organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,7,8,9,10,11-Hexahydro-13Hazocino[2,1-b]quinazolin-13-one

Rasul Ya. Okmanov,* Zafir U. Samarov, Kambarali K. Turgunov, Bakhodir Tashkhodjaev and Khusniddin M. Shakhidoyatov

S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan Correspondence e-mail: raxul@mail.ru

Received 5 May 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.035; wR factor = 0.079; data-to-parameter ratio = 6.9.

The title compound, $C_{14}H_{16}N_2O$, is a synthetic analogue of quinazolone alkaloids with pyrrilo, pyrido and azopino rings. The quinazolinic part of the molecule is generally planar within 0.037 (3) Å; the eight-membered ring exhibits an intermediate conformation between the chair and boat forms as it is typical for cyclooctene rings. An ethylene group of the azopino ring is disordered over two positions with a refined occupancy ratio of 0.910 (7):0.090 (7). In the crystal, the H atoms of the aromatic rings form weak C-H...O and C- $H \cdots N$ hydrogen bonds. One $C - H \cdots O$ hydrogen bond leads to the formation of a one-dimensional chain. Another C- $H \cdots O$ and a $C - H \cdots N$ bond link these chains, generating a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Shakhidoyatov et al. (1976). For its physiological activity, see: Shakhidoyatov (1988). For crystal structures of pyrido-quinazolone and azopino-quinazolone, see: Tashkhodzhaev et al. (1995). For spectroscopic data and the chemical structures of pyridoquinazoline and -quinazolone alkaloids, see: Turgunov et al. (1995). For cyclooctene ring conformations, see: Barnes et al. (1992). For weak hydrogen bonds in alkaloids, see: Rajnikant et al. (2005).

Experimental

Crystal data

$C_{14}H_{16}N_2O$	
$M_r = 228.29$	
Orthorhombic, $P2_12_12_1$	
a = 9.5490 (19) Å	
b = 10.584 (2) Å	
c = 11.693 (2) Å	

Data collection

Stoe Stadi-4 four-circle diffractometer Absorption correction: none 1229 measured reflections 1208 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	174 parameters
$wR(F^2) = 0.079$	H-atom parameters constrained
S = 1.17	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
1208 reflections	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

V = 1181.8 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.60 \times 0.42 \times 0.35 \text{ mm}$

3 standard reflections

frequency: 60 min

intensity decay: 3.9%

1061 reflections with $I > 2\sigma(I)$

Z = 4

T = 300 K

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C8-H8A\cdotsO1^{i}$ $C9-H9A\cdotsN7^{ii}$ $C10-H10A\cdotsO1^{iii}$	0.93 0.93 0.93	2.64 2.74 2.71	3.490 (3) 3.660 (3) 3.599 (3)	153 170 162
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$	$-x+\frac{3}{2}, -y$	$v + 1, z - \frac{1}{2};$	(ii) $-x + 2, y - $	$\frac{1}{2}, -z + \frac{1}{2};$ (iii)

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant MP-34).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2205).

References

- Barnes, J. C., Hunter, G., Keller, W., Paton, J. D. & Weissensteiner, W. (1992). Monatsh. Chem. 123, 443-454.
- Bruker (1998). XP. Bruker AXS Ins., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Rainikant, Dinesh & Kamni (2005). Bull. Mater. Sci. 28, 187-198.
- Shakhidoyatov, Kh. M. (1988). Quinazolin-4-one and their biological activity, edited by M. S. Yunusov, S. R. Tulyaganov & M. M. Yunusov, p. 103. Tashkent: Fan.
- Shakhidoyatov, Kh. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadirov, Ch. Sh. (1976). Khim. Geterotsikl. Soedin. 11, 1286-1291.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.
- Tashkhodzhaev, B., Turgunov, K. K., D'yakonov, A. L., Belova, G. A. & Shakhidoyatov, Kh. M. (1995). Chem. Nat. Compd, 31, 342-348.
- Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Aripov, Kh. N. (1995). Chem. Nat. Compd, 31, 714-718.

