metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(dimethylamino)pyridinium] tetrabromidocuprate(II)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 16 July 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 233 K; mean σ (C–C) = 0.009 Å; R factor = 0.043; wR factor = 0.123; data-to-parameter ratio = 21.6.

The metal atom in the anion of the title salt, $(C_7H_{11}N_2)_2$ -[CuBr₄], shows a distorted tetrahedral coordination. The primary contacts between the ions are of the N-H···Br type.

Related literature

For other pyridinium tetrabromidocuprates, see: Coffey *et al.* (1996); Haddad & Al-Far (2008); Luque *et al.* (2001); Willet *et al.* (2000, 2003).

Experimental

Crystal data	
$(C_7H_{11}N_2)_2[CuBr_4]$	a = 8.1768 (2) Å
$M_r = 629.54$	b = 9.2406 (3) Å
Triclinic, $P\overline{1}$	c = 14.3686 (4) Å

$\alpha = 93.689 \ (2)^{\circ}$	
$\beta = 94.814 \ (2)^{\circ}$	
$\gamma = 105.073 \ (2)^{\circ}$	
V = 1040.42 (5) Å ³	
7 - 2	

Data collection

Bruker SMART APEX	7224 measured reflections
diffractometer	4595 independent reflections
Absorption correction: multi-scan	3168 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.042$
$T_{\min} = 0.321, T_{\max} = 0.746$	
(expected range = 0.180 - 0.418)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	213 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.84 \text{ e} \text{ Å}^{-3}$
4595 reflections	$\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$

Mo *K* α radiation $\mu = 8.73 \text{ mm}^{-1}$

 $0.35 \times 0.30 \times 0.10 \text{ mm}$

T = 233 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots Br1$	0.88	2.54	3.380 (7)	162
N3 - H3 \cdots Br2	0.88	2.65	3.449 (6)	152

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2503).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coffey, T., Robinson, W. T. & Turnbull, M. M. (1996). Acta Cryst. C52, 248–250.
- Haddad, S. F. & Al-Far, R. H. (2008). J. Chem. Crystallogr. 38, 663-669.
- Luque, A., Sertucha, J., Castillo, O. & Roman, P. (2001). New J. Chem. 25, 1208–1214.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.
- Willet, R. D., Awwadi, F., Butcher, R., Haddad, S. & Twamley, B. (2003). Cryst. Growth Des. 3, 301–311.
- Willett, R. D., Haddad, S. F. & Twamley, B. (2000). Acta Cryst. C56, e437.

supporting information

Acta Cryst. (2009). E65, m972 [doi:10.1107/S1600536809028128]

Bis[4-(dimethylamino)pyridinium] tetrabromidocuprate(II)

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Copper sulfate pentahydrate (2.1 g, 8.3 mmol) dissolved in water (5 ml) was mixed with 4-dimethylaminopyridine hydrobromide perbromide (3 g, 8.3 mmol) dissolved in ethanol (10 ml). The mixture was heated for 30 min. The filtered green solution when allowed to evaporate yielded black crystals.

S2. Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.94–0.97 Å; N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to $1.2-1.5U_{eq}(C, N)$.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $2[C_7H_{11}N_2][CuBr_4]$ at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis[4-(dimethylamino)pyridinium] tetrabromidocuprate(II)

Crystal data	
$\begin{array}{l} (C_{7}H_{11}N_{2})_{2}[CuBr_{4}]\\ M_{r} = 629.54\\ Triclinic, P\overline{1}\\ Hall symbol: -P 1\\ a = 8.1768 \ (2) \ \text{\AA}\\ b = 9.2406 \ (3) \ \text{\AA}\\ c = 14.3686 \ (4) \ \text{\AA}\\ a = 93.689 \ (2)^{\circ}\\ \beta = 94.814 \ (2)^{\circ}\\ \gamma = 105.073 \ (2)^{\circ} \end{array}$	Z = 2 F(000) = 606 $D_x = 2.010 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2442 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 8.73 \text{ mm}^{-1}$ T = 233 K Block, black $0.35 \times 0.30 \times 0.10 \text{ mm}$
$V = 1040.42 (5) Å^{3}$ Data collection Bruker SMART APEX	Absorption correction: multi-scan
diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	(<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.321, T_{max} = 0.746$ 7224 measured reflections 4595 independent reflections

3168 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.042$	
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$	
Refinement	
Refinement on F^2	

