.5.

In the crystal struture of the title compound, C₁₆H₁₄O₆.-C₃H₇NO, the two crystallographically independent benzene rings are coplanar [dihedral angle = $1.00(2)^{\circ}$]. The crystal structure is stabilized by $O-H \cdots O$ hydrogen bonds between the diacid and the solvate dimethylformamide molecule, resulting in the formation of a zigzag chain structure extending parallel to [001].

Related literature

For general background to biphenyl carbinols and their biological applications, see: Kamoda et al. (2006); Mikami & Yamanaka (2003); Sallam et al. (2006). For the crystal structures of related compounds, see: Rabnawaz et al. (2008); Tan et al. (2005). For the preparation of the title compound, see: Hayes & Branch (1943).

V = 1813.1 (6) Å³

Mo $K\alpha$ radiation

 $0.32 \times 0.25 \times 0.18 \text{ mm}$

9412 measured reflections

2079 independent reflections

1778 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.028$

Z = 4

Experimental

Crystal data

C₁₆H₁₄O₆·C₃H₇NO $M_r = 375.37$ Orthorhombic, $P2_12_12_1$ a = 7.7471 (15) Åb = 8.1758 (16) Åc = 28.625 (6) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.971, \ T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	246 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ \AA}^{-3}$
2079 reflections	$\Delta \rho_{\min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

TT 1 1 1 1		/ A	0)
Hvarogen_bong	l geometry	IA	× I
II yulogon bone	Loometry	1 4 1 1	
2 0	0 1	· · ·	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	···A
O6−H6···O7 ⁱ	0.82	1.87	2.685 (3)	174	
$O2-H2\cdots O7^{ii}$	0.82	1.81	2.626 (3)	176	
C15−H15a···O1 ⁱⁱⁱ	0.97	2.44	3.149 (2)	129	
$C17-H17\cdots O1^{iv}$	0.93	2.56	3.248 (3)	131	
Symmetry codes: (i) $x - \frac{1}{2}, -y +$	$+\frac{3}{2}, -z+1;$ (ii) $-x + 1, y - \frac{1}{2}$	$\frac{3}{2}, -z + \frac{3}{2};$	(iii)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2216).

References

Bruker (2004). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hayes, N. V. & Branch, G. E. K. (1943). J. Am. Chem. Soc. 65, 1555-1564.

- Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062-3069.
- Mikami, K. & Yamanaka, M. (2003). Chem. Rev. 103, 3369-3400.
- Rabnawaz, M., Ali, Q., Shah, M. R. & Singh, K. (2008). Acta Cryst. E64, 01909. Sallam, M. M., El-Sayed, B. A. & Abdel-Shafi, A. A. (2006). Curr. Appl. Phys. 6. 71-75.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, T.-F., Zhang, J.-X. & Meng, J.-B. (2005). Acta Cryst. E61, 01210-01211.

supporting information

Acta Cryst. (2009). E65, o1851 [doi:10.1107/S1600536809025914]

2,2'-(Biphenyl-4,4'-diyldioxy)diacetic acid N,N-dimethylformamide solvate

Yu-Juan Cao

S1. Comment

Biphenyl carbinols are valuable intermediates in the preparation of new ligands (Mikami *et al.*, 2003; Rabnawaz *et al.*, 2008; Tan *et al.*, 2005) and have shown important biological activities (Kamoda *et al.*, 2006; Sallam *et al.*, 2006). As part of our ongoing study of such biphenyl carbinol compounds, the crystal structure of the title compound is reported in this work.

The molecular structure of the title compound is shown in Fig. 1. The two crystallographically independent benzene rings are coplanar (dihedral angle = $1.00 (2)^{\circ}$) and the two carboxylic acid groups are oriented in different directions. There are no unusual bonds lengths and angles. The C1—O1 and C16—O5 distances in the title compound are 1.197 (3)Å and 1.184 (4)Å, respectively, typical of double bonds.

The $-OCH_2COOH$ substituents show torsion angles of 176.0 (2)° (C2-O3-C3-C8) and 169.7 (2)° (C15-O4-C12--C11) with respect to the phenyl rings. Intermolecular O-H···O hydrogen bonds between the hydroxyl groups of the diacid and the carbonyl group of the DMF molecule (Table 1) are observed in this structure, thereby forming a onedimensional zigzag chain structure along the c-axial direction (Fig. 2).