supporting information

Acta Cryst. (2009). E65, o1776 [doi:10.1107/S160053680902460X]

6,7,8,9,10,11-Hexahydro-13H-azocino[2,1-b]quinazolin-13-one

Rasul Ya. Okmanov, Zafir U. Samarov, Kambarali K. Turgunov, Bakhodir Tashkhodjaev and Khusniddin M. Shakhidoyatov

S1. Comment

Tricyclic quinazolin-4-ones with polymethylenic fragments and their analogues are widely spread in plants and possess various physiological activities (Shakhidoyatov, 1988). With this in mind the title compound was synthesized (Shakhidoyatov *et al.*, 1976) and its crystal structure has been investigated by single crystal X-ray diffraction.

Figure 1 shows an ortep style plot of the molecular structure of the title compound. An ethylene group of the molecule is disordered over two positions (C3, C3', C4, C4'). Refinement of the structure yielded an occupancy ratio of the disordered atoms (*i.e.* two conformers) of 0.910 (7):0.090 (7).

The quinazoline part of the molecule is a generally flat within a standard deviation of ± 0.037 Å. The electronic system of the N7—C14—N15—C12 fragment of the pyrymidinic ring is delocalized as reflected by the bond lengths. The length of the formal double bond N7=C14 and the single bond C14—N15 in the structure of the title compound are 1.297 (3) and 1.383 (3) Å, respectively, which is in agreement with the range observed in crystals of pyrrilo, pyrido, and azopino quinazolones (Turgunov *et al.*, 1995; Tashkhodzhaev *et al.*, 1995). The length of the C=O bond (1.227 (3) Å) is also compareable to those observed in above mentioned analogues. The eight-membered ring has taken on an intermediate form between a chair and boat conformation typical for cycloectene rings (Barnes *et al.*, 1992).

In the crystal structure of the title compound weak intermolecular C-H···X hydrogen bonds are observed as it is often the case in alkaloids (Rajnikant *et al.*, 2005). The hydrogen bond C8–H8A···O1ⁱ leads to the formation of a one dimensional chain. Another C–H···O and a C–H···N bond (C10–H10A···O1ⁱⁱ and a C9–H9A···N7ⁱⁱ) link these chains to generate a three-dimensional network (Fig. 2 and 3; for numerical values and symmetry operators see Table 1).

S2. Experimental

The title compound was synthesized on the basis of a well–known method (Shakhidoyatov, *et al.*, 1976). Powder of title compound was dissolved in hot aqueous ethanol and from the solution yellow prismatic crystals were obtained during slow evaporation in a thermostat at a temperature of 313 K.

S3. Refinement

In the absence of anomalous scatteres and using molybdenum radiation Friedel pairs were merged prior to refinement. The C3 and C4 atoms of the molecule are disordered over two positions (C3, C3', C4, C4'). Refinement of the structure by using a free variable for the occupancy led to a ratio for the disordered atoms of 0.910 (7):0.090 (7). The bond lengths of the disordered hexamethylenic fragment were restrained to be the same within a standard deviation of 0.02 Å.

The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH_2 and 0.93 Å for C_{ar}) and included in the refinement with a riding motion approximation with $U_{iso} = 1.2U_{eq}(C)$ [$U_{iso} = 1.5U_{eq}(C)$ for methyl H atoms].

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids (bonds of the minor disordered moiety are represented by dashed lines).

Figure 2

The H-bonding networks in the crystal of the title compound. Minor moiety disordered atoms are omitted for clarity.

Figure 3

Schematic showing the weak hydrogen bonds (dashed lines).