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.123$ S = 1.004595 reflections 213 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0566P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.84$ e Å⁻³ $\Delta\rho_{min} = -0.82$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0078 (8)

 $h = -10 \rightarrow 10$ $k = -10 \rightarrow 12$ $l = -18 \rightarrow 18$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.46757 (8)	0.23274 (7)	0.31534 (5)	0.04383 (19)	
Br2	0.44673 (8)	0.69937 (7)	0.29470 (5)	0.0458 (2)	
Br3	0.11950 (8)	0.35808 (7)	0.20247 (4)	0.03895 (18)	
Br4	0.65667 (8)	0.48740 (7)	0.15029 (4)	0.04107 (19)	
Cul	0.41731 (9)	0.44301 (7)	0.23676 (5)	0.0323 (2)	
N1	0.8043 (9)	0.5220 (8)	0.4011 (5)	0.067 (2)	
H1	0.7335	0.4434	0.3685	0.081*	
N2	1.1304 (7)	0.8919 (6)	0.5502 (4)	0.0466 (13)	
N3	0.6251 (7)	0.8455 (6)	0.1004 (4)	0.0478 (13)	
Н3	0.5794	0.7776	0.1376	0.057*	
N4	0.8436 (7)	1.1604 (6)	-0.0731 (3)	0.0415 (12)	
C1	0.9472 (12)	0.5930 (9)	0.3673 (5)	0.063 (2)	
H1A	0.9709	0.5576	0.3085	0.075*	
C2	1.0582 (9)	0.7127 (9)	0.4141 (5)	0.0521 (18)	
H2	1.1589	0.7596	0.3887	0.062*	
C3	1.0231 (7)	0.7695 (7)	0.5032 (4)	0.0343 (13)	
C4	0.8711 (8)	0.6903 (8)	0.5360 (5)	0.0465 (16)	
H4	0.8409	0.7213	0.5942	0.056*	
C5	0.7692 (9)	0.5702 (9)	0.4836 (5)	0.064 (2)	
Н5	0.6683	0.5179	0.5067	0.077*	
C6	1.2928 (10)	0.9673 (9)	0.5180 (6)	0.067 (2)	
H6A	1.2723	1.0101	0.4597	0.100*	
H6B	1.3585	0.8951	0.5080	0.100*	
H6C	1.3556	1.0469	0.5650	0.100*	
C7	1.0967 (10)	0.9465 (9)	0.6426 (5)	0.062 (2)	
H7A	0.9814	0.9571	0.6393	0.093*	
H7B	1.1767	1.0433	0.6623	0.093*	
H7C	1.1095	0.8752	0.6875	0.093*	
C8	0.6803 (9)	0.8036 (7)	0.0201 (5)	0.0472 (17)	