The crystal structure is further stabilized by weak intermolecular hydrogen bonding interactions between the diacids, thus forming a sandwich structure as represented in Fig. 3.

S2. Experimental

The title compound was prepared according to the general procedure reported by Hayes & Branch (1943). 2-Chloroacetic acid (114 mg, 1.2 mmol) and sodium hydroxide (40 mg, 10 mmol) in 20 ml of *N*,*N*-dimethylformamide (DMF) were stirred for 10 min, followed by addition of 2,2'-dihydroxybiphenyl (186 mg, 1 mmol). The reaction mixture was stirred at 100 °C for 3 h. After cooling, the solution was acidified and extracted with ether. Slow evaporation of ether at room temperature yielded colorless crystals of the title compound. IR(KBr pellet, cm⁻¹): 3428.47, 3042.21, 2905.29, 2787.94,1740.59, 1707.78, 1607.65, 1500.03, 1430.90, 1234.94, 830.29, 797.57.

S3. Refinement

All H atoms were placed in calculated positions and were allowed to ride on their parent atoms; C—H = 0.93 (aromatic C —H), 0.97 (methylene) and 0.96 (methyl) and O—H = 0.82 (hydroxyl) Å; $U_{iso}(H) = 1.2 U_{eq}$ (aromatic and methylene C), $U_{iso}(H) = 1.5 U_{eq}$ (methyl C) and $U_{iso}(H) = 1.5 U_{eq}$ (O). In the absence of anomalous scatterers and using Mo radiation Friedel pairs were merged prior to refinement.

Figure 1

The molecular structure of the title compound with displacement ellipsoids at the 50% probability level. All H atoms are drawn as spheres of arbitrary radius.

Figure 2

A one-dimensional zigzag chain generated by the hydrogen bonds along the c-axial direction in the title compound. All H atoms are omitted for clarity.

Figure 3

A crystallographic packing diagram of the title compound.

2,2'-(Biphenyl-4,4'-diyldioxy)diacetic acid N,N-dimethylformamide solvate

Crystal data

C₁₆H₁₄O₆·C₃H₇NO $M_r = 375.37$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.7471 (15) Å b = 8.1758 (16) Å c = 28.625 (6) Å V = 1813.1 (6) Å³ Z = 4F(000) = 792

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.971, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.052079 reflections 246 parameters $D_x = 1.375 \text{ Mg m}^{-3}$ Melting point = 524.9–525.8 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3913 reflections $\theta = 1.4-27.8^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.32 \times 0.25 \times 0.18 \text{ mm}$

9412 measured reflections 2079 independent reflections 1778 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 1.4^\circ$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 9$ $l = -29 \rightarrow 35$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.2914P]$	$\Delta \rho_{\rm max} = 0.22 \text{ e } { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(Fractional atomic coordinates and	l isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2$?)
---	-----------------------------------	---------------	--------------	-----------	--------------	------------	--------	----

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.0567 (4)	-0.7098 (3)	0.65314 (10)	0.0437 (7)	
C2	0.0253 (4)	-0.5895 (3)	0.61484 (10)	0.0480 (7)	
H2A	0.0508	-0.6406	0.5850	0.058*	
H2B	-0.0957	-0.5588	0.6148	0.058*	
C3	0.1124 (3)	-0.3291 (3)	0.58665 (9)	0.0385 (6)	
C4	0.0138 (4)	-0.3432 (4)	0.54660 (10)	0.0508 (8)	
H4	-0.0507	-0.4372	0.5411	0.061*	
C5	0.0120 (4)	-0.2161 (4)	0.51477 (10)	0.0506 (8)	
H5	-0.0555	-0.2268	0.4881	0.061*	
C6	0.1058 (3)	-0.0739 (3)	0.52075 (9)	0.0355 (6)	
C7	0.2023 (4)	-0.0632 (3)	0.56174 (9)	0.0415 (6)	
H7	0.2664	0.0308	0.5675	0.050*	
C8	0.2051 (4)	-0.1875 (3)	0.59386 (9)	0.0427 (6)	
H8	0.2705	-0.1762	0.6209	0.051*	
C9	0.1043 (3)	0.0598 (3)	0.48540 (9)	0.0353 (6)	
C10	0.0092 (3)	0.0467 (3)	0.44397 (9)	0.0409 (6)	
H10	-0.0528	-0.0486	0.4383	0.049*	
C11	0.0048 (3)	0.1697 (4)	0.41162 (9)	0.0434 (6)	
H11	-0.0601	0.1567	0.3845	0.052*	
C12	0.0958 (3)	0.3135 (3)	0.41877 (8)	0.0367 (6)	
C13	0.1927 (4)	0.3298 (3)	0.45907 (9)	0.0457 (7)	
H13	0.2558	0.4248	0.4645	0.055*	
C14	0.1950 (4)	0.2043 (3)	0.49115 (10)	0.0481 (7)	
H14	0.2609	0.2173	0.5181	0.058*	
C15	0.1904 (4)	0.5669 (3)	0.38615 (9)	0.0452 (7)	
H15A	0.3090	0.5326	0.3909	0.054*	
H15B	0.1579	0.6398	0.4114	0.054*	
C16	0.1717 (4)	0.6512 (4)	0.33992 (10)	0.0480 (7)	
C17	0.8034 (4)	0.4650 (3)	0.76651 (10)	0.0467 (7)	
H17	0.8715	0.4520	0.7930	0.056*	
C18	0.7724 (5)	0.1739 (4)	0.76798 (13)	0.0648 (9)	
H18A	0.6666	0.1321	0.7807	0.097*	