6,7,8,9,10,11-Hexahydro-13*H*-azocino[2,1-*b*]quinazolin-13-one

Crystal data

C₁₄H₁₆N₂O $M_r = 228.29$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.5490 (19) Å b = 10.584 (2) Å c = 11.693 (2) Å V = 1181.8 (4) Å³ Z = 4F(000) = 488 $D_x = 1.283 \text{ Mg m}^{-3}$ Melting point: 391(3) K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12 reflections $\theta = 10-15^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 300 KPrizmatic, yellow $0.60 \times 0.42 \times 0.35 \text{ mm}$ Data collection

Stoe Stadi-4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans 1229 measured reflections 1208 independent reflections 1061 reflections with $I > 2\sigma(I)$	$R_{int} = 0.000$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 13$ 3 standard reflections every 60 min intensity decay: 3.9%
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.079$ S = 1.17 1208 reflections 174 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0252P)^2 + 0.261P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.11 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.040 (3)

Special details

Experimental. Scan width (omega) = 1.56 - 1.68, scan ratio 2theta:omega = 1.00 I(Net) and sigma(I) calculated according to Blessing, (1987).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.48619 (19)	0.50852 (16)	0.48326 (16)	0.0541 (5)	
C1	0.4342 (3)	0.7278 (3)	0.3757 (2)	0.0501 (7)	
H1A	0.3555	0.6703	0.3823	0.060*	
H1B	0.4167	0.7825	0.3107	0.060*	
C2	0.4418 (3)	0.8074 (3)	0.4824 (3)	0.0626 (8)	
H2A	0.4389	0.7519	0.5483	0.075*	
H2B	0.3593	0.8608	0.4855	0.075*	
C3	0.5710 (4)	0.8909 (3)	0.4918 (3)	0.0625 (11)	0.910 (7)
H3A	0.6529	0.8373	0.4990	0.075*	0.910 (7)
H3B	0.5639	0.9409	0.5611	0.075*	0.910 (7)
C4	0.5920 (5)	0.9800 (3)	0.3902 (4)	0.0672 (12)	0.910 (7)
H4A	0.5024	0.9930	0.3530	0.081*	0.910 (7)
H4B	0.6234	1.0612	0.4188	0.081*	0.910 (7)

