metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Bis(\mu_2-3,5-diisopropyl-4H-1,2,4-triazole \kappa^2 N^1 : N^2$) bis[(nitrato- κO) silver(I)]

Zhao-Yang Wang,^a Ying-Li Wang,^a Guang Yang^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and ^bDepartment of Chemistry, University of Malava, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 July 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.018 Å; disorder in main residue; R factor = 0.078; wR factor = 0.240; data-to-parameter ratio = 14.1.

The neutral N-heterocycle in the title centrosymmetric dinuclear compound, [Ag₂(NO₃)₂(C₈H₁₅N₃)₂], bridges two metal atoms through its imino N atoms. The N-Ag-N skeleton is bent $[N-Ag-N = 127.2 (3)^{\circ}]$; as one of two O atoms of the nitrate anion is nearly coplanar with this N-Ag-N skeleton [Ag-O = 2.63 (1) Å], the coordination geometry around the Ag^I atom is regarded as trigonal-planar. One of the two isopropyl groups is disordered over two positions in respect of the methyl groups in a 1:1 ratio. In the crystal structure, intermolecular N-H···O hydrogen bonding is observed between the nitrate groups and triazole ligands.

Related literature

For the background to such silver-triazole compounds, see: Yang et al. (2007).

Experimental

Crystal data

$[Ag_2(NO_3)_2(C_8H_{15}N_3)_2]$	$V = 1210.6 (2) \text{ Å}^3$
$M_r = 646.22$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.791 (1) Å	$\mu = 1.66 \text{ mm}^{-1}$
b = 14.541 (1) Å	T = 293 K
c = 14.578 (1) Å	$0.41 \times 0.17 \times 0.13$
$\beta = 99.523 \ (2)^{\circ}$	

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.670, \ T_{\max} = 1.000$ (expected range = 0.540 - 0.805)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	18 restraints
$wR(F^2) = 0.240$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
2124 reflections	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$
151 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N3 - H3 \cdot \cdot \cdot O1^i$ 0.89 2.06 2.93 (1) 167

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Education Department of Zhengzhou University, China and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2560).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (1999). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Yang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714-719.

2 $K\alpha$ radiation 1.66 mm⁻ 293 K \times 0.17 \times 0.13 mm

 $R_{\rm int} = 0.063$

5562 measured reflections

2124 independent reflections

1389 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, m974 [doi:10.1107/S1600536809028384]

Bis(μ_2 -3,5-diisopropyl-4*H*-1,2,4-triazole- $\kappa^2 N^1$: N^2)bis[(nitrato- κO)silver(I)]

Zhao-Yang Wang, Ying-Li Wang, Guang Yang and Seik Weng Ng

S1. Experimental

An acetonitrile solution (2 ml) of 3,5-diisopropyl-1*H*-1,2,4-triazole (0.1 mmol, 15 mg) was mixed with a acetoninitrile solution (1 ml) of silver nitrate (0.1 mmol, 17 mg). Ether was allowed to diffuse into the resulting solution. Colorless crystals were formed after a week in 50% yield. Calc. for $C_{16}H_{30}N_8Ag_2O_6$: C 29.7; H 4.6, N, 17.3%. Found: C 29.7, H 4.7, N, 17.6%.

S2. Refinement

The H atoms were placed in calculated positions [C—H 0.96–0.98 Å; $U(H) = 1.2-1.5U_{eq}(C)$]. The amino H-atom was similarly treated [N–H 0.89 Å].

One of the two isopropyl groups is disordered over two positions in the methyl groups only; the disorder was assumed to be 1:1. The C–C distances were restrained to 1.54 ± 0.01 Å, and the 1,3-related C…C distances to 2.51 ± 0.01 Å. The temperature factors of the primed atoms were restrained to those of the unprimed ones; the anisotropic temperature factors were restrained to be nearly isotropic.

Figure 1

Thermal ellipsoid plot of $[Ag(C_8H_{15}N_3)(NO_3)]_2$; ellipsoids are drawn at the 50% probability level. The disorder is not shown.

