# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# cis-1-Ethyl-4,4,6,8-tetramethyl-2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1H-pyrrolo-[3',4':3,4]pyrano[6,5-d]pyrimidine-7.9dione

#### K. Chinnakali,<sup>a</sup>\* D. Sudha,<sup>a</sup>‡ M. Jayagobi,<sup>b</sup> R. Raghunathan<sup>b</sup> and Hoong-Kun Fun<sup>c</sup>§

<sup>a</sup>Department of Physics, Anna University Chennai, Chennai 600 025, India, <sup>b</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: kali@annauniv.edu

Received 5 July 2009; accepted 7 July 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.001 Å; R factor = 0.033; wR factor = 0.105; data-to-parameter ratio = 38.4.

In the title compound,  $C_{22}H_{29}N_3O_5S$ , the pyrrolidine ring is cis-fused to the dihydropyran ring. The pyrrolidine and dihydropyran rings adopt twist and half-chair conformations, respectively. The molecule is in a folded conformation; the sulfonyl-bound benzene ring lies over the pyrimidinedione ring, with a weak  $\pi$ - $\pi$  interaction [centroid-centroid distance = 3.6147 (4) Å]. A weak intramolecular C–H···O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked into a three-dimensional network by C-H···O hydrogen bonds.

#### **Related literature**

For the trans isomer, see: Chinnakali et al. (2007). For the biological activity of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Eid et al. (2004); Shamroukh et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976).



<sup>#</sup> Working at: Department of Physics, RMK Engineering Collge, RSM Nagar, Kavaraipettai 601 206, Tamil Nadu, India. § Additional correspondence author, e-mail: hkfun@usm.my.

# Crystal data

C22H29N3O5S V = 2101.43 (7) Å<sup>3</sup>  $M_r = 447.54$ Z = 4Monoclinic,  $P2_1/n$ Mo Ka radiation a = 13.2140 (2) Å $\mu = 0.20 \text{ mm}^$ b = 9.5681 (2) Å T = 100 Kc = 16.8256 (3) Å  $0.59 \times 0.46 \times 0.29 \text{ mm}$  $\beta = 98.946 (1)^{\circ}$ 

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.864, \ T_{\max} = 0.945$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.033$ | 286 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.105$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 10993 reflections               | $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|-------------------------|--------------|--------------------------------------|
| C4-H4···O5                   | 0.98 | 2.43                    | 3.0422 (8)   | 120                                  |
| $C1 - H1B \cdots O4^{i}$     | 0.97 | 2.54                    | 3.5072 (8)   | 177                                  |
| $C16-H16B\cdots O5^{ii}$     | 0.96 | 2.57                    | 3.3914 (8)   | 144                                  |
| C19−H19C···O1 <sup>iii</sup> | 0.96 | 2.52                    | 3.4006 (9)   | 153                                  |
| $C20-H20C\cdots O2^{iv}$     | 0.96 | 2.51                    | 3.2335 (8)   | 132                                  |
| C20=1120C····O2              | 0.90 | 2.31                    | 5.2555 (8)   | 132                                  |

92335 measured reflections

 $R_{\rm int} = 0.026$ 

10993 independent reflections

9848 reflections with  $I > 2\sigma(I)$ 

Symmetry codes: (i) x, y + 1, z; (ii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iii)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iv) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2336).

#### References

- Abdel Fattah, M. E., Atta, A. H., Abdel Gawad, I. I. & Mina, S. M. (2004). Orient. J. Chem. 20, 257-262
- Bedair, A. H., El-Hady, N. A., El-Latif, A., Fakery, A. H. & El-Agrody, A. M. (2000). Farmaco, 55, 708-714.
- Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. & El-Agrody, A. M. (2001). Farmaco, 56, 965-973.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, 04434-04435.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.
- Eid, F. A., Abd El-Wahab, A. H., Ali, G. A. & Khafagy, M. M. (2004). Acta Pharm. 54, 13-26.



Shamroukh, A. H., Zaki, M. E., Morsy, E. M., Abdel-Motti, F. M. & Abdel-Megeid, F. M. (2007). Arch. Pharm. (Weinheim), 340, 236–343. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

# supporting information

Acta Cryst. (2009). E65, o1862-o1863 [doi:10.1107/S1600536809026361]

# *cis*-1-Ethyl-4,4,6,8-tetramethyl-2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1*H*-pyrrolo-[3',4':3,4]pyrano[6,5-*d*]pyrimidine-7,9-dione

### K. Chinnakali, D. Sudha, M. Jayagobi, R. Raghunathan and Hoong-Kun Fun

#### S1. Comment

Pyranopyrimidine derivatives exhibit antiviral (Shamroukh *et al.*, 2007) and antimicrobial activities (Bedair *et al.*, 2000, 2001; Eid *et al.*, 2004; Abdel Fattah *et al.*, 2004). Previously, we have reported the crystal structure of *trans*-1- ethyl-4,4,6,8-tetramethyl- 2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1*H*-pyrrolo[3,4-*c*]pyrano[6,5-*d*]pyrimidine-7,9-dione (Chinnakali *et al.*, 2007). Now we report the crystal structure of the title compound, a *cis* isomer.