C3′	0.492 (4)	0.938 (3)	0.437 (4)	0.076 (16)	0.090 (7)
H3C	0.4513	0.9551	0.3629	0.091*	0.090 (7)
H3D	0.4626	1.0046	0.4895	0.091*	0.090 (7)
C4′	0.654 (3)	0.934 (5)	0.429 (3)	0.057 (11)	0.090 (7)
H4C	0.6935	1.0078	0.4666	0.068*	0.090 (7)
H4D	0.6892	0.8593	0.4667	0.068*	0.090 (7)
C5	0.6969 (3)	0.9334 (3)	0.3012 (3)	0.0659 (9)	
H5A	0.7816	0.9085	0.3411	0.079*	
H5B	0.7209	1.0042	0.2523	0.079*	
C6	0.6522 (3)	0.8230 (3)	0.2240 (2)	0.0556 (8)	
H6A	0.5559	0.8366	0.2007	0.067*	
H6B	0.7095	0.8247	0.1555	0.067*	
N7	0.7692 (2)	0.62498 (19)	0.24573 (17)	0.0431 (5)	
C8	0.8961 (3)	0.4294 (3)	0.2602 (2)	0.0504 (7)	
H8A	0.9545	0.4558	0.2012	0.061*	
C9	0.9186 (3)	0.3150 (3)	0.3122 (3)	0.0563 (8)	
H9A	0.9923	0.2642	0.2880	0.068*	
C10	0.8327 (3)	0.2743 (3)	0.4005 (3)	0.0562 (8)	
H10A	0.8505	0.1974	0.4361	0.067*	
C11	0.7218 (3)	0.3469 (2)	0.4355 (2)	0.0485 (7)	
H11A	0.6638	0.3192	0.4943	0.058*	
C12	0.5754 (3)	0.5395 (2)	0.4132 (2)	0.0377 (6)	
C13	0.6967 (2)	0.4634 (2)	0.38186 (19)	0.0366 (6)	
C14	0.6629 (3)	0.6936 (2)	0.2763 (2)	0.0400 (6)	
N15	0.5625 (2)	0.65339 (18)	0.35342 (16)	0.0385 (5)	
C16	0.7848 (2)	0.5065 (2)	0.2960 (2)	0.0379 (6)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0525 (11)	0.0515 (11)	0.0582 (11)	-0.0064 (10)	0.0185 (10)	0.0010 (10)
C1	0.0372 (13)	0.0490 (15)	0.0642 (17)	0.0079 (12)	0.0023 (13)	-0.0053 (14)
C2	0.0607 (18)	0.0529 (16)	0.0743 (19)	0.0055 (16)	0.0161 (17)	-0.0140 (16)
C3	0.063 (2)	0.058 (2)	0.067 (2)	0.006 (2)	-0.007 (2)	-0.0217 (19)
C4	0.069 (3)	0.0387 (19)	0.094 (3)	0.002 (2)	-0.002 (3)	-0.007 (2)
C3′	0.11 (4)	0.035 (18)	0.08 (3)	0.01 (2)	0.05 (3)	-0.010 (19)
C4′	0.04 (2)	0.08 (3)	0.04 (2)	0.00 (2)	-0.016 (17)	0.022 (19)
C5	0.0635 (19)	0.0414 (15)	0.093 (2)	0.0014 (15)	0.0113 (18)	0.0164 (17)
C6	0.0584 (17)	0.0541 (17)	0.0543 (16)	0.0136 (15)	0.0060 (14)	0.0176 (14)
N7	0.0404 (11)	0.0434 (12)	0.0456 (12)	0.0009 (10)	0.0059 (10)	0.0035 (10)
C8	0.0415 (15)	0.0526 (16)	0.0572 (17)	0.0040 (13)	0.0082 (14)	-0.0044 (15)
C9	0.0487 (16)	0.0490 (16)	0.0713 (19)	0.0148 (15)	-0.0032 (15)	-0.0076 (15)
C10	0.0618 (17)	0.0392 (14)	0.0674 (18)	0.0080 (14)	-0.0075 (17)	0.0010 (15)
C11	0.0537 (16)	0.0396 (14)	0.0523 (16)	-0.0029 (14)	-0.0010 (13)	0.0034 (12)
C12	0.0398 (13)	0.0368 (13)	0.0365 (12)	-0.0059 (11)	0.0001 (13)	-0.0044 (11)
C13	0.0368 (13)	0.0353 (12)	0.0377 (13)	-0.0032 (11)	-0.0011 (11)	-0.0058 (10)
C14	0.0418 (14)	0.0417 (14)	0.0366 (13)	0.0020 (12)	-0.0008 (12)	0.0004 (12)
N15	0.0362 (11)	0.0390 (11)	0.0401 (10)	0.0020 (10)	0.0014 (10)	-0.0052 (9)

