Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,5-Trimethoxy-N-(2-methoxyphenyl)benzamide

Aamer Saeed^a* and Ulrich Flörke^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 13 July 2009; accepted 16 July 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.126; data-to-parameter ratio = 9.5.

In the title molecule, $C_{17}H_{19}NO_5$, the amide plane is oriented at an angle of $41.5 (3)^{\circ}$ with respect to the 2-methoxybenzene ring. The three methoxy groups lie almost in the plane of the aromatic rings to which they are attached [C-O-C-C]torsion angles of 0.7 (4), -13.4 (4) and 3.1 (4)°], whereas the methoxy group at the 4-position of the 3,4,5-trimethoxybenzene ring is nearly perpendicularly oriented [C-O-C-C torsion angle of $103.9 (3)^{\circ}$]. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains along [001].

Related literature

The background of this work has been described in our earlier paper (Saeed et al. 2008). For a related structure, see: Parra et al. (2001).

Experimental

Crystal data

C ₁₇ H ₁₉ NO ₅	V = 1615.4 (7) Å ³
$M_r = 317.33$	Z = 4
Orthorhombic, Pca2 ₁	Mo $K\alpha$ radiation
a = 7.409 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 22.522 (6) Å	T = 120 K
c = 9.681 (3) Å	0.50 \times 0.44 \times 0.20 mm

Data collection

Bruker SMART APEX 13253 measured reflections diffractometer 2050 independent reflections Absorption correction: multi-scan 1902 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 2004) $R_{\rm int} = 0.047$ $T_{\min} = 0.953, T_{\max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.126$	independent and constrained
S = 1.13	refinement
2050 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
216 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - \mathbf{H} \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N1\!-\!H1\!\cdots\!O1^i$ 0.895 (10) 2.182 (14) 3.066 (4) 169(4)

Symmetry code: (i) $-x + \frac{1}{2}, y, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

AS gratefully acknowledges a reasearch grant from Quaidi-Azam University, Islamabad, under the URF project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2245).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Parra, R. D., Zeng, H., Zhu, J., Zheng, C., Zeng, X. C. & Gong, B. (2001). Chem. Eur. J. 7, 4352-4357.

Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, 01976.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1948 [doi:10.1107/S1600536809027974]

3,4,5-Trimethoxy-N-(2-methoxyphenyl)benzamide

Aamer Saeed and Ulrich Flörke

S1. Comment

The background of this work has been described in our earlier paper (Saeed et al. 2008).

The molecular structure of the title compound (Fig. 1) is similar to that of ICULOH (Parra *et al.*, 2001), but with 3,4,5methoxy substitution of the benzamide ring. Methoxy groups O2, O3 and O5 lie almost in plane of the corresponding aromatic rings with torsion angles C8–O2–C7–C6 of 0.7 (4)°, C15–O3–C11–C10 of -13.4 (4)° and C17–O5–C13–C14 of 3.1 (4)°, respectively, whereas the O4-group is nearly perpendicular oriented with C16–O4–C12–C13 of 103.9 (3)°. The two aromatic planes make a dihedral angle of 67.66 (9)° and the angle between the amide group and the 2-methoxy benzene ring is 41.5 (3)°. In the cystal structure, intermolecular N–H…O hydrogen bonds (Table 1) link the molecules into infinite chains along the [001] direction (Fig. 2).

S2. Experimental

3,4,5-Trimethoxybenzoyl chloride (1 mmol) in CHCl₃ was treated with 2-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux conditions for 5 h. Upon cooling, the reaction mixture was diluted with CHCl₃ and washed consecutively with 1 *M* aq HCl and saturated aq NaHCO₃. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (84%) as white needles: Anal. calc. for $C_{17}H_{19}NO_5$: C 64.34, H 6.03, N 4.41%; found: C 64.31, H 6.09, N 4.34%

S3. Refinement

All H atoms were clearly identified in difference syntheses, then refined at calculated positions riding on the carbon atoms (C–H = 0.95–0.99 Å) with isotropic displacement parameters $U_{iso}(H) = 1.2U(Ceq)$ or $1.5U(-CH_3)$. All CH₃ hydrogen atoms were allowed to rotate but not to tip. H(N) was refined freely with a restained (*DFIX*) N–H distance. The title compound crystallizes in the non-centrosymmetric space group P ca21; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged.

Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

3,4,5-Trimethoxy-N-(2-methoxyphenyl)benzamide

Crystal data	
C ₁₇ H ₁₉ NO ₅	F(000) = 672
$M_r = 317.33$	$D_{\rm x} = 1.305 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 887 reflections
a = 7.409 (2) Å	$\theta = 2.9 - 27.6^{\circ}$
b = 22.522 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.681 (3) Å	T = 120 K
V = 1615.4 (7) Å ³	Prism, colourless
<i>Z</i> = 4	$0.50\times0.44\times0.20\ mm$

Data collection

Bruker SMART APEX diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.953, T_{max} = 0.981$ <i>Refinement</i>	13253 measured reflections 2050 independent reflections 1902 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -29 \rightarrow 25$ $l = -12 \rightarrow 12$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.126$	H atoms treated by a mixture of independent
S = 1.13	and constrained refinement
2050 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.6933P]$
216 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{max} = 0.37 \text{ e Å}^{-3}$
direct methods	$\Delta \rho_{min} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1314 (3)	0.22502 (9)	1.0268 (2)	0.0232 (5)	
O2	-0.0063 (3)	0.16331 (10)	0.5858 (2)	0.0246 (5)	
03	0.7319 (3)	0.33720 (9)	0.7087 (2)	0.0258 (5)	
04	0.6652 (3)	0.43489 (9)	0.8620(3)	0.0246 (5)	
05	0.4036 (3)	0.43643 (9)	1.0503 (3)	0.0263 (5)	
N1	0.1909 (3)	0.19743 (11)	0.8055 (3)	0.0199 (5)	
H1	0.232 (7)	0.2095 (18)	0.723 (3)	0.053 (13)*	
C1	0.2067 (3)	0.23480 (13)	0.9166 (3)	0.0186 (6)	
C2	0.0968 (3)	0.14253 (13)	0.8110 (3)	0.0189 (6)	
C3	0.1076 (4)	0.10537 (14)	0.9251 (4)	0.0242 (6)	
H3A	0.1804	0.1163	1.0018	0.029*	
C4	0.0117 (4)	0.05177 (14)	0.9278 (4)	0.0285 (7)	
H4A	0.0179	0.0268	1.0068	0.034*	
C5	-0.0923 (4)	0.03511 (14)	0.8150 (4)	0.0294 (7)	
H5A	-0.1575	-0.0012	0.8169	0.035*	
C6	-0.1012 (4)	0.07152 (14)	0.6989 (4)	0.0270 (7)	

H6A	-0.1718	0.0598	0.6217	0.032*
C7	-0.0069 (4)	0.12518 (13)	0.6956 (3)	0.0211 (6)
C8	-0.1114 (5)	0.14694 (18)	0.4675 (4)	0.0382 (9)
H8A	-0.0681	0.1089	0.4312	0.057*
H8B	-0.0996	0.1776	0.3961	0.057*
H8C	-0.2385	0.1432	0.4942	0.057*
C9	0.3260 (4)	0.28794 (12)	0.8974 (3)	0.0167 (5)
C10	0.4689 (4)	0.28683 (13)	0.8036 (3)	0.0183 (5)
H10A	0.4859	0.2532	0.7457	0.022*
C11	0.5872 (4)	0.33511 (13)	0.7945 (3)	0.0181 (5)
C12	0.5583 (4)	0.38548 (13)	0.8771 (3)	0.0204 (6)
C13	0.4143 (4)	0.38603 (12)	0.9724 (3)	0.0194 (6)
C14	0.2986 (4)	0.33723 (12)	0.9835 (3)	0.0190 (6)
H14A	0.2026	0.3374	1.0486	0.023*
C15	0.7858 (5)	0.28235 (14)	0.6464 (4)	0.0328 (8)
H15A	0.7979	0.2518	0.7179	0.049*
H15B	0.9019	0.2877	0.5995	0.049*
H15C	0.6945	0.2700	0.5790	0.049*
C16	0.8392 (5)	0.42964 (16)	0.9272 (5)	0.0367 (9)
H16A	0.8234	0.4255	1.0273	0.055*
H16B	0.9109	0.4652	0.9077	0.055*
H16C	0.9018	0.3946	0.8911	0.055*
C17	0.2685 (5)	0.43817 (14)	1.1558 (4)	0.0323 (7)
H17A	0.1487	0.4352	1.1135	0.048*
H17B	0.2779	0.4757	1.2067	0.048*
H17C	0.2865	0.4049	1.2195	0.048*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0229 (10)	0.0307 (11)	0.0159 (10)	-0.0039 (8)	0.0057 (9)	-0.0036 (9)
O2	0.0247 (11)	0.0311 (11)	0.0179 (10)	-0.0079 (9)	-0.0033 (8)	-0.0018 (9)
O3	0.0239 (10)	0.0295 (10)	0.0242 (12)	-0.0046 (9)	0.0100 (10)	-0.0015 (9)
O4	0.0241 (10)	0.0229 (11)	0.0268 (11)	-0.0044 (8)	0.0023 (9)	0.0033 (9)
O5	0.0285 (11)	0.0234 (10)	0.0270 (13)	-0.0027 (8)	0.0081 (10)	-0.0053 (9)
N1	0.0205 (11)	0.0271 (12)	0.0121 (11)	-0.0043 (9)	0.0007 (10)	-0.0019 (10)
C1	0.0142 (12)	0.0266 (14)	0.0150 (13)	0.0016 (10)	-0.0024 (10)	-0.0014 (11)
C2	0.0150 (12)	0.0240 (14)	0.0176 (14)	0.0001 (10)	0.0058 (11)	-0.0033 (12)
C3	0.0207 (14)	0.0289 (15)	0.0231 (16)	0.0044 (11)	0.0028 (12)	-0.0002 (12)
C4	0.0266 (15)	0.0269 (15)	0.0320 (18)	0.0057 (12)	0.0090 (14)	0.0062 (14)
C5	0.0242 (14)	0.0203 (14)	0.044 (2)	-0.0035 (11)	0.0069 (15)	-0.0030 (14)
C6	0.0223 (14)	0.0281 (15)	0.0307 (18)	-0.0025 (12)	0.0014 (13)	-0.0079 (13)
C7	0.0180 (13)	0.0242 (14)	0.0211 (15)	0.0006 (11)	0.0042 (11)	-0.0033 (12)
C8	0.0381 (19)	0.049 (2)	0.0276 (18)	-0.0158 (16)	-0.0144 (16)	0.0038 (17)
C9	0.0160 (12)	0.0243 (13)	0.0098 (12)	-0.0004 (10)	-0.0027 (10)	-0.0004 (10)
C10	0.0207 (12)	0.0245 (13)	0.0098 (12)	0.0018 (10)	-0.0005 (11)	-0.0018 (11)
C11	0.0163 (11)	0.0272 (14)	0.0107 (13)	0.0006 (10)	0.0026 (10)	0.0014 (11)
C12	0.0223 (13)	0.0218 (14)	0.0171 (14)	0.0000 (11)	-0.0036 (11)	0.0038 (11)