Bis(μ_2 -3,5-diisopropyl-4H-1,2,4-triazole- $\kappa^2 N^1$: N^2)bis[(nitrato- κO)silver(I)]

Crystal data

 $[Ag_{2}(NO_{3})_{2}(C_{8}H_{15}N_{3})_{2}]$ $M_{r} = 646.22$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 5.791 (1) Å b = 14.541 (1) Å c = 14.578 (1) Å $\beta = 99.523$ (2)° V = 1210.6 (2) Å³ Z = 2

Data collection

Bruker SMART	5562 measured reflections
diffractometer	2124 independent reflections
Radiation source: fine-focus sealed tube	1389 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.063$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 17$
$T_{\min} = 0.670, \ T_{\max} = 1.000$	$l = -17 \rightarrow 13$

F(000) = 648 $D_x = 1.773 \text{ Mg m}^{-3}$

 $\theta = 2.8 - 21.8^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$

Prism, colorless

 $0.41 \times 0.17 \times 0.13 \text{ mm}$

T = 293 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1859 reflections

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1131P)^2 + 8.3674P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ag1	0.6205 (2)	0.57863 (7)	0.43648 (7)	0.0682 (5)	
01	0.8666 (17)	0.6779 (7)	0.3367 (8)	0.080 (3)	
02	1.0702 (19)	0.5875 (8)	0.4336 (8)	0.094 (4)	
03	1.2426 (18)	0.6792 (9)	0.3497 (8)	0.096 (4)	
N1	0.5362 (17)	0.4427 (6)	0.3705 (6)	0.047 (2)	
N2	0.4403 (17)	0.3760 (7)	0.4232 (7)	0.054 (3)	
N3	0.5156 (19)	0.3113 (7)	0.2993 (8)	0.061 (3)	
Н3	0.5270	0.2681	0.2570	0.074*	
N4	1.061 (2)	0.6493 (8)	0.3760 (8)	0.067 (3)	
C1	0.547 (3)	0.4325 (13)	0.1257 (10)	0.087 (5)	
H1A	0.3891	0.4523	0.1263	0.130*	
H1B	0.5473	0.3686	0.1093	0.130*	
H1C	0.6133	0.4680	0.0809	0.130*	

C2	0.692 (2)	0.4463 (9)	0.2217 (9)	0.058 (3)	
H2	0.6933	0.5126	0.2339	0.070*	
C3	0.946 (3)	0.4169 (15)	0.2284 (14)	0.104 (6)	
H3A	1.0273	0.4274	0.2904	0.155*	
H3B	1.0189	0.4520	0.1852	0.155*	
H3C	0.9529	0.3527	0.2137	0.155*	
C4	0.5824 (19)	0.4017 (7)	0.2966 (8)	0.044 (3)	
C5	0.429 (2)	0.3010 (8)	0.3788 (9)	0.055 (3)	
C6	0.342 (2)	0.2139 (8)	0.4109 (12)	0.085 (5)	
H6	0.3262	0.2233	0.4761	0.102*	0.50
H6′	0.3460	0.1810	0.3525	0.102*	0.50
C7	0.097 (3)	0.192 (2)	0.359 (2)	0.087 (8)	0.50
H7A	0.0448	0.1347	0.3805	0.131*	0.50
H7B	0.1006	0.1882	0.2934	0.131*	0.50
H7C	-0.0092	0.2401	0.3700	0.131*	0.50
C8	0.503 (4)	0.1308 (18)	0.409 (3)	0.089 (7)	0.50
H8A	0.4306	0.0774	0.4308	0.134*	0.50
H8B	0.6496	0.1423	0.4490	0.134*	0.50
H8C	0.5300	0.1205	0.3468	0.134*	0.50
C7′	0.083 (2)	0.203 (2)	0.408 (2)	0.087 (8)	0.50
H7'1	0.0510	0.1425	0.4297	0.131*	0.50
H7′2	0.0038	0.2097	0.3446	0.131*	0.50
H7′3	0.0273	0.2484	0.4461	0.131*	0.50
C8′	0.490 (4)	0.144 (2)	0.471 (2)	0.089 (7)	0.50
H8'1	0.3938	0.0928	0.4820	0.134*	0.50
H8′2	0.5548	0.1720	0.5292	0.134*	0.50
H8′3	0.6138	0.1236	0.4399	0.134*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0868 (9)	0.0610 (7)	0.0623 (7)	-0.0294 (6)	0.0285 (5)	-0.0052 (5)
01	0.051 (6)	0.080 (7)	0.107 (8)	0.001 (5)	0.007 (5)	0.031 (6)
O2	0.078 (7)	0.108 (9)	0.091 (7)	-0.021 (6)	0.003 (6)	0.066 (7)
03	0.064 (6)	0.119 (9)	0.104 (8)	-0.015 (6)	0.016 (6)	0.057 (7)
N1	0.063 (6)	0.039 (5)	0.039 (5)	-0.016 (4)	0.009 (4)	0.003 (4)
N2	0.054 (6)	0.052 (6)	0.055 (6)	-0.018 (5)	0.009 (5)	0.007 (5)
N3	0.066 (7)	0.050 (6)	0.067 (7)	0.004 (5)	0.008 (6)	-0.009 (5)
N4	0.056 (7)	0.075 (8)	0.070 (7)	-0.001 (6)	0.016 (6)	0.018 (6)
C1	0.083 (10)	0.123 (14)	0.055 (8)	-0.004 (10)	0.013 (7)	0.012 (9)
C2	0.059 (8)	0.059 (8)	0.055 (7)	0.004 (6)	0.008 (6)	0.001 (6)
C3	0.056 (9)	0.146 (18)	0.112 (14)	0.007 (10)	0.027 (9)	0.040 (13)
C4	0.038 (6)	0.044 (6)	0.048 (6)	0.002 (4)	0.004 (5)	-0.001 (5)
C5	0.050 (7)	0.043 (7)	0.071 (8)	-0.010 (5)	0.005 (6)	0.001 (6)
C6	0.077 (10)	0.044 (7)	0.131 (14)	-0.003 (7)	0.011 (9)	0.021 (9)
C7	0.080 (9)	0.093 (10)	0.090 (12)	-0.017 (8)	0.020 (8)	0.011 (9)
C8	0.083 (10)	0.087 (10)	0.098 (12)	0.002 (8)	0.016 (9)	0.014 (9)
C7′	0.080 (9)	0.093 (10)	0.090 (12)	-0.017 (8)	0.020 (8)	0.011 (9)

