Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(4-Bromobenzenesulfonamido)acetic acid

Muhammad Nadeem Arshad, ${ }^{\text {a* }}$ Islam Ullah Khan, ${ }^{\text {a }}$ Muhammad Shafiq, ${ }^{\text {a }}$ Muhammad Naeem Khan ${ }^{\mathbf{b}}$ and Helen Stoeckli-Evans ${ }^{\text {c }}$

${ }^{\text {a }}$ Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, ${ }^{\text {b }}$ PCSIR, Laboratories Complex, Ferozpur Road, Lahore, Pakistan, and ${ }^{\text {c Institute of Physics, Université of Neuchâtel, Rue Emile-Argand 11, CH-2009 }}$ Neuchâtel, Switzerland
Correspondence e-mail: mnachemist@hotmail.com

Received 30 June 2009; accepted 4 July 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.058 ; \omega R$ factor $=0.168$; data-to-parameter ratio $=18.7$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{4} \mathrm{~S}$, a halogenated sulfonamide, was prepared by basic hydrolysis of the methyl ester. In the crystal, molecules form centrosymmetric hydrogenbonded dimers via the carboxyl groups. These dimers are further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions involving the carbonyl O and amide H atoms, forming a ribbon-like structure propagating in [010]. These ribbons are further linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming a three-dimensional network.

Related literature

For details of the crystal structure of the methyl ester of the title compound, see: Arshad et al. (2008b). For related structures, see: Arshad et al. (2008a); Arshad et al. (2009). For related thiazine heterocycles, see: Arshad et al. (2008c). For hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{4} \mathrm{~S}$

$$
\begin{aligned}
& a=5.0042(4) \AA \\
& b=7.9997(6) \AA \\
& c=13.2289(11) \AA
\end{aligned}
$$

$\alpha=79.691$ (4) ${ }^{\circ}$
$\beta=88.667(5)^{\circ}$
$\gamma=81.404(4)^{\circ}$
$V=515.18(7) \AA^{3}$
$Z=2$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.612, T_{\text {max }}=0.632$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.168$
$S=0.95$
2557 reflections

Mo $K \alpha$ radiation
$\mu=4.18 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.28 \times 0.17 \times 0.11 \mathrm{~mm}$

> 10359 measured reflections 2557 independent reflections 1243 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {i }}$	0.82	1.85	2.671 (5)	174
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {ii }}$	0.86	2.38	3.124 (5)	146
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.53	3.384 (7)	153
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.50	3.423 (7)	170

Symmetry codes: (i) $-x+1,-y-1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x, y+1, z$; (iv) $x-1, y+1, z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under PIN 042-120607-PS2-183.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2493).

References

Arshad, M. N., Khan, I. U., Shafiq, M. \& Mukhtar, A. (2009). Acta Cryst. E65, 0549.

Arshad, M. N., Khan, I. U. \& Zia-ur-Rehman, M. (2008a). Acta Cryst. E64, o2283-o2284.
Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. \& Shafiq, M. (2008b). Acta Cryst. E64, o2380.
Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. \& Siddiqui, W. A. (2008c). Acta Cryst. E64, o2045.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o1816 [doi:10.1107/S160053680902604X]

2-(4-Bromobenzenesulfonamido)acetic acid

Muhammad Nadeem Arshad, Islam Ullah Khan, Muhammad Shafiq, Muhammad Naeem Khan and Helen Stoeckli-Evans

S1. Comment

The title compound, (I), was prepared by basic hydrolysis of methyl (4-bromobenzenesulfonamido) acetate (II) (Arshad et al., 2008b), in a continuation of our studies on the synthesis of thiazine related heterocycles (Arshad et al., 2008c). We have previously reported the crystal structures of 2-(benzenesulfonamido)acetic acid (III) (Arshad et al., 2008a) and 2-(2iodobenzenesulfonamido) acetic acid (IV) (Arshad et al., 2009).
The molecular structure of (I), Fig. 1, reveals the bond lengths and angles are similar to those found for compounds (II), (III) and (IV).

The presence of the carboxylic acid group leads to the formation of characteristic $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded centrosymmetric dimers (Table 1 and Fig. 2). These dimers are linked via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4$ interactions, involving the carbonyl O -atom and the H -atom of the amido group, to form a ribbon-like structure propagating in the [010] direction (Table 1 and Fig. 2). The ribbons are further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to form a 3-D network (Table 1 and Fig. 3).
It is interesting to compare the hydrogen bonding patterns in the three acids; (I), (III) and (IV). The formation of the hydrogen bonded carboxylic acid dimers is the same in all three compounds, i.e. $R^{2}{ }_{2}(8)$ (Bernstein et al., 1995). The N $\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding involves the sulfonamido groups in (III) and (IV) $\left[R_{2}{ }_{2}(8)\right]$, while in (I) it involves the carbonyl O -atom (O4) and the H -atom of the amido group (Table 1). This leads to a larger hydrogen-bonded ring of the form $\left[R^{2}(10)\right]$, as shown in Fig. 4.

