Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Iodo-1,3-dimethoxybenzene

Li-Ping Xue* and Jian-Hua Qin

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: lpxue@163.com

Received 12 June 2009: accepted 30 June 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.019; wR factor = 0.046; data-to-parameter ratio = 15.5.

Crystals of the title compound, $C_8H_9IO_2$, were obtained from a dimethyl sulfoxide solution of 2,6-dimethoxybenzoic acid and iodobenzene diacetate under a nitrogen atmosphere at 353 K. In the crystal structure, molecules are linked by weak $C-H \cdots \pi$ interactions, generating interpenetrating onedimensional chains of perpendicularly oriented molecules extending along [011] and [011]. Chains are also formed through non-bonding $C-I \cdots \pi$ contacts extending in the same directions, projecting a zigzag motif in view down [100]. The $I \cdots Cg$ distance is 3.695 (2) Å and the $C - I \cdots Cg$ angle is 164.17 (14)°. The molecular symmetry m coincides with the mirror plane of the space group $Cmc2_1$, resulting in a halfmolecule in the asymmetric unit $(Z' = \frac{1}{2})$.

Related literature

For the development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates, see: Myers et al. (2002). For a novel system for decarboxylative bromination, see: Telvekar & Chettiar (2007). For related structures, see: Kirsop et al. (2004); Ali et al. (2008). For a database study of C-halogen- π interactions and their influence on molecular conformation and crystal packing, see: Prasanna & Guru Row (2000). For structure validation in chemical crystallography, see: Spek (2009).

Experimental

Crystal data

C₈H₉IO₂ $M_r = 264.05$ Orthorhombic, Cmc21 a = 12.5767 (13) Åb = 8.6788 (8) Å c = 8.4338 (9) Å

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.500, \ T_{\max} = 0.616$ (expected range = 0.469 - 0.578)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.046$	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
S = 1.12	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$
850 reflections	Absolute structure: Flack (1983),
55 parameters	362 Friedel pairs
1 restraint	Flack parameter: -0.05 (4)

V = 920.55 (16) Å³

Mo Ka radiation

 $0.23 \times 0.19 \times 0.16 \text{ mm}$

2731 measured reflections

850 independent reflections

840 reflections with $I > 2\sigma(I)$

 $\mu = 3.43 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.017$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots Cg1^{i}$	0.93	2.94	3.824 (9)	159

Symmetry code: (i) -x, y + 1, z. Cg1 is the centroid of the C1–C4/C3A/C2A ring.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008): software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Luoyang Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2185).

References

Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, 0910.

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, 01147o1148.
- Myers, A. G., Tanaka, D. & Mannion, M. R. (2002). J. Am. Chem. Soc. 124, 11250-11251.
- Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Telvekar, V. N. & Chettiar, S. N. (2007). Tetrahedron Lett. 48, 4529-4532.

supporting information

Acta Cryst. (2009). E65, o1790 [doi:10.1107/S1600536809025264]

2-lodo-1,3-dimethoxybenzene

Li-Ping Xue and Jian-Hua Qin

S1. Comment

Decarboxylation arene carboxylic acids accompanied by simultaneous replacement with different function groups is a useful reaction in organic chemistry (Myers *et al.*, 2002;). Especially iodobenzene derivatives have been found widespread application in organic synthesis because of their selectivity and simplicity of use (Telvekar & Chettiar, 2007). Recently, we found iodobenzene derivatives could be formed by arene carboxylic acid with reaction of PhI(OAc)₂. As part of our studies, we report herein the synthesis and crystal structure of the title compound (Fig. 1). The asymmetric unit of the cell contains a half-molecule (Z' = 1/2), which is completed by the space group symmetry *m*. Atoms I1, C4, C1, H1A occupy the special positions in the mirror plane *m*. The bond length of C4—I1 is 2.090 (5) Å. The two I—C—C angles, related by mirror symmetry, are 119.5 (2)°.

The molecules in the crystal structure are linked by weak C—H··· π interactions to generate a one-dimensional supramolecular structure (Fig. 2). The bond length of C1—H1A···*Cg*1 is 3.824 (9) Å (Table. 1), *Cg*1 is the centroid of the C1 C2 C3 C4 C3A C2A ring. In a CSD database study, Prasanna & Guru Row (2000) reported about C-halogen··· π interactions and their influence on molecular conformation and crystal packing. The authors found 171 intermolecular C —I·· π contacts in the literature, with a mean I···C_(π -system) atomic distance of 3.698 (13) Å. In the course of the structure validation (Spek, 2009) of the title compound, a similar geometric parameter (I1···Cg1ⁱⁱ = 3.695 (2) Å) has been found. The C4···Cg1ⁱⁱ distance amounts to 5.735 (5) Å, and the angle C4—I1···Cgⁱⁱ is 164.17 (14) Å. Symmetry code: (ii = -*x*, *y* + 2, *z* - 1). The C4—H1A··· π and nonbonding C4—I1··· π contacts generate interpenetrating one-dimensional chains of perpendicularly oriented molecules extending along the [0 1 1] and [0 1 1] directions, projecting a zigzag motif in view down [1 0 0] (Fig.3).

