Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Methyl-3,4-dihydro-9H-carbazol-1(2H)-one

A. Thomas Gunaseelan,^a K. Prabakaran,^b K. J. Rajendra Prasad,^b A. Thiruvalluvar^a* and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl.net

Received 11 July 2009; accepted 16 July 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.001 Å; disorder in main residue; R factor = 0.053; wR factor = 0.153; data-to-parameter ratio = 22.9.

In the title molecule, $C_{13}H_{13}NO$, the dihedral angle between the benzene ring and the fused pyrrole ring is $2.03 (5)^{\circ}$. The methyl group at the 3-position has an equatorial orientation. The cyclohexene ring adopts an envelope conformation. Three C atoms of the cyclohexene ring, with their attached H atoms, and all atoms of the methyl group are disordered over two positions, the site-occupancy factors being 0.883 (2) and 0.117 (2). In the crystal structure, molecules are stabilized by intermolecular N-H···O hydrogen bonds. A C-H··· π interaction, involving the benzene ring, is also found.

Related literature

For the biological activity of substituted 2,3,4,9-tetrahydrocarbazoles, see: Mooradian et al. (1977); Jean et al. (2004); Biere et al. (1973); Lacoume (1973). For carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A, with a methyl substituent at the C-3 position, see: Knolker & Reddy (2002). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Sowmithran & Rajendra Prasad (1986); Rajendra Prasad & Vijayalakshmi (1994); Gunaseelan et al. (2007*a*,*b*); Sridharan *et al.* (2008); Thiruvalluvar *et al.* (2007).

Experimental

Crystal data

М Tr a

h c

α β

C ₁₃ H ₁₃ NO	$\gamma = 87.166$ (
$M_r = 199.24$	V = 504.11
Triclinic, P1	Z = 2
a = 5.8301 (3) Å	Mo Kα radi
b = 8.4348(5) Å	$\mu = 0.08 \text{ mm}$
c = 10.8000 (7) Å	T = 110 K
$\alpha = 78.094 \ (5)^{\circ}$	0.54×0.14
$\beta = 75.942 \ (5)^{\circ}$	

Data collection

diffractometer	
Absorption correction: multi-scan	
(CrysAlis Pro; Oxford	
Diffraction, 2009)	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.153$ S = 1.003292 reflections 144 parameters

(5)° (5) Å³ iation m^{-1} \times 0.10 mm

$T_{\min} = 0.753, \ T_{\max} = 1.000$
(expected range = 0.747 - 0.992)
5927 measured reflections
3292 independent reflections
2400 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$V9 - H9 \cdots O1^{i}$	0.960 (17)	1.939 (16)	2.848 (1)	157.2 (13)
$C4A - H4B \cdots Cg1^{ii}$	0.99	2.83	3.779 (1)	162

Symmetry codes: (i) -x - 1, -y + 1, -z + 1; (ii) -x, -y, -z + 1. Cg1 is the centroid of the C4D,C5-C8,C8A ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2337).

References

Biere, H., Rufer, C., Ahrens, H., Schröder, E., Losert, W., Loge, O. & Schillinger, E. (1973). Patent DE 2226702 (A1).

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413-o2414.
- Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729-o2730.

Jean, C. F., Rangisetty, J. B., Dukat, M., Setola, V., Raffay, T., Roth, B. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 1961-1964.

Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.

- Lacoume, B. (1973). Patent AU 3217771 (A).
- Mooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem. 20, 487-492.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.

- Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, **33**, 481–482.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sowmithran, D. & Rajendra Prasad, K. J. (1986). *Heterocycles*, **24**, 711–717. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

- Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, 0763-0764.
- Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, 03524.

supporting information

Acta Cryst. (2009). E65, o1946–o1947 [doi:10.1107/S1600536809028050]