S2. Experimental

Methyl (4-bromobenzenesulfonamido)acetate(II) (Arshad et al., 2008b) ($1.0 \mathrm{~g}, 3.247 \mathrm{mmol}$) was dissolved in an aqueous sodium hydroxide solution $(10 \%, 10 \mathrm{ml})$. The resulting solution was refluxed for an hour. The reaction mixture was then cooled to room temperature and acidified with 1 N HCl . A white precipitate was obtained. This was filtered off, washed with distilled water and dried. Crystals were obtained by recrystallization from methanol.

S3. Refinement

The $\mathrm{H}-$ atoms were included in calculated positions and treated as riding atoms: $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=$ 0.93-0.97 \AA, with $U_{\text {iso }}(\mathrm{H})=\mathrm{k} \times U_{\text {eq }}($ parent $\mathrm{O}-, \mathrm{N}-$ or C -atom), where $\mathrm{k}=1.5$ for OH , and 1.2 for N - and C-bound H atoms.
The maximum and minimum residual electron density peaks of 1.15 and $-0.38 \mathrm{e}^{-3}$, respectively, were located at $1.10 \AA$ and $0.78 \AA$, respectively, from atom Br 1 .

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A view along the a axis of the crystal packing of compound (I), with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].

Figure 3
A view along the b axis of the crystal packing of (I), with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].

Figure 4

A view of the hydrogen bonding patterns in the three acid compounds: (I), (III) and (IV). The hydrogen bonds are shown as pale-blue lines.

2-(4-Bromobenzenesulfonamido)acetic acid

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}_{4} \mathrm{~S}$

$M_{r}=294.12$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.0042$ (4) \AA
$b=7.9997$ (6) \AA
$c=13.2289$ (11) \AA
$\alpha=79.691$ (4) ${ }^{\circ}$
$\beta=88.667(5)^{\circ}$

$$
\begin{aligned}
& \gamma=81.404(4)^{\circ} \\
& V=515.18(7) \AA^{3} \\
& Z=2 \\
& F(000)=292 \\
& D_{\mathrm{x}}=1.896 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1869 \text { reflections } \\
& \theta=2.2-21.8^{\circ} \\
& \mu=4.18 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=296 \mathrm{~K}$

Needle, colorless

Data collection

Bruker Kappa APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.612, T_{\text {max }}=0.632$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.168$
$S=0.95$
2557 reflections
137 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.28 \times 0.17 \times 0.11 \mathrm{~mm}$

10359 measured reflections
2557 independent reflections
1243 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0872 P)^{2}+0.2177 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.15$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.70371(17)$	$0.78972(8)$	$0.05167(5)$	$0.0774(4)$
S1	$0.3354(2)$	$0.11701(17)$	$0.32101(10)$	$0.0365(4)$
O1	$0.2650(7)$	$0.0106(5)$	$0.2528(3)$	$0.0486(10)$
O2	$0.1387(7)$	$0.1738(5)$	$0.3930(3)$	$0.0492(10)$
O3	$0.7775(7)$	$-0.4424(5)$	$0.4169(3)$	$0.0505(10)$
H3O	0.7174	-0.5221	0.4536	0.076^{*}
O4	$0.4156(7)$	$-0.2871(4)$	$0.4743(3)$	$0.0427(9)$
N1	$0.5998(8)$	$0.0162(5)$	$0.3816(3)$	$0.0389(10)$
H1	0.6632	0.0630	0.4278	0.047^{*}
C1	$0.5927(12)$	$0.5917(7)$	$0.1309(4)$	$0.0456(14)$
C2	$0.3808(12)$	$0.6089(7)$	$0.1979(5)$	$0.0495(15)$
H2	0.2914	0.7172	0.2039	0.059^{*}
C3	$0.3022(11)$	$0.4635(7)$	$0.2560(5)$	$0.0453(14)$
H3	0.1575	0.4737	0.3010	0.054^{*}