C16	0.0382 (14)	0.0363 (12) 0.0	392 (12) -0.0005 (12)	-0.0027 (11) -0.0030 (11)
Geome	tric parameters (À	, ^o)		
01—C	12	1.227 (3)	C5—C6	1.537 (4)
C1—N	15	1.480 (3)	C5—H5A	0.9700
C1—C	2	1.507 (4)	C5—H5B	0.9700
С1—Н	1A	0.9700	C6—C14	1.503 (4)
С1—Н	1B	0.9700	С6—Н6А	0.9700
C2—C	3	1.521 (4)	C6—H6B	0.9700
C2—C	3'	1.56 (3)	N7—C14	1.298 (3)
С2—Н	2A	0.9700	N7—C16	1.393 (3)
С2—Н	2B	0.9700	C8—C9	1.371 (4)
C3—C4	4	1.530 (6)	C8—C16	1.404 (3)
С3—Н	3A	0.9700	C8—H8A	0.9300
С3—Н	3B	0.9700	C9—C10	1.387 (4)
C4—C	5	1.526 (5)	С9—Н9А	0.9300
C4—H	4A	0.9700	C10—C11	1.371 (4)
C4—H	4B	0.9700	C10—H10A	0.9300
С3′—С	4'	1.55 (3)	C11—C13	1.404 (3)
С3′—Н	13C	0.9700	C11—H11A	0.9300
С3′—Н	[3D	0.9700	C12—N15	1.398 (3)
C4′—C	25	1.55 (3)	C12—C13	1.458 (3)
С4′—Н	[4C	0.9700	C13—C16	1.387 (3)
C4'—H	[4D	0.9700	C14—N15	1.383 (3)
N15—0	C1—C2	113.8 (2)	C4—C5—H5A	107.9
N15—0	C1—H1A	108.8	C6—C5—H5A	107.9
С2—С	1—H1A	108.8	C4′—C5—H5A	76.1
N15—0	C1—H1B	108.8	C4—C5—H5B	107.9
С2—С	1—H1B	108.8	C6—C5—H5B	107.9
H1A—	C1—H1B	107.7	C4′—C5—H5B	128.7
C1-C	2—С3	115.1 (2)	H5A—C5—H5B	107.2
C1C2	2—C3′	103.5 (16)	C14—C6—C5	115.8 (2)
C1-C	2—H2A	108.5	C14—C6—H6A	108.3
C3—C	2—H2A	108.5	C5—C6—H6A	108.3
С3′—С	2—H2A	144.7	C14—C6—H6B	108.3
C1C2	2—H2B	108.5	C5—C6—H6B	108.3
C3—C	2—H2B	108.5	H6A—C6—H6B	107.4
С3′—С	2—H2B	75.1	C14—N7—C16	118.1 (2)
H2A—	C2—H2B	107.5	C9—C8—C16	119.9 (3)
C2C	3—С4	114.1 (4)	С9—С8—Н8А	120.0
C2—C	3—НЗА	108.7	C16—C8—H8A	120.0
C4—C	3—НЗА	108.7	C8—C9—C10	120.8 (3)
C2—C	3—Н3В	108.7	С8—С9—Н9А	119.6
C4—C	3—Н3В	108.7	С10—С9—Н9А	119.6
H3A—	С3—Н3В	107.6	C11—C10—C9	120.3 (3)
C5—C4	4—С3	114.6 (4)	C11—C10—H10A	119.8

supporting information

C5—C4—H4A	108.6	C9—C10—H10A	119.8
C3—C4—H4A	108.6	C10-C11-C13	119.4 (3)
C5—C4—H4B	108.6	C10-C11-H11A	120.3
C3—C4—H4B	108.6	C13—C11—H11A	120.3
H4A—C4—H4B	107.6	O1-C12-N15	120.2 (2)
C4′—C3′—C2	108 (4)	O1—C12—C13	124.9 (2)
C4'—C3'—H3C	110.2	N15—C12—C13	114.9 (2)
C2—C3′—H3C	110.2	C16—C13—C11	120.6 (2)
C4′—C3′—H3D	110.2	C16—C13—C12	118.8 (2)
C2—C3'—H3D	110.2	C11—C13—C12	120.6 (2)
H3C—C3′—H3D	108.5	N7—C14—N15	123.3 (2)
C5—C4′—C3′	109 (3)	N7—C14—C6	116.8 (2)
C5—C4′—H4C	109.9	N15—C14—C6	119.9 (2)
C3'—C4'—H4C	109.9	C14—N15—C12	122.0 (2)
C5—C4′—H4D	109.9	C14—N15—C1	121.7 (2)
C3'—C4'—H4D	109.9	C12—N15—C1	116.3 (2)
H4C—C4′—H4D	108.3	C13—C16—N7	122.4 (2)
C4—C5—C6	117.7 (3)	C13—C16—C8	119.0 (2)
C6—C5—C4′	119.9 (16)	N7—C16—C8	118.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C8—H8A···O1 ⁱ	0.93	2.64	3.490 (3)	153
C9—H9A····N7 ⁱⁱ	0.93	2.74	3.660 (3)	170
C10—H10A····O1 ⁱⁱⁱ	0.93	2.71	3.599 (3)	162

Symmetry codes: (i) -x+3/2, -y+1, z-1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) x+1/2, -y+1/2, -z+1.