3-Methyl-3,4-dihydro-9H-carbazol-1(2H)-one

A. Thomas Gunaseelan, K. Prabakaran, K. J. Rajendra Prasad, A. Thiruvalluvar and R. J. Butcher

S1. Comment

Substituted 2,3,4,9-tetrahydrocarbazoles have been reported to possess many biological properties, such as central nervous system activity (Mooradian *et al.*, 1977), antihistamine (Jean *et al.*, 2004), antidiabetic (Biere *et al.*, 1973) and anti-inflammatory properties (Lacoume, 1973). We have attached importance to the title compound since some of the carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A have the methyl group as substituent at the C-3 position (Knolker & Reddy, 2002). The preparation of 1-oxo compounds *via* their corresponding hydrazones have been reported (Sowmithran & Rajendra Prasad, 1986; Rajendra Prasad & Vijayalakshmi, 1994). Guanaseelan *et al.* (2007*a*,*b*), Thiruvalluvar *et al.* (2007) and Sridharan *et al.* (2008) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

In the title molecule, $C_{13}H_{13}NO$, the dihedral angle between the benzene ring and the fused pyrrole ring is 2.03 (5)°. The methyl group at position 3 has an equatorial oreintation. The cyclohexene ring adopts an envelope conformation. In the crystal structure, the molecules are stabilized by intermolecular N9—H9…O1(-1 - *x*, 1 - *y*, 1 - *z*) hydrogen bonds. Furthermore, a C4A—H4B… π (-*x*, -*y*, 1 - *z*) interaction, involving the benzene ring(C4D—C8A), is also found in the crystal structure.

S2. Experimental

A solution of 2-(2-phenylhydrazono)-5-methylcyclohexanone (0.216 g. 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured into cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with a (98:2, v/v) petroleum ether-ethyl acetate mixture to yield the title compound (0.148 g, 74%). This was recrystallized from ethanol.

S3. Refinement

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms, and all atoms of the methyl group are disordered over two positions; the site occupancy factors refined to 0.883 (2) and 0.117 (2). The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and $U_{iso}(H) = xU_{eq}(\text{parent atom})$, where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component is shown.

Figure 2

The molecular packing of the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Only the major disorder component is shown.

3-Methyl-3,4-dihydro-9H-carbazol-1(2H)-one

Crystal data	
C ₁₃ H ₁₃ NO	Z = 2
$M_r = 199.24$	F(000) = 212
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 462 K
a = 5.8301 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.4348 (5) Å	Cell parameters from 2953 reflections
c = 10.8000 (7) Å	$\theta = 4.9 - 32.7^{\circ}$
$\alpha = 78.094 \ (5)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 75.942 \ (5)^{\circ}$	T = 110 K
$\gamma = 87.166 \ (5)^{\circ}$	Needle, pale-yellow
V = 504.11 (5) Å ³	$0.54 \times 0.14 \times 0.10 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby	5927 measured reflections
Radiation source: fine focus sealed tube	2400 reflections with $L > 2\sigma(D)$
Craphite manachromator	P = 0.028
	$R_{\rm int} = 0.028$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.7^\circ, \ \theta_{\text{min}} = 4.9^\circ$
ω scans	$h = -7 \rightarrow 8$
Absorption correction: multi-scan	$k = -10 \rightarrow 12$
(CrysAlis PRO; Oxford Diffraction, 2009)	$l = -13 \rightarrow 15$
$T_{\min} = 0.753, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3292 reflections	and constrained refinement
144 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1015P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
	r mm,

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O1	-0.36537 (13)	0.49067 (9)	0.31075 (7)	0.0255 (2)	
N9	-0.24180 (15)	0.34526 (10)	0.55707 (8)	0.0202 (2)	
C1	-0.18847 (17)	0.40400 (12)	0.31405 (9)	0.0202 (2)	
C2A	-0.03045 (19)	0.36084 (14)	0.19199 (10)	0.0265 (3)	0.883 (2)
C3A	0.22713 (19)	0.32688 (14)	0.19735 (10)	0.0199 (3)	0.883 (2)
C4A	0.24963 (17)	0.20104 (12)	0.31810 (9)	0.0202 (2)	0.883 (2)
C4C	0.08447 (16)	0.24013 (11)	0.43740 (9)	0.0179 (2)	
C4D	0.09067 (17)	0.19671 (11)	0.57178 (9)	0.0189 (2)	
C5	0.25223 (18)	0.11247 (12)	0.63950 (10)	0.0237 (3)	
C6	0.2021 (2)	0.09443 (13)	0.77313 (10)	0.0279 (3)	
C7	-0.0090(2)	0.15661 (13)	0.84233 (10)	0.0275 (3)	
C8	-0.17079 (19)	0.24034 (12)	0.77927 (10)	0.0237 (3)	
C8A	-0.11770 (17)	0.26304 (11)	0.64282 (9)	0.0190 (2)	
C9A	-0.11878 (16)	0.33125 (11)	0.43268 (9)	0.0184 (2)	
C13A	0.3667 (2)	0.27429 (16)	0.07206 (11)	0.0331 (3)	0.883 (2)
C4B	0.24963 (17)	0.20104 (12)	0.31810 (9)	0.0202 (2)	0.117 (2)