In the title *cis* isomer, the pyrrolidine ring (N1/C1—C4) adopts a twist conformation compared to envelope conformations in the two independent molecules of the *trans* isomer. The relevant asymmetry parameter (Duax *et al.*, 1976)  $\Delta C_2[C2-C3]$  is 6.01 (6)°, and Cremer & Pople (1975) puckering parameters Q and  $\varphi$  are 0.3823 (7) Å and 264.96 (10)°, respectively. The dihydropyran ring adopts a half-chair conformation, with the local twofold axis passing through the midpoint of the C2—C5 and C6—C7 bonds. The asymmetry parameter  $\Delta C_2[C2-C5]$  is 4.33 (7)° and the puckering parameters Q,  $\theta$  and  $\varphi$  are 0.4800 (7) Å, 127.48 (7)° and 267.38 (9)°, respectively. In both independent molecules of the *trans* isomer, the dihydropyran ring adopts an envelope conformation. The tosyl group is equatorially attached to the pyrrolidine ring, whereas the ethyl group is axially attached. The sulfonyl group has a distorted tetrahedral geometry. The pyrrolidine ring is *cis*-fused to the dihydropyran ring. The dihedral angle between the pyrimidine and benzene rings is 10.84 (3)°. The corresponding bond lengths and angles in the two isomers agree with each other.

A superposition of non-H atoms in the dimethyl pyrimidine-7,9-dione unit of the *cis* isomer (title molecule) and molecule A of the *trans* isomer (Chinnakali *et al.*, 2007) (Fig. 2) shows that the overall conformations of these isomers are different. The *trans* -fusion results in an extended ring system, with the tosyl group bending away from the fused ring system. In the *cis*-isomer, the molecule is in a folded conformation, with the sulfonyl-bound benzene ring lying over the pyrimidinedione ring. As a result of the folded conformation, the benzene and pyrimidinedione rings of the *cis* isomer are placed one over the other with weak  $\pi$ - $\pi$  interactions (centroid-centroid distance = 3.6147 (4) Å).

A weak intramolecular C4—H4···O5 hydrogen bond generates an S(6) ring motif. The molecules exist as a C—H···O hydrogen-bonded dimer, generating a ring of graph-set motif  $R^2_2(20)$ . The dimers are linked into a three-dimensional network by C—H···O hydrogen bonds (Fig. 3).

#### **S2. Experimental**

To a solution of barbituric acid (1 mmol) in toluene (20 ml) the corresponding 2-(*N*-prenyl-*N*-tosylamino]acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-*N*,*N'*-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2  $\nu/\nu$ ) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

#### **S3. Refinement**

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å. The  $U_{iso}$  values were set equal to  $1.5U_{eq}$  of the carrier atom for methyl H atoms and  $1.2U_{eq}$  for the remaining H atoms. A rotating group model was used for the methyl groups.



#### Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed open line indicates a  $\pi$ - $\pi$  interaction and the dashed line indicates a hydrogen bond.



#### Figure 2

Fit of the title molecule (solid lines) on molecule A (dashed lines) of the *trans* isomer. H atoms have been omitted for clarity.



### Figure 3

Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.

# *cis*-1-Ethyl-4,4,6,8-tetramethyl-2-tosyl-2,3,3a,4,6,7,8,9-octahydro-1*H*-pyrrolo[3',4':3,4]pyrano[6,5-*d*]pyrimidine-7,9-dione

F(000) = 952

 $\theta = 2.5 - 40.9^{\circ}$ 

 $\mu = 0.20 \text{ mm}^{-1}$ 

Block, colourless

 $0.59 \times 0.46 \times 0.29 \text{ mm}$ 

T = 100 K

 $D_{\rm x} = 1.415 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9302 reflections