					supporti	ng information
<u>C8′</u>	0.083 (10)	0.087 (10)	0.098 (12)	0.002 (8)	0.016 (9)	0.014 (9)
Geometr	ric parameters (Å	, <i>o</i>)				
Ag1—N	1	2.218 (9)		С3—Н3В		0.9600
Ag1—N	l2 ⁱ	2.232 (10))	С3—Н3С		0.9600
Ag1—0	02	2.615 (11)	C5—C6		1.469 (16)
Ag1—0)1	2.630 (10)	C6—C7′		1.505 (10)
01—N4	ŀ	1.245 (14)	C6—C8′		1.508 (10)
02—N4	ŀ	1.224 (14)	C6—C7		1.529 (10)
03—N4	ŀ	1.258 (14)	C6—C8		1.529 (10)
N1—C4	Ļ	1.297 (14)	С6—Н6		0.9800
N1—N2		1.407 (12)	С6—Н6′		0.9800
N2—C5	;	1.264 (15)	C7—H7A		0.9600
N2—Ag	r1 ⁱ	2.232 (10)	С7—Н7В		0.9600
N3-C5		1.342 (17)	C7—H7C		0.9600
N3—C4	L	1.373 (15)	С8—Н8А		0.9600
N3—H3	3	0.8900	,	C8—H8B		0.9600
C1-C2		1.520 (19)	C8—H8C		0.9600
C1—H1	A	0.9600	,	C7'—H7'1		0.9600
C1—H1	В	0.9600		С7'—Н7'2		0.9600
C1—H1	C	0.9600		C7'—H7'3		0.9600
C2-C4		1.498 (18)	C8'—H8'1		0.9600
$C_2 - C_3$	1	1.52 (2)	,	C8'—H8'2		0.9600
C2—H2	2	0.9800		C8'—H8'3		0.9600
С3—Н3	A	0.9600				
N1—Ag	$g1-N2^{i}$	127.2 (3)		N1—C4—C2		125.2 (10)
N1—Ag	g1—02	100.7 (4)		N3—C4—C2		126.2 (11)
N2 ⁱ —As	g1—O2	108.0 (4)		N2—C5—N3		110.6 (11)
N1—Ag	g1—01	110.5 (4)		N2—C5—C6		124.8 (13)
N2 ⁱ —Ag	g1—01	121.8 (4)		N3—C5—C6		124.6 (13)
O2—Ag	g1—01	48.0 (3)		C5—C6—C7′		118.6 (15)
N4-01	—Ag1	95.3 (7)		C5—C6—C8′		124.9 (15)
N4—02	2—Agl	96.6 (8)		C7'—C6—C8'		114.3 (10)
C4—N1	N2	106.9 (9)		C5—C6—C7		111.1 (17)
C4—N1	—Ag1	135.2 (7)		C5—C6—C8		115.7 (17)
N2—N1	—Ag1	117.1 (7)		C7′—C6—C8		121 (2)
C5—N2	2—N1	107.8 (10)	C7—C6—C8		110.4 (10)
C5—N2	–Agl ⁱ	136.3 (9)	,	С5—С6—Н6		106.3
N1—N2	2—Agli	115.6 (7)		С7—С6—Н6		106.3
C5—N3		106.1 (10))	C8—C6—H6		106.3
C5-N3	—Н3	126.9	,	С6—С7—Н7А		109.5
C4—N3	—Н3	126.9		C6—C7—H7B		109.5
02 - N4	L_01	110 8 (11))	H7A - C7 - H7R		109.5
02 - N4 02 - N4	L_03	121.0 (11))	С6—С7—Н7С		109.5
01 - N4	⊢03	118 8 (11))	Н7А—С7—Н7С		109.5
C2-C1	—H1A	109.5	,	H7B-C7-H7C		109.5