C4	$0.4368(10)$	$0.3039(7)$	$0.2478(4)$	$0.0355(12)$
C5	$0.6490(11)$	$0.2867(7)$	$0.1801(4)$	$0.0489(15)$
H5	0.7386	0.1784	0.1742	0.059^{*}
C6	$0.7271(13)$	$0.4320(8)$	$0.1211(5)$	$0.0584(17)$
H6	0.8695	0.4221	0.0751	0.070^{*}
C7	$0.7389(10)$	$-0.1470(6)$	$0.3652(4)$	$0.0410(13)$
H7A	0.9274	-0.1559	0.3839	0.049^{*}
H7B	0.7316	-0.1519	0.2925	0.049^{*}
C8	$0.6253(10)$	$-0.2978(7)$	$0.4249(4)$	$0.0368(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.1144(7)$	$0.0372(4)$	$0.0728(6)$	$-0.0176(4)$	$0.0098(4)$	$0.0154(3)$
S1	$0.0376(7)$	$0.0264(7)$	$0.0458(8)$	$-0.0085(5)$	$0.0029(5)$	$-0.0043(6)$
O1	$0.053(2)$	$0.037(2)$	$0.060(3)$	$-0.0124(18)$	$-0.0073(18)$	$-0.0143(19)$
O2	$0.045(2)$	$0.046(2)$	$0.058(2)$	$-0.0118(18)$	$0.0163(18)$	$-0.011(2)$
O3	$0.050(2)$	$0.027(2)$	$0.069(3)$	$0.0001(18)$	$0.0167(19)$	$-0.001(2)$
O4	$0.0398(19)$	$0.027(2)$	$0.059(2)$	$-0.0058(16)$	$0.0127(17)$	$-0.0008(17)$
N1	$0.050(2)$	$0.019(2)$	$0.046(3)$	$-0.0062(19)$	$-0.002(2)$	$-0.001(2)$
C1	$0.064(4)$	$0.026(3)$	$0.044(3)$	$-0.009(3)$	$-0.004(3)$	$0.002(3)$
C2	$0.059(3)$	$0.017(3)$	$0.068(4)$	$0.003(3)$	$0.000(3)$	$-0.006(3)$
C3	$0.045(3)$	$0.025(3)$	$0.065(4)$	$-0.002(2)$	$0.008(3)$	$-0.007(3)$
C4	$0.041(3)$	$0.027(3)$	$0.038(3)$	$-0.003(2)$	$-0.001(2)$	$-0.005(2)$
C5	$0.064(4)$	$0.022(3)$	$0.054(4)$	$0.001(3)$	$0.013(3)$	$0.004(3)$
C6	$0.073(4)$	$0.040(4)$	$0.054(4)$	$-0.001(3)$	$0.021(3)$	$0.006(3)$
C7	$0.039(3)$	$0.032(3)$	$0.049(3)$	$-0.010(2)$	$0.009(2)$	$0.001(3)$
C8	$0.035(3)$	$0.033(3)$	$0.042(3)$	$-0.007(2)$	$0.000(2)$	$-0.003(2)$

Geometric parameters ($\hat{A}^{\circ},{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.886(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.379(7)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.429(4)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~S} 1-\mathrm{O} 2$	$1.436(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.374(7)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.594(4)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~S} 1-\mathrm{C} 4$	$1.765(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(7)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.306(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.382(7)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	0.8200	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 4-\mathrm{C} 8$	$1.223(6)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.436(6)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.499(6)$
$\mathrm{N} 1-\mathrm{H} 1$	0.8600	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.373(8)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{C} 6$	$1.379(8)$		
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.5(5)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.3(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$120.6(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$106.7(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1$	$118.9(4)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$109.3(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.4(5)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4$	$108.9(2)$		

$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4$	106.5 (2)	C4-C5-H5	120.3
N1-S1-C4	105.3 (2)	C6-C5-H5	120.3
C8-O3-H3O	109.5	C1-C6-C5	119.6 (5)
C7-N1-S1	124.8 (4)	C1-C6-H6	120.2
C7-N1-H1	117.6	C5-C6-H6	120.2
S1-N1-H1	117.5	N1-C7-C8	113.8 (4)
C2- $\mathrm{C} 1-\mathrm{C} 6$	121.0 (5)	N1-C7-H7A	108.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	119.6 (4)	C8-C7-H7A	108.8
C6- $\mathrm{C} 1-\mathrm{Br} 1$	119.4 (4)	N1-C7-H7B	108.8
C1-C2-C3	119.2 (5)	C8-C7-H7B	108.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4	H7A-C7-H7B	107.7
C3-C2-H2	120.4	O4-C8-O3	124.3 (5)
C4-C3-C2	120.2 (5)	O4-C8-C7	124.4 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9	O3-C8-C7	111.4 (4)
C2-C3-H3	119.9		
O1-S1-N1-C7	2.2 (4)	O1-S1-C4-C5	-57.6 (5)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$	132.5 (4)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	172.6 (4)
C4-S1-N1-C7	-113.5 (4)	N1-S1-C4-C5	56.6 (5)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.0 (9)	C3-C4-C5-C6	0.6 (9)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.5 (4)	S1-C4-C5-C6	178.9 (5)
C1-C2-C3-C4	0.8 (9)	C2-C1-C6-C5	-0.5 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-1.1(8)	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	179.1 (5)
C2-C3-C4-S1	-179.4 (4)	C4-C5-C6-C1	0.2 (9)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	120.7 (5)	S1-N1-C7-C8	-85.5 (5)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	-9.1 (5)	N1-C7-C8-O4	8.2 (8)
N1-S1-C4-C3	-125.2 (5)	N1-C7-C8-O3	-172.4 (4)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 O \cdots \mathrm{O} 4^{\mathrm{i}}$	0.82	1.85	$2.671(5)$	174
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.86	2.38	$3.124(5)$	146
$\mathrm{C} 2 — \mathrm{H} 2 \cdots 1^{\mathrm{iii}}$	0.93	2.53	$3.384(7)$	153
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{iv}}$	0.93	2.50	$3.423(7)$	170
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.93	2.50	$2.884(7)$	105

Symmetry codes: (i) $-x+1,-y-1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x, y+1, z$; (iv) $x-1, y+1, z$.