H18B	0.8570	0.1827	0.7924	0.097*	
H18C	0.8139	0.1009	0.7442	0.097*	
C19	0.6242 (5)	0.3421 (4)	0.70858 (11)	0.0618 (9)	
H19A	0.6722	0.2833	0.6826	0.093*	
H19B	0.6064	0.4543	0.6999	0.093*	
H19C	0.5158	0.2939	0.7172	0.093*	
N1	0.7419 (3)	0.3344 (3)	0.74773 (7)	0.0437 (6)	
01	-0.0176 (3)	-0.8381 (3)	0.65378 (8)	0.0711 (7)	
O2	0.1679 (3)	-0.6642 (3)	0.68480 (7)	0.0616 (6)	
H2	0.1823	-0.7387	0.7036	0.092*	
03	0.1272 (3)	-0.4482 (2)	0.61989 (6)	0.0458 (5)	
O4	0.0795 (3)	0.4294 (2)	0.38492 (6)	0.0468 (5)	
05	0.0680 (5)	0.6151 (4)	0.31136 (10)	0.1098 (12)	
O6	0.2858 (4)	0.7658 (3)	0.33427 (8)	0.0768 (8)	
H6	0.2834	0.7982	0.3072	0.115*	
07	0.7798 (3)	0.6075 (2)	0.75226 (6)	0.0565 (6)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0502 (16)	0.0377 (15)	0.0433 (15)	0.0007 (13)	0.0004 (13)	0.0008 (13)
C2	0.0553 (17)	0.0427 (16)	0.0461 (16)	-0.0061 (14)	-0.0045 (14)	0.0050 (14)
C3	0.0408 (13)	0.0347 (13)	0.0399 (13)	0.0016 (12)	-0.0011 (11)	0.0039 (12)
C4	0.0592 (18)	0.0400 (16)	0.0533 (16)	-0.0170 (15)	-0.0174 (14)	0.0059 (14)
C5	0.0581 (18)	0.0478 (16)	0.0459 (16)	-0.0142 (15)	-0.0207 (14)	0.0058 (14)
C6	0.0337 (12)	0.0357 (13)	0.0372 (13)	0.0027 (11)	0.0011 (11)	-0.0001 (12)
C7	0.0457 (15)	0.0375 (14)	0.0411 (14)	-0.0062 (12)	-0.0066 (12)	0.0010 (12)
C8	0.0468 (15)	0.0463 (15)	0.0350 (13)	-0.0014 (14)	-0.0063 (12)	0.0008 (12)
C9	0.0333 (12)	0.0365 (13)	0.0361 (13)	0.0013 (11)	0.0018 (11)	0.0003 (12)
C10	0.0419 (14)	0.0407 (15)	0.0400 (14)	-0.0089 (13)	-0.0011 (12)	-0.0023 (12)
C11	0.0428 (14)	0.0536 (17)	0.0339 (13)	-0.0037 (14)	-0.0044 (11)	0.0031 (13)
C12	0.0384 (13)	0.0377 (14)	0.0340 (13)	0.0037 (12)	0.0042 (11)	0.0033 (11)
C13	0.0553 (16)	0.0371 (14)	0.0446 (15)	-0.0066 (14)	-0.0071 (13)	0.0052 (13)
C14	0.0561 (16)	0.0479 (17)	0.0403 (15)	-0.0079 (15)	-0.0119 (13)	0.0049 (13)
C15	0.0533 (16)	0.0402 (15)	0.0420 (14)	0.0025 (14)	0.0030 (13)	0.0020 (13)
C16	0.0502 (16)	0.0475 (16)	0.0462 (16)	0.0002 (15)	-0.0003 (14)	0.0065 (14)
C17	0.0606 (18)	0.0434 (16)	0.0360 (14)	0.0003 (15)	-0.0080 (14)	0.0035 (13)
C18	0.082 (2)	0.0402 (17)	0.072 (2)	0.0019 (17)	0.003 (2)	0.0110 (16)
C19	0.068 (2)	0.058 (2)	0.0588 (19)	0.0028 (17)	-0.0166 (16)	-0.0103 (17)
N1	0.0493 (13)	0.0403 (13)	0.0413 (12)	0.0008 (11)	-0.0014 (11)	-0.0021 (10)
O1	0.0894 (17)	0.0499 (13)	0.0740 (15)	-0.0250 (14)	-0.0256 (13)	0.0132 (12)
O2	0.0847 (15)	0.0422 (11)	0.0579 (12)	-0.0134 (12)	-0.0230 (12)	0.0114 (10)
O3	0.0523 (11)	0.0415 (10)	0.0436 (10)	-0.0074 (9)	-0.0085 (9)	0.0107 (9)
O4	0.0498 (11)	0.0469 (11)	0.0436 (10)	-0.0045 (9)	-0.0043 (9)	0.0110 (10)
O5	0.119 (2)	0.123 (3)	0.0881 (19)	-0.058 (2)	-0.0515 (19)	0.060 (2)
O6	0.1004 (19)	0.0726 (16)	0.0573 (14)	-0.0360 (16)	-0.0152 (14)	0.0243 (12)
07	0.0860 (16)	0.0393 (11)	0.0444 (12)	-0.0036 (11)	-0.0131 (11)	0.0042 (9)