#### Crystal data

 $C_{22}H_{29}N_{3}O_{5}S$   $M_{r} = 447.54$ Monoclinic,  $P2_{1}/n$ Hall symbol: -P 2yn a = 13.2140 (2) Å b = 9.5681 (2) Å c = 16.8256 (3) Å  $\beta = 98.946$  (1)° V = 2101.43 (7) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART APEXII CCD area-detector    | 92335 measured reflections                                         |
|------------------------------------------|--------------------------------------------------------------------|
| diffractometer                           | 10993 independent reflections                                      |
| Radiation source: fine-focus sealed tube | 9848 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                   | $R_{\rm int} = 0.026$                                              |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 37.5^{\circ},  \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan        | $h = -22 \rightarrow 20$                                           |
| (SADABS; Bruker, 2005)                   | $k = -16 \rightarrow 16$                                           |
| $T_{\min} = 0.864, T_{\max} = 0.945$     | $l = -28 \rightarrow 28$                                           |
|                                          |                                                                    |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier               |
|-------------------------------------------------|----------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.033$                 | Hydrogen site location: inferred from                          |
| $wR(F^2) = 0.105$                               | neighbouring sites                                             |
| S = 1.08                                        | H-atom parameters constrained                                  |
| 10993 reflections                               | $w = 1/[\sigma^2(F_o^2) + (0.0595P)^2 + 0.4609P]$              |
| 286 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.002$                            |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$      |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.43  \mathrm{e}  \mathrm{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    |               |               |              | TT +/TT                  |
|----|---------------|---------------|--------------|--------------------------|
|    | x             | <u> </u>      | Z            | $U_{\rm iso} V_{\rm eq}$ |
| S1 | 0.583987 (12) | 0.842927 (15) | 0.406869 (9) | 0.01234 (4)              |
| 01 | 0.65851 (4)   | 0.94222 (5)   | 0.38823 (4)  | 0.01920 (10)             |
| 02 | 0.54783 (5)   | 0.84656 (6)   | 0.48296 (3)  | 0.01802 (10)             |

| O3   | 0.48049 (4) | 0.66605 (5) | 0.12573 (3) | 0.01221 (8)  |
|------|-------------|-------------|-------------|--------------|
| 04   | 0.56281 (5) | 0.22291 (5) | 0.20707 (4) | 0.01945 (10) |
| 05   | 0.34489 (4) | 0.46219 (5) | 0.34319 (3) | 0.01542 (9)  |