supporting information

C13	0.0197 (13)	0.0228 (14)	0.0156 (14)	0.0015 (10)	-0.0031 (11)	0.0001 (12)
C14	0.0178 (12)	0.0275 (14)	0.0118 (12)	0.0025 (10)	-0.0008 (11)	-0.0007 (11)
C15	0.0301 (17)	0.0315 (15)	0.0368 (19)	-0.0044 (12)	0.0173 (16)	-0.0034 (16)
C16	0.0308 (17)	0.0338 (19)	0.045 (2)	-0.0093 (14)	-0.0069 (17)	0.0000 (16)
C17	0.0352 (17)	0.0316 (15)	0.0300 (18)	-0.0030 (14)	0.0107 (16)	-0.0127 (15)

Geometric parameters (Å, °)

01—C1	1.224 (4)	С6—Н6А	0.9500	
O2—C7	1.366 (4)	C8—H8A	0.9800	
O2—C8	1.434 (4)	C8—H8B	0.9800	
O3—C11	1.357 (3)	C8—H8C	0.9800	
O3—C15	1.432 (4)	C9—C10	1.395 (4)	
O4—C12	1.374 (4)	C9—C14	1.403 (4)	
O4—C16	1.441 (4)	C10-C11	1.400 (4)	
O5—C13	1.365 (4)	C10—H10A	0.9500	
O5—C17	1.431 (4)	C11—C12	1.404 (4)	
N1—C1	1.371 (4)	C12—C13	1.410 (4)	
N1—C2	1.420 (4)	C13—C14	1.398 (4)	
N1—H1	0.895 (10)	C14—H14A	0.9500	
C1—C9	1.500 (4)	C15—H15A	0.9800	
C2—C3	1.388 (4)	C15—H15B	0.9800	
C2—C7	1.412 (4)	C15—H15C	0.9800	
C3—C4	1.401 (5)	C16—H16A	0.9800	
С3—НЗА	0.9500	C16—H16B	0.9800	
C4—C5	1.389 (5)	C16—H16C	0.9800	
C4—H4A	0.9500	C17—H17A	0.9800	
C5—C6	1.392 (5)	C17—H17B	0.9800	
C5—H5A	0.9500	C17—H17C	0.9800	
C6—C7	1.396 (4)			
C7—O2—C8	117.3 (2)	C10—C9—C1	120.9 (2)	
C11—O3—C15	116.7 (2)	C14—C9—C1	118.2 (2)	
C12—O4—C16	113.8 (3)	C9—C10—C11	120.1 (3)	
C13—O5—C17	117.3 (2)	C9—C10—H10A	119.9	
C1—N1—C2	123.1 (2)	C11—C10—H10A	119.9	
C1—N1—H1	119 (3)	O3—C11—C10	124.1 (3)	
C2—N1—H1	118 (3)	O3—C11—C12	116.2 (2)	
01—C1—N1	122.3 (3)	C10—C11—C12	119.8 (3)	
O1—C1—C9	121.4 (3)	O4—C12—C11	120.4 (3)	
N1-C1-C9	116.3 (2)	O4—C12—C13	119.9 (3)	
C3—C2—C7	119.7 (3)	C11—C12—C13	119.7 (3)	
C3—C2—N1	121.8 (3)	O5—C13—C14	125.1 (3)	
C7—C2—N1	118.6 (3)	O5—C13—C12	114.4 (2)	
C2—C3—C4	120.3 (3)	C14—C13—C12	120.5 (3)	
С2—С3—НЗА	119.8	C13—C14—C9	119.1 (3)	
С4—С3—Н3А	119.8	C13—C14—H14A	120.4	
C5—C4—C3	120.0 (3)	C9—C14—H14A	120.4	