H8	0.6688	0.7008	0.0045	0.057*	
C9	0.7497 (8)	0.9012 (7)	-0.0374 (4)	0.0409 (15)	
H9	0.7858	0.8671	-0.0931	0.049*	
C10	0.7710 (7)	1.0591 (6)	-0.0161 (4)	0.0328 (13)	
C11	0.7118 (7)	1.1009 (7)	0.0682 (4)	0.0374 (14)	
H11	0.7217	1.2026	0.0863	0.045*	
C12	0.6401 (8)	0.9918 (8)	0.1234 (4)	0.0462 (17)	
H12	0.5999	1.0200	0.1793	0.055*	
C13	0.9027 (9)	1.1174 (9)	-0.1615 (5)	0.0558 (18)	
H13A	0.9415	1.0274	-0.1553	0.084*	
H13B	0.9960	1.1986	-0.1764	0.084*	
H13C	0.8099	1.0977	-0.2112	0.084*	
C14	0.8708 (10)	1.3216 (6)	-0.0511 (5)	0.059 (2)	
H14A	0.9513	1.3551	0.0044	0.088*	
H14B	0.7635	1.3424	-0.0398	0.088*	
H14C	0.9158	1.3747	-0.1035	0.088*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0494 (4)	0.0387 (4)	0.0482 (4)	0.0151 (3)	0.0101 (3)	0.0186 (3)
Br2	0.0496 (4)	0.0355 (3)	0.0513 (4)	0.0073 (3)	0.0199 (3)	-0.0051 (3)
Br3	0.0337 (3)	0.0415 (3)	0.0407 (3)	0.0089 (3)	0.0043 (2)	0.0009 (3)
Br4	0.0450 (4)	0.0397 (3)	0.0446 (4)	0.0155 (3)	0.0205 (3)	0.0109 (3)
Cu1	0.0331 (4)	0.0319 (4)	0.0336 (4)	0.0095 (3)	0.0084 (3)	0.0061 (3)
N1	0.062 (5)	0.074 (5)	0.060 (4)	0.022 (4)	-0.024 (4)	-0.017 (4)
N2	0.034 (3)	0.058 (3)	0.042 (3)	0.002 (3)	0.004 (2)	0.003 (3)
N3	0.053 (4)	0.045 (3)	0.040 (3)	0.002 (3)	0.003 (3)	0.009 (3)
N4	0.050 (3)	0.035 (3)	0.036 (3)	0.005 (2)	0.005 (2)	0.005 (2)
C1	0.078 (6)	0.075 (5)	0.050 (4)	0.052 (5)	0.000 (4)	-0.010 (4)
C2	0.041 (4)	0.077 (5)	0.048 (4)	0.031 (4)	0.014 (3)	0.001 (4)
C3	0.028 (3)	0.046 (3)	0.034 (3)	0.019 (3)	0.005 (2)	0.006 (3)
C4	0.040 (4)	0.060 (4)	0.036 (3)	0.005 (3)	0.010 (3)	0.007 (3)
C5	0.043 (5)	0.083 (6)	0.059 (5)	0.004 (4)	-0.005 (4)	0.014 (5)
C6	0.054 (5)	0.063 (5)	0.074 (5)	-0.005 (4)	0.001 (4)	0.029 (4)
C7	0.058 (5)	0.068 (5)	0.052 (4)	0.009 (4)	-0.003 (4)	-0.011 (4)
C8	0.060 (5)	0.030 (3)	0.048 (4)	0.008 (3)	-0.003 (3)	0.003 (3)
C9	0.050 (4)	0.041 (3)	0.031 (3)	0.014 (3)	0.000 (3)	-0.003 (3)
C10	0.028 (3)	0.036 (3)	0.030 (3)	0.004 (2)	-0.007(2)	0.001 (3)
C11	0.037 (3)	0.037 (3)	0.034 (3)	0.005 (3)	0.000 (3)	-0.003 (3)
C12	0.038 (4)	0.069 (5)	0.031 (3)	0.015 (3)	0.002 (3)	0.000 (3)
C13	0.060 (5)	0.070 (5)	0.037 (4)	0.009 (4)	0.016 (3)	0.016 (4)
C14	0.091 (6)	0.022 (3)	0.061 (5)	0.007 (3)	0.000 (4)	0.017 (3)

Geometric parameters (Å, °)