C13B	0.3667 (2)	0.27429 (16)	0.07206 (11)	0.0331 (3)	0.117 (2)
C2B	-0.03045 (19)	0.36084 (14)	0.19199 (10)	0.0265 (3)	0.117 (2)
C3B	0.1473 (15)	0.2369 (11)	0.1984 (8)	0.0199 (3)	0.117 (2)
H3A	0.29806	0.43037	0.20208	0.0239*	0.883 (2)
Н5	0.39331	0.06882	0.59392	0.0285*	
H4A	0.41424	0.19960	0.32791	0.0243*	0.883 (2)
H4B	0.21248	0.09211	0.30741	0.0243*	0.883 (2)
H8	-0.31286	0.28115	0.82635	0.0285*	
Н9	-0.379 (3)	0.4111 (17)	0.5785 (14)	0.041 (4)*	
H13A	0.35221	0.35751	-0.00372	0.0496*	0.883 (2)
H13B	0.53365	0.26031	0.07418	0.0496*	0.883 (2)
H13C	0.30307	0.17155	0.06591	0.0496*	0.883 (2)
H6	0.31134	0.03927	0.81953	0.0335*	
H7	-0.04011	0.14027	0.93458	0.0329*	
H2A	-0.09634	0.26383	0.17480	0.0318*	0.883 (2)
H2B	-0.03456	0.45104	0.11761	0.0318*	0.883 (2)
H2C	0.05134	0.46162	0.13969	0.0318*	0.117 (2)
H2D	-0.13550	0.32986	0.14135	0.0318*	0.117 (2)
H3B	0.07301	0.13410	0.19484	0.0239*	0.117 (2)
H4C	0.39691	0.26440	0.29933	0.0243*	0.117 (2)
H4D	0.29160	0.08475	0.33572	0.0243*	0.117 (2)
H13D	0.30671	0.29814	-0.00707	0.0496*	0.117 (2)
H13E	0.45547	0.36781	0.07648	0.0496*	0.117 (2)
H13F	0.47089	0.17958	0.07016	0.0496*	0.117 (2)