| N1   | 0.48436 (4) | 0.86053 (6) | 0.33745 (3) | 0.01170 (8)  |
| N2   | 0.52189 (4) | 0.44704 (5) | 0.16924 (3) | 0.01178 (8)  |
| N3   | 0.45765 (4) | 0.34362 (5) | 0.27803 (3) | 0.01201 (9)  |
| C1   | 0.50142 (5) | 0.87879 (6) | 0.25331 (4) | 0.01246 (9)  |
| H1A  | 0.5568      | 0.8197      | 0.2414      | 0.015*       |
| H1B  | 0.5170      | 0.9753      | 0.2425      | 0.015*       |
| C2   | 0.39850 (5) | 0.83406 (6) | 0.20456 (4) | 0.01116 (9)  |
| H2   | 0.3507      | 0.9129      | 0.2011      | 0.013*       |
| C3   | 0.36105 (4) | 0.71839 (6) | 0.25639 (3) | 0.01025 (9)  |
| H3   | 0.2865      | 0.7081      | 0.2437      | 0.012*       |
| C4   | 0.39216 (4) | 0.77336 (6) | 0.34312 (4) | 0.01094 (9)  |
| H4   | 0.4110      | 0.6948      | 0.3798      | 0.013*       |
| C5   | 0.40701 (5) | 0.78390 (6) | 0.11965 (4) | 0.01210 (9)  |
| C6   | 0.46937 (4) | 0.56814 (6) | 0.18057 (3) | 0.01023 (9)  |
| C7   | 0.41350 (4) | 0.58284 (6) | 0.24165 (3) | 0.01009 (9)  |
| C8   | 0.63400 (5) | 0.67386 (6) | 0.39643 (4) | 0.01179 (9)  |
| C9   | 0.60216 (5) | 0.56445 (7) | 0.44136 (4) | 0.01306 (10) |
| Н9   | 0.5562      | 0.5809      | 0.4769      | 0.016*       |
| C10  | 0.63973 (5) | 0.43040 (7) | 0.43263 (4) | 0.01394 (10) |
| H10  | 0.6177      | 0.3572      | 0.4620      | 0.017*       |
| C11  | 0.71018 (5) | 0.40403 (7) | 0.38037 (4) | 0.01433 (10) |
| C12  | 0.74167 (5) | 0.51562 (7) | 0.33623 (4) | 0.01645 (11) |
| H12  | 0.7884      | 0.4996      | 0.3012      | 0.020*       |
| C13  | 0.70416 (5) | 0.64999 (7) | 0.34392 (4) | 0.01486 (10) |
| H13  | 0.7257      | 0.7233      | 0.3143      | 0.018*       |
| C14  | 0.75187 (6) | 0.25884 (7) | 0.37293 (5) | 0.02037 (12) |
| H14A | 0.7406      | 0.2040      | 0.4185      | 0.031*       |
| H14B | 0.8240      | 0.2640      | 0.3709      | 0.031*       |
| H14C | 0.7175      | 0.2160      | 0.3246      | 0.031*       |
| C15  | 0.45325 (6) | 0.89403 (7) | 0.07111 (4) | 0.01763 (11) |
| H15A | 0.4595      | 0.8570      | 0.0191      | 0.026*       |
| H15B | 0.5198      | 0.9198      | 0.0987      | 0.026*       |
| H15C | 0.4097      | 0.9749      | 0.0649      | 0.026*       |
| C16  | 0.30475 (5) | 0.73203 (7) | 0.07499 (4) | 0.01565 (10) |
| H16A | 0.3128      | 0.7040      | 0.0216      | 0.023*       |
| H16B | 0.2550      | 0.8057      | 0.0721      | 0.023*       |
| H16C | 0.2820      | 0.6537      | 0.1031      | 0.023*       |
| C17  | 0.51744 (5) | 0.33126 (6) | 0.21815 (4) | 0.01279 (9)  |
| C18  | 0.40139 (5) | 0.46334 (6) | 0.29140 (4) | 0.01094 (9)  |
| C19  | 0.58284 (6) | 0.43377 (7) | 0.10385 (4) | 0.01794 (12) |
| H19A | 0.5632      | 0.5055      | 0.0646      | 0.027*       |
| H19B | 0.5709      | 0.3437      | 0.0790      | 0.027*       |
| H19C | 0.6542      | 0.4433      | 0.1252      | 0.027*       |
| C20  | 0.45052 (6) | 0.22000 (7) | 0.32843 (4) | 0.01626 (11) |
| H20A | 0.5176      | 0.1809      | 0.3441      | 0.024*       |