Geometric parameters (Å, °)

<u>C1–01</u>	1.197 (3)	C12—O4	1.361 (3)
C1—O2	1.305 (4)	C12—C13	1.383 (4)
C1—C2	1.493 (4)	C13—C14	1.377 (4)
C2—O3	1.407 (3)	С13—Н13	0.9300
C2—H2A	0.9700	C14—H14	0.9300
C2—H2B	0.9700	C15—O4	1.415 (3)
C3—O3	1.366 (3)	C15—C16	1.499 (4)
C3—C8	1.377 (4)	C15—H15A	0.9700
C3—C4	1.383 (4)	C15—H15B	0.9700
C4—C5	1.382 (4)	C16—O5	1.184 (4)
C4—H4	0.9300	C16—O6	1.298 (4)
С5—С6	1.382 (4)	C17—O7	1.248 (3)
С5—Н5	0.9300	C17—N1	1.287 (4)
C6—C7	1.394 (4)	C17—H17	0.9300
С6—С9	1.489 (4)	C18—N1	1.454 (4)
С7—С8	1.371 (4)	C18—H18A	0.9600
С7—Н7	0.9300	C18—H18B	0.9600
С8—Н8	0.9300	C18—H18C	0.9600
C9—C14	1.385 (4)	C19—N1	1.446 (4)
C9—C10	1.400 (3)	C19—H19A	0.9600
C10—C11	1.368 (4)	C19—H19B	0.9600
C10—H10	0.9300	C19—H19C	0.9600
C11—C12	1.386 (4)	O2—H2	0.8201
C11—H11	0.9300	O6—H6	0.8200
01—C1—O2	123.9 (3)	C13—C12—C11	118.8 (2)
O1—C1—C2	120.7 (3)	C14—C13—C12	119.4 (3)
O2—C1—C2	115.4 (2)	C14—C13—H13	120.3
O3—C2—C1	112.0 (2)	С12—С13—Н13	120.3
O3—C2—H2A	109.2	C13—C14—C9	123.4 (3)
C1—C2—H2A	109.2	C13—C14—H14	118.3
O3—C2—H2B	109.2	C9—C14—H14	118.3
C1—C2—H2B	109.2	O4—C15—C16	106.5 (2)
H2A—C2—H2B	107.9	O4—C15—H15A	110.4
O3—C3—C8	116.8 (2)	C16—C15—H15A	110.4
O3—C3—C4	124.4 (2)	O4—C15—H15B	110.4
C8—C3—C4	118.8 (2)	C16—C15—H15B	110.4
C5—C4—C3	119.3 (3)	H15A—C15—H15B	108.6
C5—C4—H4	120.3	O5—C16—O6	123.8 (3)
C3—C4—H4	120.3	O5—C16—C15	124.1 (3)
C4—C5—C6	123.1 (2)	O6—C16—C15	112.1 (3)
C4—C5—H5	118.5	O7—C17—N1	125.7 (3)
С6—С5—Н5	118.5	O7—C17—H17	117.1
C5—C6—C7	116.0 (2)	N1—C17—H17	117.1
C5—C6—C9	121.9 (2)	N1—C18—H18A	109.5
С7—С6—С9	122.0 (2)	N1—C18—H18B	109.5