Atomic displacement parameters $(Å^2)$

.0174 (3)	U^{22}	U^{33}	U^{12}	U^{13}	1/23
.0174 (3)	0 0200 (4)			0	U
	0.0308 (4)	0.0286 (4)	0.0122 (3)	-0.0071 (3)	-0.0076 (3)
.0155 (3)	0.0238 (4)	0.0195 (4)	0.0088 (3)	-0.0018 (3)	-0.0049 (3)
.0136 (4)	0.0234 (4)	0.0237 (4)	0.0058 (3)	-0.0045 (3)	-0.0065 (3)
.0206 (5)	0.0381 (6)	0.0213 (4)	0.0140 (4)	-0.0068 (3)	-0.0085 (4)
.0151 (5)	0.0232 (5)	0.0196 (5)	0.0072 (4)	-0.0028 (4)	-0.0034 (4)
.0146 (4)	0.0234 (4)	0.0213 (4)	0.0075 (3)	-0.0025 (3)	-0.0052 (3)
.0137 (4)	0.0182 (4)	0.0200 (4)	0.0056 (3)	-0.0018 (3)	-0.0039 (3)
.0160 (4)	0.0182 (4)	0.0207 (4)	0.0056 (3)	-0.0021 (3)	-0.0037 (3)
.0204 (5)	0.0239 (5)	0.0247 (5)	0.0107 (4)	-0.0045 (4)	-0.0036 (4)
.0289 (5)	0.0291 (5)	0.0240 (5)	0.0128 (4)	-0.0087 (4)	-0.0018 (4)
.0318 (5)	0.0266 (5)	0.0205 (5)	0.0095 (4)	-0.0042 (4)	-0.0016 (4)
.0236 (5)	0.0231 (4)	0.0209 (4)	0.0064 (4)	0.0000 (3)	-0.0041 (4)
.0165 (4)	0.0176 (4)	0.0209 (4)	0.0051 (3)	-0.0021 (3)	-0.0033 (3)
.0135 (4)	0.0211 (4)	0.0195 (4)	0.0063 (3)	-0.0028 (3)	-0.0042 (3)
.0254 (5)	0.0475 (7)	0.0212 (5)	0.0185 (5)	-0.0010 (4)	-0.0047 (4)
.0146 (4)	0.0234 (4)	0.0213 (4)	0.0075 (3)	-0.0025 (3)	-0.0052 (3)
.0254 (5)	0.0475 (7)	0.0212 (5)	0.0185 (5)	-0.0010 (4)	-0.0047 (4)
.0206 (5)	0.0381 (6)	0.0213 (4)	0.0140 (4)	-0.0068 (3)	-0.0085 (4)
.0151 (5)	0.0232 (5)	0.0196 (5)	0.0072 (4)	-0.0028 (4)	-0.0034 (4)
	0155 (3) 0136 (4) 0206 (5) 0151 (5) 0146 (4) 0137 (4) 0160 (4) 0204 (5) 0289 (5) 0318 (5) 0236 (5) 0165 (4) 0135 (4) 0254 (5) 0146 (4) 0254 (5) 0151 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0155 (3) 0.0238 (4) 0.0195 (4) 0136 (4) 0.0234 (4) 0.0237 (4) 0206 (5) 0.0381 (6) 0.0213 (4) 0151 (5) 0.0232 (5) 0.0196 (5) 0146 (4) 0.0234 (4) 0.0213 (4) 0137 (4) 0.0234 (4) 0.0213 (4) 0137 (4) 0.0182 (4) 0.0200 (4) 0160 (4) 0.0182 (4) 0.0207 (4) 0204 (5) 0.0239 (5) 0.0247 (5) 0289 (5) 0.0291 (5) 0.0240 (5) 0318 (5) 0.0266 (5) 0.0205 (5) 0236 (5) 0.0231 (4) 0.0209 (4) 0165 (4) 0.0176 (4) 0.0209 (4) 0135 (4) 0.0211 (4) 0.0195 (4) 0254 (5) 0.0475 (7) 0.0212 (5) 0146 (4) 0.0234 (4) 0.0213 (4) 0254 (5) 0.0475 (7) 0.0212 (5) 0206 (5) 0.0381 (6) 0.0213 (4) 0151 (5) 0.0232 (5) 0.0196 (5)	0155 (3) 0.0238 (4) 0.0195 (4) 0.0088 (3) 0136 (4) 0.0234 (4) 0.0237 (4) 0.0058 (3) 0206 (5) 0.0381 (6) 0.0213 (4) 0.0140 (4) 0151 (5) 0.0232 (5) 0.0196 (5) 0.0072 (4) 0146 (4) 0.0234 (4) 0.0213 (4) 0.0075 (3) 0137 (4) 0.0182 (4) 0.0200 (4) 0.0056 (3) 0160 (4) 0.0182 (4) 0.0207 (4) 0.0056 (3) 0204 (5) 0.0291 (5) 0.0247 (5) 0.0107 (4) 0289 (5) 0.0291 (5) 0.0240 (5) 0.0128 (4) 0318 (5) 0.0266 (5) 0.0205 (5) 0.0095 (4) 0236 (5) 0.0231 (4) 0.0209 (4) 0.0064 (4) 0165 (4) 0.0176 (4) 0.0209 (4) 0.0063 (3) 0254 (5) 0.0475 (7) 0.0212 (5) 0.0185 (5) 0146 (4) 0.0234 (4) 0.0213 (4) 0.0075 (3) 0254 (5) 0.0475 (7) 0.0212 (5) 0.0185 (5) 0266 (5) 0.0231 (4) 0.0213 (4) 0.0140 (4) 0151 (5) 0.0232 (5) 0.0196 (5) 0.0072 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