| H20B | 0.4067      | 0.1518      | 0.2986      | 0.024*       |  |
|------|-------------|-------------|-------------|--------------|--|
| H20C | 0.4226      | 0.2464      | 0.3756      | 0.024*       |  |
| C21  | 0.30950 (5) | 0.86157 (7) | 0.37333 (4) | 0.01587 (11) |  |
| H21A | 0.3397      | 0.9115      | 0.4214      | 0.019*       |  |
| H21B | 0.2841      | 0.9303      | 0.3327      | 0.019*       |  |
| C22  | 0.21975 (5) | 0.77395 (9) | 0.39250 (4) | 0.02000 (13) |  |
| H22A | 0.1715      | 0.8334      | 0.4133      | 0.030*       |  |
| H22B | 0.2445      | 0.7044      | 0.4319      | 0.030*       |  |
| H22C | 0.1867      | 0.7290      | 0.3444      | 0.030*       |  |
|      |             |             |             |              |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | <i>U</i> <sup>22</sup> | U <sup>33</sup> | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|------------------------|-----------------|---------------|---------------|---------------|
| S1  | 0.01271 (7)  | 0.00984 (6)            | 0.01338 (7)     | -0.00042 (4)  | -0.00136 (5)  | -0.00091 (4)  |
| 01  | 0.0160 (2)   | 0.01258 (19)           | 0.0272 (3)      | -0.00482 (16) | -0.00210 (18) | 0.00116 (17)  |
| O2  | 0.0232 (2)   | 0.0180 (2)             | 0.01203 (19)    | 0.00396 (17)  | -0.00003 (17) | -0.00289 (15) |
| 03  | 0.01293 (18) | 0.01207 (17)           | 0.01232 (18)    | 0.00183 (14)  | 0.00415 (14)  | 0.00262 (13)  |
| O4  | 0.0223 (2)   | 0.01282 (19)           | 0.0246 (2)      | 0.00660 (17)  | 0.00808 (19)  | 0.00096 (17)  |
| 05  | 0.0171 (2)   | 0.01400 (19)           | 0.0170 (2)      | -0.00069 (15) | 0.00842 (16)  | 0.00159 (15)  |
| N1  | 0.0117 (2)   | 0.01097 (18)           | 0.01199 (19)    | -0.00025 (15) | 0.00035 (15)  | 0.00063 (15)  |
| N2  | 0.0119 (2)   | 0.01108 (19)           | 0.0130 (2)      | 0.00168 (15)  | 0.00410 (15)  | 0.00013 (15)  |
| N3  | 0.0144 (2)   | 0.00921 (18)           | 0.0128 (2)      | 0.00074 (15)  | 0.00319 (16)  | 0.00089 (14)  |
| C1  | 0.0135 (2)   | 0.0111 (2)             | 0.0128 (2)      | -0.00121 (17) | 0.00190 (18)  | 0.00083 (17)  |
| C2  | 0.0116 (2)   | 0.0103 (2)             | 0.0113 (2)      | 0.00114 (16)  | 0.00109 (17)  | 0.00142 (16)  |
| C3  | 0.0096 (2)   | 0.0106 (2)             | 0.0106 (2)      | 0.00110 (16)  | 0.00170 (16)  | 0.00018 (16)  |
| C4  | 0.0104 (2)   | 0.0110 (2)             | 0.0113 (2)      | 0.00091 (16)  | 0.00145 (16)  | -0.00006 (16) |
| C5  | 0.0126 (2)   | 0.0122 (2)             | 0.0115 (2)      | 0.00189 (17)  | 0.00177 (17)  | 0.00231 (17)  |
| C6  | 0.0096 (2)   | 0.00993 (19)           | 0.0111 (2)      | 0.00013 (16)  | 0.00149 (16)  | 0.00011 (16)  |
| C7  | 0.0100 (2)   | 0.00933 (19)           | 0.0112 (2)      | 0.00002 (16)  | 0.00243 (16)  | 0.00026 (16)  |
| C8  | 0.0106 (2)   | 0.0112 (2)             | 0.0131 (2)      | 0.00007 (16)  | 0.00020 (17)  | 0.00090 (17)  |
| C9  | 0.0124 (2)   | 0.0130 (2)             | 0.0139 (2)      | 0.00026 (17)  | 0.00232 (18)  | 0.00160 (17)  |
| C10 | 0.0134 (2)   | 0.0122 (2)             | 0.0162 (2)      | 0.00041 (18)  | 0.00204 (18)  | 0.00224 (18)  |
| C11 | 0.0130 (2)   | 0.0128 (2)             | 0.0168 (2)      | 0.00140 (18)  | 0.00108 (19)  | 0.00025 (19)  |
| C12 | 0.0151 (3)   | 0.0158 (2)             | 0.0196 (3)      | 0.0021 (2)    | 0.0060 (2)    | 0.0020 (2)    |
| C13 | 0.0136 (2)   | 0.0139 (2)             | 0.0176 (3)      | 0.00009 (18)  | 0.0042 (2)    | 0.00289 (19)  |
| C14 | 0.0212 (3)   | 0.0142 (2)             | 0.0264 (3)      | 0.0046 (2)    | 0.0058 (2)    | 0.0002 (2)    |
| C15 | 0.0218 (3)   | 0.0159 (3)             | 0.0160 (2)      | 0.0006 (2)    | 0.0054 (2)    | 0.0053 (2)    |
| C16 | 0.0140 (2)   | 0.0202 (3)             | 0.0120 (2)      | 0.0018 (2)    | -0.00014 (18) | -0.00042 (19) |
| C17 | 0.0128 (2)   | 0.0109 (2)             | 0.0148 (2)      | 0.00118 (17)  | 0.00253 (18)  | -0.00002 (17) |
| C18 | 0.0108 (2)   | 0.0098 (2)             | 0.0122 (2)      | -0.00062 (16) | 0.00179 (16)  | -0.00023 (16) |
| C19 | 0.0202 (3)   | 0.0163 (3)             | 0.0197 (3)      | 0.0048 (2)    | 0.0108 (2)    | 0.0017 (2)    |
| C20 | 0.0205 (3)   | 0.0109 (2)             | 0.0177 (3)      | 0.00067 (19)  | 0.0043 (2)    | 0.00368 (19)  |
| C21 | 0.0147 (2)   | 0.0179 (3)             | 0.0153 (2)      | 0.0050 (2)    | 0.00301 (19)  | -0.0024 (2)   |
| C22 | 0.0132 (3)   | 0.0310 (4)             | 0.0163 (3)      | 0.0044 (2)    | 0.0041 (2)    | 0.0025 (2)    |