C8—C7—C6	121.8 (2)	H18A—C18—H18B	109.5
С8—С7—Н7	119.1	N1—C18—H18C	109.5
С6—С7—Н7	119.1	H18A—C18—H18C	109.5
C7—C8—C3	120.9 (2)	H18B—C18—H18C	109.5
С7—С8—Н8	119.5	N1—C19—H19A	109.5
С3—С8—Н8	119.5	N1—C19—H19B	109.5
C14—C9—C10	115.7 (2)	H19A—C19—H19B	109.5
C14—C9—C6	122.8 (2)	N1—C19—H19C	109.5
С10—С9—С6	121.6 (2)	H19A—C19—H19C	109.5
C11—C10—C9	122.0 (2)	H19B—C19—H19C	109.5
C11—C10—H10	119.0	C17—N1—C19	121.4 (2)
С9—С10—Н10	119.0	C17—N1—C18	121.4 (2)
C10-C11-C12	120.7 (2)	C19—N1—C18	116.8 (3)
C10-C11-H11	119.6	C1—O2—H2	109.4
C12—C11—H11	119.6	C3—O3—C2	117.8 (2)
O4—C12—C13	125.2 (2)	C12—O4—C15	118.6 (2)
O4—C12—C11	116.0 (2)	С16—О6—Н6	109.6
O1—C1—C2—O3	-178.9 (3)	C9—C10—C11—C12	0.2 (4)
O2—C1—C2—O3	1.4 (4)	C10-C11-C12-O4	-178.6 (2)
O3—C3—C4—C5	-178.3 (3)	C10-C11-C12-C13	0.6 (4)
C8—C3—C4—C5	0.6 (4)	O4—C12—C13—C14	178.4 (3)
C3—C4—C5—C6	0.4 (5)	C11—C12—C13—C14	-0.7 (4)
C4—C5—C6—C7	-1.1 (4)	C12—C13—C14—C9	0.0 (5)
C4—C5—C6—C9	178.8 (3)	C10-C9-C14-C13	0.8 (4)
C5—C6—C7—C8	0.7 (4)	C6—C9—C14—C13	-179.0 (3)
C9—C6—C7—C8	-179.1 (3)	O4—C15—C16—O5	7.5 (5)
C6—C7—C8—C3	0.2 (4)	O4—C15—C16—O6	-170.6 (2)
O3—C3—C8—C7	178.1 (2)	O7—C17—N1—C19	-4.7 (5)
C4—C3—C8—C7	-0.9 (4)	O7—C17—N1—C18	-178.0 (3)
C5—C6—C9—C14	178.9 (3)	C8—C3—O3—C2	176.0 (2)
C7—C6—C9—C14	-1.3 (4)	C4—C3—O3—C2	-5.0 (4)
C5—C6—C9—C10	-0.9 (4)	C1—C2—O3—C3	179.1 (2)
C7—C6—C9—C10	178.9 (2)	C13—C12—O4—C15	11.2 (4)
C14—C9—C10—C11	-0.8 (4)	C11—C12—O4—C15	-169.7 (2)
C6—C9—C10—C11	179.0 (2)	C16—C15—O4—C12	167.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O6—H6…O7 ⁱ	0.82	1.87	2.685 (3)	174
O2—H2···O7 ⁱⁱ	0.82	1.81	2.626 (3)	176
C15—H15a····O1 ⁱⁱⁱ	0.97	2.44	3.149 (2)	129
C17—H17…O1 ^{iv}	0.93	2.56	3.248 (3)	131

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) -x+1, y-3/2, -z+3/2; (iii) x+1/2, -y-1/2, -z+1; (iv) -x+1, y+3/2, -z+3/2.