01—C1	1.2377 (13)	C8—C8A	1.4043 (14)
N9—C8A	1.3686 (13)	C2A—H2A	0.9900
N9—C9A	1.3864 (12)	C2A—H2B	0.9900
N9—H9	0.960 (17)	C2B—H2C	0.9900
C1—C2A	1.5146 (14)	C2B—H2D	0.9900
C1—C2B	1.5146 (14)	СЗА—НЗА	1.0000
С1—С9А	1.4446 (13)	СЗВ—НЗВ	1.0000
C2A—C3A	1.5276 (16)	C4A—H4A	0.9900
C2B—C3B	1.439 (9)	C4A—H4B	0.9900
C3A—C4A	1.5306 (15)	C4B—H4C	0.9900
C3A—C13A	1.5385 (16)	C4B—H4D	0.9900
C3B—C13B	1.616 (9)	С5—Н5	0.9500
C3B—C4B	1.521 (9)	С6—Н6	0.9500
C4A—C4C	1.4957 (13)	С7—Н7	0.9500
C4B—C4C	1.4957 (13)	C8—H8	0.9500
C4C—C4D	1.4306 (13)	C13A—H13B	0.9800
С4С—С9А	1.3859 (14)	C13A—H13C	0.9800
C4D—C5	1.4075 (15)	C13A—H13A	0.9800
C4D—C8A	1.4264 (14)	C13B—H13D	0.9800
C5—C6	1.3785 (15)	C13B—H13E	0.9800
C6—C7	1.4140 (16)	C13B—H13F	0.9800
C7—C8	1.3784 (16)		
	. /		
O1…N9	2.9322 (11)	H3A…O1 ^{iv}	2.6400
O1…C3A ⁱ	3.3896 (14)	НЗА…С9А	3.0300
O1…C4A ⁱ	3.3747 (13)	H3A···C8 ⁱⁱⁱ	2.8700
O1…C4B ⁱ	3.3747 (13)	H3A…H8 ⁱⁱⁱ	2.3900
O1…N9 ⁱⁱ	2.8481 (12)	H3B····C7 ^v	2.6200
O1…H4A ⁱ	2.7800	H3B…C13A	2.1300
O1…H3A ⁱ	2.6400	НЗВ…С2А	1.9700
O1…H4C ⁱ	2.4500	H3B····C4A	2.0500
O1…H9	2.813 (15)	H3B····C5 ^v	2.8900
О1…Н9 ^{іі}	1.939 (16)	H3B····C6 ^v	2.4800
N9…O1	2.9322 (11)	H4A…C1 ^{iv}	2.9100
N9…O1 ⁱⁱ	2.8481 (12)	H4A···O1 ^{iv}	2.7800
C1···C8A ⁱⁱⁱ	3.5679 (14)	H4A…H5 ^{viii}	2.5500
C1···C8 ⁱⁱⁱ	3.5708 (15)	H4B····C4D ^v	2.9600
C2B···C13A	2.5175 (17)	H4B…H13C	2.4900
C2B····C4A	2.5384 (15)	H4B···C8A ^v	2.9900
C3A…O1 ^{iv}	3.3896 (14)	H4C…O1 ^{iv}	2.4500
C3B···C6 ^v	3.458 (9)	H4C…C1 ^{iv}	2.7900
C3B···C7 ^v	3.592 (9)	H4C···C2A	3.0000
C4A…O1 ^{iv}	3.3747 (13)	Н4С…С13А	2.4900
C4B···C2A	2.5384 (15)	Н4С…Н13Е	2.3300
C4B···O1 ^{iv}	3.3747 (13)	H4D…H5 ^{viii}	2.3800
C4B···C13A	2.5282 (15)	H4D…C8A ^v	3.1000