C5—C4—H4A	120.0	O3—C15—H15A	109.5
C3—C4—H4A	120.0	O3—C15—H15B	109.5
C4—C5—C6	120.1 (3)	H15A—C15—H15B	109.5
C4—C5—H5A	119.9	O3—C15—H15C	109.5
C6—C5—H5A	119.9	H15A—C15—H15C	109.5
C5—C6—C7	120.3 (3)	H15B—C15—H15C	109.5
С5—С6—Н6А	119.8	O4—C16—H16A	109.5
С7—С6—Н6А	119.8	O4—C16—H16B	109.5
O2—C7—C6	124.3 (3)	H16A—C16—H16B	109.5
O2—C7—C2	116.1 (2)	O4—C16—H16C	109.5
C6—C7—C2	119.6 (3)	H16A—C16—H16C	109.5
O2—C8—H8A	109.5	H16B—C16—H16C	109.5
O2—C8—H8B	109.5	O5—C17—H17A	109.5
H8A—C8—H8B	109.5	O5—C17—H17B	109.5
O2—C8—H8C	109.5	H17A—C17—H17B	109.5
H8A—C8—H8C	109.5	O5—C17—H17C	109.5
H8B—C8—H8C	109.5	H17A—C17—H17C	109.5
C10—C9—C14	120.7 (3)	H17B—C17—H17C	109.5
C2—N1—C1—O1	-4.4 (4)	C1—C9—C10—C11	-175.1 (3)
C2—N1—C1—C9	174.0 (2)	C15—O3—C11—C10	-13.4 (4)
C1—N1—C2—C3	-39.8 (4)	C15—O3—C11—C12	167.1 (3)
C1—N1—C2—C7	141.6 (3)	C9—C10—C11—O3	178.4 (3)
C7—C2—C3—C4	-2.0 (4)	C9—C10—C11—C12	-2.0 (4)
N1—C2—C3—C4	179.4 (3)	C16—O4—C12—C11	-78.5 (4)
C2—C3—C4—C5	1.1 (5)	C16—O4—C12—C13	103.9 (3)
C3—C4—C5—C6	0.1 (5)	O3—C11—C12—O4	4.5 (4)
C4—C5—C6—C7	-0.5 (5)	C10-C11-C12-O4	-175.1 (3)
C8—O2—C7—C6	0.7 (4)	O3—C11—C12—C13	-177.9 (3)
C8—O2—C7—C2	-179.6 (3)	C10-C11-C12-C13	2.5 (4)
C5—C6—C7—O2	179.2 (3)	C17—O5—C13—C14	3.1 (4)
C5—C6—C7—C2	-0.4 (4)	C17—O5—C13—C12	-175.6 (3)
C3—C2—C7—O2	-178.0 (2)	O4—C12—C13—O5	-4.6 (4)
N1—C2—C7—O2	0.6 (4)	C11—C12—C13—O5	177.7 (3)
C3—C2—C7—C6	1.7 (4)	O4—C12—C13—C14	176.6 (3)
N1—C2—C7—C6	-179.7 (3)	C11—C12—C13—C14	-1.1 (4)
O1—C1—C9—C10	151.4 (3)	O5—C13—C14—C9	-179.5 (3)
N1—C1—C9—C10	-27.1 (4)	C12—C13—C14—C9	-0.8 (4)
O1—C1—C9—C14	-24.0 (4)	C10-C9-C14-C13	1.3 (4)
N1—C1—C9—C14	157.6 (2)	C1—C9—C14—C13	176.7 (2)
C14—C9—C10—C11	0.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1···O1 ⁱ	0.90 (1)	2.18 (1)	3.066 (4)	169 (4)

Symmetry code: (i) -x+1/2, y, z-1/2.