Br1—Cu1	2.4164 (9)	C4—H4	0.9400
Br2—Cu1	2.4039 (9)	С5—Н5	0.9400

$\mathbf{D}_{\mathbf{r}^2} = C_{11}1$	2,2544(0)	СС ЦСЛ	0.0700
Br3-Cu1	2.3344(9)		0.9700
DI4—Cui	2.3002 (9)	Со—пов	0.9700
NI-CI	1.320(10)		0.9700
	1.330 (11)	C/—H/A	0.9700
NI—HI	0.8800	C/—H/B	0.9700
N2-C3	1.339 (7)	C/—H/C	0.9700
N2-C6	1.458 (9)	C8-C9	1.314 (9)
N2—C7	1.463 (8)	C8—H8	0.9400
N3—C12	1.342 (8)	C9—C10	1.433 (8)
N3—C8	1.343 (9)	С9—Н9	0.9400
N3—H3	0.8800	C10—C11	1.410 (8)
N4—C10	1.338 (7)	C11—C12	1.364 (9)
N4—C14	1.457 (7)	C11—H11	0.9400
N4—C13	1.464 (8)	C12—H12	0.9400
C1—C2	1.334 (10)	C13—H13A	0.9700
C1—H1A	0.9400	С13—Н13В	0.9700
C2—C3	1.431 (8)	C13—H13C	0.9700
С2—Н2	0.9400	C14—H14A	0.9700
C3—C4	1.404 (8)	C14—H14B	0.9700
C4—C5	1.341 (9)	C14—H14C	0.9700
Br1—Cu1—Br2	131.05 (4)	N2—C6—H6C	109.5
Br1—Cu1—Br3	99.47 (3)	Н6А—С6—Н6С	109.5
Br1—Cu1—Br4	97.82 (3)	H6B—C6—H6C	109.5
Br2—Cu1—Br3	100.27 (3)	N2—C7—H7A	109.5
Br^2 — $Cu1$ — Br^4	97 76 (3)	N2-C7-H7B	109.5
Br3 - Cu1 - Br4	136 48 (4)	H7A - C7 - H7B	109.5
C_{5} N1 C_{1}	1197(7)	N2 - C7 - H7C	109.5
C5	120.2	H7A - C7 - H7C	109.5
C1 N1 H1	120.2	H7B C7 H7C	109.5
$C_1 = N_1 = M_1$	120.2	$\frac{11}{D} = \frac{1}{C} + \frac{11}{C}$	102.3 (6)
$C_3 = N_2 = C_0$	122.0(0) 120.4(6)	$C_{2} = C_{3} = C_{3}$	122.3 (0)
C_{3} N_{2} C_{7}	120.4(0) 116.7(6)	$N_{2} = C_{0} = H_{0}$	110.9
$C_0 = N_2 = C_7$	110.7 (0)	$N_{3} = C_{8} = H_{8}$	110.9
C12 - N3 - C8	119.5 (0)	$C_{8} = C_{9} = C_{10}$	120.8 (6)
C12 - N3 - H3	120.2	C8—C9—H9	119.6
C8—N3—H3	120.2	C10—C9—H9	119.6
C10—N4—C14	122.4 (5)	N4—C10—C11	122.2 (5)
C10—N4—C13	122.4 (5)	N4—C10—C9	121.7 (5)
C14—N4—C13	115.2 (6)	C11—C10—C9	116.1 (6)
C2—C1—N1	122.3 (7)	C12—C11—C10	119.2 (5)
C2—C1—H1A	118.9	C12—C11—H11	120.4
N1—C1—H1A	118.9	C10—C11—H11	120.4
C1—C2—C3	119.6 (7)	N3—C12—C11	122.1 (6)
C1—C2—H2	120.2	N3—C12—H12	118.9
С3—С2—Н2	120.2	C11—C12—H12	118.9
N2—C3—C4	123.4 (5)	N4—C13—H13A	109.5
N2—C3—C2	120.7 (6)	N4—C13—H13B	109.5
C4—C3—C2	116.0 (6)	H13A—C13—H13B	109.5

C5—C4—C3	119.5 (6)	N4—C13—H13C	109.5
C5—C4—H4	120.2	H13A—C13—H13C	109.5
C3—C4—H4	120.2	H13B—C13—H13C	109.5
N1-C5-C4	122.9 (8)	N4—C14—H14A	109.5
N1—C5—H5	118.5	N4—C14—H14B	109.5
С4—С5—Н5	118.5	H14A—C14—H14B	109.5
N2—C6—H6A	109.5	N4—C14—H14C	109.5
N2—C6—H6B	109.5	H14A—C14—H14C	109.5
H6A—C6—H6B	109.5	H14B—C14—H14C	109.5
C5—N1—C1—C2	-0.1 (12)	C12—N3—C8—C9	0.2 (10)
N1—C1—C2—C3	-0.9 (11)	N3—C8—C9—C10	0.5 (10)
C6—N2—C3—C4	176.1 (7)	C14—N4—C10—C11	1.6 (9)
C7—N2—C3—C4	2.7 (9)	C13—N4—C10—C11	-179.0 (5)
C6—N2—C3—C2	-4.6 (9)	C14—N4—C10—C9	-178.1 (6)
C7—N2—C3—C2	-178.0 (6)	C13—N4—C10—C9	1.3 (8)
C1—C2—C3—N2	-178.2 (6)	C8—C9—C10—N4	179.0 (6)
C1—C2—C3—C4	1.2 (9)	C8—C9—C10—C11	-0.7 (8)
N2—C3—C4—C5	178.9 (6)	N4-C10-C11-C12	-179.6 (5)
C2—C3—C4—C5	-0.5 (9)	C9-C10-C11-C12	0.2 (8)
C1—N1—C5—C4	0.8 (12)	C8—N3—C12—C11	-0.8 (9)
C3—C4—C5—N1	-0.4 (11)	C10-C11-C12-N3	0.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…Br1	0.88	2.54	3.380 (7)	162
N3—H3…Br2	0.88	2.65	3.449 (6)	152