C6…C3B ^v	3.458 (9)	H4D····C13A	2.9100
C7···C3B ^v	3.592 (9)	H5…H4D ^{viii}	2.3800
C8····C1 ⁱⁱⁱ	3.5708 (15)	H5…H4A ^{viii}	2.5500
C8A····C1 ⁱⁱⁱ	3.5679 (14)	H5…H5 ^{viii}	2.5700
C13B…C2A	2.5175 (17)	H6…H13F ^{viii}	2.4600
C13B…C4A	2.5282 (15)	H7…H7 ^{ix}	2.5800
C1····H4C ⁱ	2.7900	H8···H13D ^x	2.5100
C1H9 ⁱⁱ	3.012 (16)	H8····C13A ^x	2.8400
C1···H4A ⁱ	2.9100	H8···H13A ^x	2,4900
C4D····H4B ^v	2.9600	H8···H13B ^x	2.5800
C5…H3B ^v	2.8900	H8···C13B ^x	2.8400
C6···H2A ^v	3.0200	H8···H3A ⁱⁱⁱ	2.3900
C6···H3B ^v	2,4800	H9…O1 ⁱⁱ	1 939 (16)
C7···H3B ^v	2.6200	H9···O1	2.813 (15)
C8···H2C ⁱⁱⁱ	2 9900	H9····C1 ⁱⁱ	3.012 (16)
C8···H3A ⁱⁱⁱ	2.5500	$H13A \cdots H8^{vi}$	2 4900
	2.8700		2.4900
$C8A \cdots H4D^{v}$	2.9900		2.5800
	3.1000	H13D H6	2.3800
	3.0300		2.4900
	2.8400		2.5100
	2.8400		2.3100
	2.5100	HI3D U2C	2.6600
	3.0200	HI3D····H2C	2.4900
H2B····H2B ^v	2.4400	HI3E····C2A	2.8000
H2B····H13A	2.5000	HI3E····C4A	2./100
H2C···CI3A	2.4400	H13E…H2C	2.4300
H2C···H13D	2.4900	H13E···H4C	2.3300
H2C····C8 ⁱⁿ	2.9900	H13E···H13E ^{x1}	2.4800
H2C···H13E	2.4300	H13F····C4A	2.7100
H2C···C4A	2.9900	H13F····H6 ^{vin}	2.4600
H2D···C13A	2.8800		
C8A—N9—C9A	107.71 (8)	C1—C2B—H2C	107.00
С9А—N9—H9	126.1 (9)	C1—C2B—H2D	107.00
C8A—N9—H9	125.8 (9)	C3B—C2B—H2C	107.00
01—C1—C9A	123.78 (9)	C3B—C2B—H2D	107.00
O1—C1—C2A	121.93 (9)	H2C—C2B—H2D	107.00
C2B—C1—C9A	114.27 (9)	С4А—С3А—Н3А	108.00
C2A—C1—C9A	114.27 (9)	С13А—С3А—НЗА	108.00
O1—C1—C2B	121.93 (9)	С2А—С3А—Н3А	108.00
C1—C2A—C3A	114.98 (9)	C2B—C3B—H3B	107.00
C1—C2B—C3B	121.6 (3)	C4B—C3B—H3B	107.00
C2A—C3A—C13A	110.39 (9)	C13B—C3B—H3B	107.00
C2A—C3A—C4A	112.21 (9)	C3A—C4A—H4A	110.00
C4A—C3A—C13A	110.93 (9)	C4C—C4A—H4A	110.00
C4B—C3B—C13B	107.3 (5)	C4C—C4A—H4B	110.00
C2B—C3B—C4B	118.1 (6)	C3A—C4A—H4B	110.00
C2B—C3B—C13B	110.9 (5)	H4A—C4A—H4B	108.00
	N - 7		