C2—C1—H1B	109.5	С6—С8—Н8А	109.5
H1A—C1—H1B	109.5	C6—C8—H8B	109.5
C2—C1—H1C	109.5	H8A—C8—H8B	109.5
H1A—C1—H1C	109.5	C6—C8—H8C	109.5
H1B—C1—H1C	109.5	H8A—C8—H8C	109.5
C4—C2—C1	112.3 (11)	H8B—C8—H8C	109.5
C4—C2—C3	110.7 (11)	С6—С7′—Н7′1	109.5
C1—C2—C3	113.7 (13)	C6—C7′—H7′2	109.5
C4—C2—H2	106.6	H7′1—C7′—H7′2	109.5
C1—C2—H2	106.6	С6—С7′—Н7′3	109.5
C3—C2—H2	106.6	H7′1—C7′—H7′3	109.5
С2—С3—НЗА	109.5	H7′2—C7′—H7′3	109.5
С2—С3—Н3В	109.5	C6—C8′—H8′1	109.5
НЗА—СЗ—НЗВ	109.5	C6—C8′—H8′2	109.5
C2—C3—H3C	109.5	H8'1—C8'—H8'2	109.5
НЗА—СЗ—НЗС	109.5	C6—C8′—H8′3	109.5
H3B—C3—H3C	109.5	H8'1—C8'—H8'3	109.5
N1	108.5 (10)	H8′2—C8′—H8′3	109.5
N1—Ag1—O1—N4	-89.2 (9)	N2—N1—C4—C2	-178.6 (10)
N2 ⁱ —Ag1—O1—N4	82.9 (9)	Ag1—N1—C4—C2	-9.6 (18)
O2—Ag1—O1—N4	-3.1 (8)	C5—N3—C4—N1	-0.4 (13)
N1—Ag1—O2—N4	111.2 (9)	C5—N3—C4—C2	179.2 (11)
N2 ⁱ —Ag1—O2—N4	-113.7 (9)	C1-C2-C4-N1	-126.3 (14)
O1—Ag1—O2—N4	3.2 (8)	C3—C2—C4—N1	105.4 (15)
N2 ⁱ —Ag1—N1—C4	-170.4 (10)	C1—C2—C4—N3	54.0 (16)
O2—Ag1—N1—C4	-47.8 (11)	C3—C2—C4—N3	-74.2 (17)
O1—Ag1—N1—C4	1.2 (12)	N1—N2—C5—N3	1.1 (14)
N2 ⁱ —Ag1—N1—N2	-2.1 (11)	Ag1 ⁱ —N2—C5—N3	-171.8 (9)
O2—Ag1—N1—N2	120.4 (8)	N1—N2—C5—C6	179.2 (11)
O1—Ag1—N1—N2	169.4 (7)	Ag1 ⁱ —N2—C5—C6	6 (2)
C4—N1—N2—C5	-1.3 (13)	C4—N3—C5—N2	-0.4 (14)
Ag1—N1—N2—C5	-172.7 (8)	C4—N3—C5—C6	-178.5 (11)
C4—N1—N2—Ag1 ⁱ	173.2 (7)	N2—C5—C6—C7′	74 (3)
Ag1—N1—N2—Ag1 ⁱ	1.9 (10)	N3—C5—C6—C7′	-108 (2)
Ag1-02-N4-01	-5.8 (14)	N2—C5—C6—C8′	-88 (3)
Ag1-02-N4-03	-179.6 (12)	N3—C5—C6—C8′	90 (3)
Ag1-01-N4-02	5.8 (14)	N2C5C7	104 (2)
Ag1—01—N4—03	179.7 (12)	N3—C5—C6—C7	-78 (2)
N2—N1—C4—N3	1.0 (12)	N2—C5—C6—C8	-128.8 (19)
Ag1—N1—C4—N3	170.1 (8)	N3—C5—C6—C8	49 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H

 $H \cdots A$

D—H···A

 $D \cdots A$

supporting information

N3—H3···O1 ⁱⁱ	0.89	2.06	2.93 (1)	167

Symmetry code: (ii) -x+3/2, y-1/2, -z+1/2.