Geometric parameters (Å, °)

| <u>S1—02</u> | 1.4348 (6) | C8—C13       | 1.3954 (9)  |
|--------------|------------|--------------|-------------|
| S1—01        | 1.4376 (6) | C9—C10       | 1.3914 (9)  |
| S1—N1        | 1.6271 (6) | С9—Н9        | 0.93        |
| S1—C8        | 1.7665 (6) | C10—C11      | 1.3992 (9)  |
| O3—C6        | 1.3391 (7) | C10—H10      | 0.93        |
| O3—C5        | 1.4811 (8) | C11—C12      | 1.4003 (10) |
| O4—C17       | 1.2262 (8) | C11—C14      | 1.5068 (9)  |
| O5—C18       | 1.2326 (7) | C12—C13      | 1.3912 (9)  |
| N1-C1        | 1.4783 (8) | C12—H12      | 0.93        |
| N1C4         | 1.4917 (8) | C13—H13      | 0.93        |
| N2—C6        | 1.3790 (8) | C14—H14A     | 0.96        |
| N2-C17       | 1.3867 (8) | C14—H14B     | 0.96        |
| N2-C19       | 1.4666 (8) | C14—H14C     | 0.96        |
| N3—C17       | 1.3787 (8) | C15—H15A     | 0.96        |
| N3—C18       | 1.4026 (8) | C15—H15B     | 0.96        |
| N3—C20       | 1.4669 (8) | C15—H15C     | 0.96        |
| C1—C2        | 1.5357 (9) | C16—H16A     | 0.96        |
| C1—H1A       | 0.97       | C16—H16B     | 0.96        |
| C1—H1B       | 0.97       | C16—H16C     | 0.96        |
| C2—C5        | 1.5277 (9) | C19—H19A     | 0.96        |
| C2—C3        | 1.5377 (8) | C19—H19B     | 0.96        |
| C2—H2        | 0.98       | C19—H19C     | 0.96        |
| С3—С7        | 1.5091 (8) | C20—H20A     | 0.96        |
| C3—C4        | 1.5455 (8) | C20—H20B     | 0.96        |
| С3—Н3        | 0.98       | C20—H20C     | 0.96        |
| C4—C21       | 1.5285 (9) | C21—C22      | 1.5273 (11) |
| C4—H4        | 0.98       | C21—H21A     | 0.97        |
| C5—C15       | 1.5185 (9) | C21—H21B     | 0.97        |
| C5—C16       | 1.5236 (9) | C22—H22A     | 0.96        |
| С6—С7        | 1.3627 (8) | C22—H22B     | 0.96        |
| C7—C18       | 1.4405 (8) | C22—H22C     | 0.96        |
| C8—C9        | 1.3940 (9) |              |             |
| O2—S1—O1     | 120.86 (3) | С9—С10—Н10   | 119.5       |
| O2—S1—N1     | 107.07 (3) | C11—C10—H10  | 119.5       |
| 01—S1—N1     | 106.28 (3) | C10-C11-C12  | 118.52 (6)  |
| O2—S1—C8     | 107.01 (3) | C10-C11-C14  | 120.40 (6)  |
| O1—S1—C8     | 107.69 (3) | C12—C11—C14  | 121.08 (6)  |
| N1—S1—C8     | 107.27 (3) | C13—C12—C11  | 121.05 (6)  |
| C6—O3—C5     | 116.05 (5) | C13—C12—H12  | 119.5       |
| C1—N1—C4     | 112.02 (5) | C11—C12—H12  | 119.5       |
| C1—N1—S1     | 118.22 (4) | C12—C13—C8   | 119.44 (6)  |
| C4—N1—S1     | 118.29 (4) | C12—C13—H13  | 120.3       |
| C6—N2—C17    | 121.36 (5) | C8—C13—H13   | 120.3       |
| C6—N2—C19    | 121.55 (5) | C11—C14—H14A | 109.5       |
| C17—N2—C19   | 117.06 (5) | C11—C14—H14B | 109.5       |