C3A—C4A—C4C	110.43 (8)	C4C—C4B—H4D	109.00
C3B—C4B—C4C	113.5 (3)	C3B—C4B—H4C	109.00
C4A—C4C—C4D	131.07 (9)	C3B—C4B—H4D	109.00
C4A—C4C—C9A	122.53 (8)	H4C—C4B—H4D	108.00
C4D-C4C-C9A	106.40 (8)	C4C—C4B—H4C	109.00
C4B—C4C—C4D	131.07 (9)	C4D—C5—H5	121.00
C4B—C4C—C9A	122.53 (8)	C6—C5—H5	121.00
C4C—C4D—C5	134.36 (9)	С7—С6—Н6	119.00
C4CC4DC8A	106.39 (8)	С5—С6—Н6	119.00
C5-C4D-C8A	119.23 (9)	С8—С7—Н7	119.00
C4D—C5—C6	118.82 (10)	С6—С7—Н7	119.00
C5—C6—C7	121.15 (10)	C8A—C8—H8	121.00
C6—C7—C8	121.64 (10)	С7—С8—Н8	121.00
C7—C8—C8A	117.49 (10)	H13B—C13A—H13C	109.00
N9—C8A—C4D	109.02 (8)	H13A—C13A—H13C	109.00
N9—C8A—C8	129.38 (9)	C3A—C13A—H13A	109.00
C4D-C8A-C8	121.61 (9)	C3A—C13A—H13B	109.00
N9—C9A—C1	125.11 (9)	C3A—C13A—H13C	109.00
N9—C9A—C4C	110.47 (8)	H13A—C13A—H13B	109.00
C1—C9A—C4C	124.40 (9)	C3B—C13B—H13D	109.00
C1—C2A—H2A	109.00	C3B—C13B—H13E	109.00
C1—C2A—H2B	109.00	C3B—C13B—H13F	109.00
C3A—C2A—H2A	109.00	H13D—C13B—H13E	109.00
C3A—C2A—H2B	109.00	H13D—C13B—H13F	109.00
H2A—C2A—H2B	108.00	H13E—C13B—H13F	109.00
C9A—N9—C8A—C4D	0.74 (11)	C9A—C4C—C4D—C5	-176.89 (11)
C9A—N9—C8A—C8	-179.21 (10)	C9A—C4C—C4D—C8A	1.25 (11)
C8A—N9—C9A—C1	-178.64 (9)	C4A—C4C—C9A—N9	178.40 (9)
C8A—N9—C9A—C4C	0.06 (12)	C4A—C4C—C9A—C1	-2.88 (15)
O1—C1—C2A—C3A	152.13 (10)	C4D—C4C—C9A—N9	-0.84 (11)
C9A—C1—C2A—C3A	-29.84 (13)	C4D-C4C-C9A-C1	177.89 (9)
O1—C1—C9A—N9	1.63 (16)	C4C—C4D—C5—C6	178.95 (11)
O1—C1—C9A—C4C	-176.91 (10)	C8A—C4D—C5—C6	1.00 (15)
C2A—C1—C9A—N9	-176.36 (9)	C4C—C4D—C8A—N9	-1.24 (11)
C2A—C1—C9A—C4C	5.10 (14)	C4C—C4D—C8A—C8	178.71 (9)
C1—C2A—C3A—C4A	52.21 (13)	C5—C4D—C8A—N9	177.23 (9)
C1—C2A—C3A—C13A	176.50 (10)	C5—C4D—C8A—C8	-2.82 (15)
C2A—C3A—C4A—C4C	-47.27 (12)	C4D-C5-C6-C7	1.00 (16)
C13A—C3A—C4A—C4C	-171.26 (9)	C5—C6—C7—C8	-1.31 (17)
C3A—C4A—C4C—C4D	-156.71 (10)	C6—C7—C8—C8A	-0.46 (16)
C3A—C4A—C4C—C9A	24.26 (13)	C7—C8—C8A—N9	-177.55 (10)
C4A—C4C—C4D—C5	3.97 (19)	C7—C8—C8A—C4D	2.50 (15)
C4A—C4C—C4D—C8A	-177.90 (10)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*, -*y*, -*z*+1; (vi) *x*+1, *y*, *z*-1; (vii) -*x*, -*y*+1, -*z*; (viii) -*x*+1, -*y*, -*z*+1; (ix) -*x*, -*y*, -*z*+2; (x) *x*-1, *y*, *z*+1; (xi) -*x*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$N9 - H9 - O1^{ii}$	0.960 (17)	1.939 (16)	2.848 (1)	157.2 (13) 162
C4A - H4B - Cg1	0.99	2.85	3.779(1)	162

Symmetry codes: (ii) -*x*-1, -*y*+1, -*z*+1; (v) -*x*, -*y*, -*z*+1.