| C17—N3—C18               | 124.43 (5) | H14A—C14—H14B        | 109.5      |
|--------------------------|------------|----------------------|------------|
| C17—N3—C20               | 116.67 (5) | C11—C14—H14C         | 109.5      |
| C18—N3—C20               | 118.85 (5) | H14A—C14—H14C        | 109.5      |
| N1—C1—C2                 | 102.97 (5) | H14B—C14—H14C        | 109.5      |
| N1—C1—H1A                | 111.2      | С5—С15—Н15А          | 109.5      |
| C2—C1—H1A                | 111.2      | С5—С15—Н15В          | 109.5      |
| N1—C1—H1B                | 111.2      | H15A—C15—H15B        | 109.5      |
| C2—C1—H1B                | 111.2      | С5—С15—Н15С          | 109.5      |
| H1A—C1—H1B               | 109.1      | H15A—C15—H15C        | 109.5      |
| C5—C2—C1                 | 113.53 (5) | H15B—C15—H15C        | 109.5      |
| C5—C2—C3                 | 112.41 (5) | C5—C16—H16A          | 109.5      |
| C1—C2—C3                 | 103.53 (5) | C5—C16—H16B          | 109.5      |
| С5—С2—Н2                 | 109.1      | H16A—C16—H16B        | 109.5      |
| C1—C2—H2                 | 109.1      | С5—С16—Н16С          | 109.5      |
| С3—С2—Н2                 | 109.1      | H16A—C16—H16C        | 109.5      |
| C7—C3—C2                 | 109.20 (5) | H16B—C16—H16C        | 109.5      |
| C7—C3—C4                 | 112.71 (5) | O4—C17—N3            | 122.21 (6) |
| C2—C3—C4                 | 103.22 (5) | 04—C17—N2            | 121.22 (6) |
| С7—С3—Н3                 | 110.5      | N3—C17—N2            | 116.56 (5) |
| С2—С3—Н3                 | 110.5      | 05-C18-N3            | 120.03 (5) |
| C4—C3—H3                 | 110.5      | 05-018-07            | 123.51 (5) |
| N1-C4-C21                | 110.21 (5) | N3-C18-C7            | 116.46 (5) |
| N1-C4-C3                 | 103.29 (5) | N2-C19-H19A          | 109.5      |
| $C_{21} - C_{4} - C_{3}$ | 113.77 (5) | N2-C19-H19B          | 109.5      |
| N1-C4-H4                 | 109.8      | H19A—C19—H19B        | 109.5      |
| C21—C4—H4                | 109.8      | N2-C19-H19C          | 109.5      |
| C3—C4—H4                 | 109.8      | H19A—C19—H19C        | 109.5      |
| 03-C5-C15                | 104.54 (5) | H19B—C19—H19C        | 109.5      |
| 03-C5-C16                | 107.92 (5) | N3—C20—H20A          | 109.5      |
| C15—C5—C16               | 111.16 (5) | N3—C20—H20B          | 109.5      |
| O3—C5—C2                 | 108.51 (5) | H20A—C20—H20B        | 109.5      |
| C15—C5—C2                | 112.29 (5) | N3—C20—H20C          | 109.5      |
| C16—C5—C2                | 112.02 (5) | H20A—C20—H20C        | 109.5      |
| 03-C6-C7                 | 125.30 (5) | H20B—C20—H20C        | 109.5      |
| 03—C6—N2                 | 112.40 (5) | C22—C21—C4           | 112.69 (6) |
| C7—C6—N2                 | 122.30 (5) | C22—C21—H21A         | 109.1      |
| C6-C7-C18                | 118.58 (5) | C4—C21—H21A          | 109.1      |
| C6—C7—C3                 | 121.95 (5) | C22—C21—H21B         | 109.1      |
| C18—C7—C3                | 119.43 (5) | C4—C21—H21B          | 109.1      |
| C9—C8—C13                | 120.45 (6) | H21A—C21—H21B        | 107.8      |
| C9—C8—S1                 | 118.99 (5) | C21—C22—H22A         | 109.5      |
| C13—C8—S1                | 120.56 (5) | C21—C22—H22B         | 109.5      |
| C10—C9—C8                | 119.49 (6) | H22A—C22—H22B        | 109.5      |
| С10—С9—Н9                | 120.3      | C21—C22—H22C         | 109.5      |
| С8—С9—Н9                 | 120.3      | H22A— $C22$ — $H22C$ | 109.5      |
| C9—C10—C11               | 121.05 (6) | H22B-C22-H22C        | 109.5      |
|                          |            |                      |            |
| 02—S1—N1—C1              | 172.18 (4) | N2—C6—C7—C3          | 176.56 (5) |

| O1—S1—N1—C1  | 41.74 (5)   | C2—C3—C7—C6     | -10.74 (8)  |
|--------------|-------------|-----------------|-------------|
| C8—S1—N1—C1  | -73.25 (5)  | C4—C3—C7—C6     | -124.84 (6) |
| O2—S1—N1—C4  | -47.28 (5)  | C2—C3—C7—C18    | 171.67 (5)  |
| O1—S1—N1—C4  | -177.72 (5) | C4—C3—C7—C18    | 57.57 (7)   |
| C8—S1—N1—C4  | 67.29 (5)   | O2—S1—C8—C9     | 21.57 (6)   |
| C4—N1—C1—C2  | 15.62 (6)   | O1—S1—C8—C9     | 152.92 (5)  |
| S1—N1—C1—C2  | 158.49 (4)  | N1—S1—C8—C9     | -93.05 (5)  |
| N1—C1—C2—C5  | -155.54 (5) | O2—S1—C8—C13    | -158.55 (5) |
| N1—C1—C2—C3  | -33.37 (6)  | O1—S1—C8—C13    | -27.20 (6)  |
| C5—C2—C3—C7  | 41.74 (6)   | N1—S1—C8—C13    | 86.83 (6)   |
| C1—C2—C3—C7  | -81.18 (5)  | C13—C8—C9—C10   | -0.94 (9)   |
| C5—C2—C3—C4  | 161.86 (5)  | S1-C8-C9-C10    | 178.93 (5)  |
| C1—C2—C3—C4  | 38.94 (6)   | C8—C9—C10—C11   | 0.98 (10)   |
| C1—N1—C4—C21 | -113.51 (6) | C9-C10-C11-C12  | -0.55 (10)  |
| S1—N1—C4—C21 | 103.65 (5)  | C9-C10-C11-C14  | 178.68 (6)  |
| C1—N1—C4—C3  | 8.38 (6)    | C10-C11-C12-C13 | 0.07 (10)   |
| S1—N1—C4—C3  | -134.46 (4) | C14—C11—C12—C13 | -179.16 (7) |
| C7—C3—C4—N1  | 88.77 (5)   | C11—C12—C13—C8  | -0.04 (11)  |
| C2-C3-C4-N1  | -28.91 (6)  | C9—C8—C13—C12   | 0.48 (10)   |
| C7—C3—C4—C21 | -151.76 (5) | S1—C8—C13—C12   | -179.40 (5) |
| C2—C3—C4—C21 | 90.56 (6)   | C18—N3—C17—O4   | -177.65 (6) |
| C6-03-C5-C15 | 165.61 (5)  | C20—N3—C17—O4   | -0.07 (10)  |
| C6           | -75.98 (6)  | C18—N3—C17—N2   | 0.78 (9)    |
| C6-03-C5-C2  | 45.61 (7)   | C20—N3—C17—N2   | 178.35 (6)  |
| C1—C2—C5—O3  | 57.44 (6)   | C6—N2—C17—O4    | 178.74 (6)  |
| C3—C2—C5—O3  | -59.67 (6)  | C19—N2—C17—O4   | 0.17 (10)   |
| C1—C2—C5—C15 | -57.61 (7)  | C6—N2—C17—N3    | 0.30 (9)    |
| C3—C2—C5—C15 | -174.72 (5) | C19—N2—C17—N3   | -178.27 (6) |
| C1—C2—C5—C16 | 176.47 (5)  | C17—N3—C18—O5   | 175.47 (6)  |
| C3—C2—C5—C16 | 59.37 (7)   | C20—N3—C18—O5   | -2.06 (9)   |
| C5—O3—C6—C7  | -15.49 (8)  | C17—N3—C18—C7   | -4.13 (9)   |
| C5—O3—C6—N2  | 164.75 (5)  | C20—N3—C18—C7   | 178.34 (6)  |
| C17—N2—C6—O3 | -177.85 (5) | C6—C7—C18—O5    | -173.12 (6) |
| C19—N2—C6—O3 | 0.65 (8)    | C3—C7—C18—O5    | 4.56 (9)    |
| C17—N2—C6—C7 | 2.38 (9)    | C6—C7—C18—N3    | 6.47 (8)    |
| C19—N2—C6—C7 | -179.12 (6) | C3—C7—C18—N3    | -175.86 (5) |
| O3—C6—C7—C18 | 174.43 (6)  | N1-C4-C21-C22   | -171.35 (5) |
| N2-C6-C7-C18 | -5.82 (9)   | C3—C4—C21—C22   | 73.20 (7)   |
| O3—C6—C7—C3  | -3.19 (9)   |                 |             |

### Hydrogen-bond geometry (Å, °)

| D—H···A                               | D—H  | H···A | D···A      | D—H···A |
|---------------------------------------|------|-------|------------|---------|
| C4—H4…O5                              | 0.98 | 2.43  | 3.0422 (8) | 120     |
| C1—H1 <i>B</i> ···O4 <sup>i</sup>     | 0.97 | 2.54  | 3.5072 (8) | 177     |
| C16—H16 <i>B</i> ····O5 <sup>ii</sup> | 0.96 | 2.57  | 3.3914 (8) | 144     |

# supporting information

| C19—H19C…O1 <sup>iii</sup>           | 0.96 | 2.52 | 3.4006 (9) | 153 |
|--------------------------------------|------|------|------------|-----|
| C20—H20 <i>C</i> ···O2 <sup>iv</sup> | 0.96 | 2.51 | 3.2335 (8) | 132 |

Symmetry codes: (i) x, y+1, z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+3/2, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z+1.