S2. Experimental

The title compound was obtained from a mixture of 2,6-Dimethoxybenzoic acid (36 mg) with Iodobenzene diacetate (77 mg) in DMSO (2 ml) under a nitrogen atmosphere at 353 K for 24 h. The crude product was isolated and purified by silica gel column chromatography. Colorless prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

S3. Refinement

All hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and $U_{iso}(H) = 1.2U_{eq}(C)$, and with C—H = 0.96 Å (CH3) and $U_{iso}(H) = 1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Symmetry code: (2 - x, y, z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Figure 2

A view of the one-dimensional weak C—H $\cdots \pi$ contacts in the title compound.

Figure 3

A view down the *a* axis showing a section of the zigzag motif of the title compound.

2-lodo-1,3-dimethoxybenzene

Crystal data C₈H₉IO₂ F(000) = 504 $M_r = 264.05$ $D_{\rm x} = 1.905 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Orthorhombic, $Cmc2_1$ Hall symbol: C 2c -2 Cell parameters from 1365 reflections a = 12.5767 (13) Å $\theta = 3.7 - 27.5^{\circ}$ *b* = 8.6788 (8) Å $\mu = 3.43 \text{ mm}^{-1}$ *c* = 8.4338 (9) Å T = 296 K $V = 920.55 (16) \text{ Å}^3$ Prism, white Z = 4 $0.23\times0.19\times0.16~mm$ Data collection Bruker P4 2731 measured reflections diffractometer 850 independent reflections Radiation source: fine-focus sealed tube 840 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.017$ ω scans $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$ $h = -15 \rightarrow 15$ Absorption correction: multi-scan (SADABS; Bruker, 1997) $k = -10 \rightarrow 7$ $l = -9 \rightarrow 10$ $T_{\rm min} = 0.500, \ T_{\rm max} = 0.616$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0245P)^2 + 0.6278P]$
S = 1.12	where $P = (F_o^2 + 2F_c^2)/3$
850 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
55 parameters	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.84 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 362 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.05 (4)
map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	1.0000	0.95668 (3)	0.54168 (9)	0.04533 (12)	
01	0.8137 (2)	0.7922 (4)	0.7118 (3)	0.0562 (8)	
C1	1.0000	0.5564 (7)	0.9408 (11)	0.073 (2)	
H1A	1.0000	0.4784	1.0163	0.088*	
C2	0.9046 (4)	0.6130 (5)	0.8860 (6)	0.0637 (12)	
H2A	0.8409	0.5739	0.9250	0.076*	
C3	0.9038 (3)	0.7287 (4)	0.7725 (4)	0.0432 (9)	
C4	1.0000	0.7859 (5)	0.7165 (6)	0.0374 (11)	
C5	0.7137 (4)	0.7340 (7)	0.7685 (7)	0.0776 (16)	
H5A	0.6566	0.7868	0.7160	0.116*	
H5B	0.7087	0.7505	0.8808	0.116*	
H5C	0.7091	0.6256	0.7464	0.116*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.04655 (17)	0.05029 (18)	0.0391 (2)	0.000	0.000	0.01194 (17)
01	0.0454 (16)	0.0700 (18)	0.0531 (19)	-0.0124 (14)	0.0033 (14)	0.0111 (15)
C1	0.099 (6)	0.052 (4)	0.068 (5)	0.000	0.000	0.030 (3)
C2	0.085 (3)	0.051 (2)	0.055 (3)	-0.016 (2)	0.009 (2)	0.014 (2)
C3	0.058 (2)	0.0384 (16)	0.033 (2)	-0.0055 (16)	0.0005 (16)	-0.0015 (15)
C4	0.055 (3)	0.030 (2)	0.027 (3)	0.000	0.000	-0.0008 (19)
C5	0.056 (3)	0.086 (4)	0.091 (5)	-0.023 (3)	0.010 (3)	0.007 (3)

Geometric parameters (Å, °)

I1—C4	2.090 (5)	C2—H2A	0.9300
O1—C3	1.359 (5)	C3—C4	1.391 (5)
01—C5	1.437 (6)	C4—C3 ⁱ	1.391 (5)
C1—C2	1.376 (6)	C5—H5A	0.9600
C1-C2 ⁱ	1.376 (6)	C5—H5B	0.9600
C1—H1A	0.9300	C5—H5C	0.9600
C2—C3	1.388 (5)		

C3—O1—C5	117.5 (4)	C3 ⁱ —C4—C3	121.0 (5)
$C2-C1-C2^{i}$	121.3 (6)	C3 ⁱ —C4—I1	119.5 (2)
C2—C1—H1A	119.3	C3—C4—I1	119.5 (2)
C2 ⁱ —C1—H1A	119.3	O1—C5—H5A	109.5
C1—C2—C3	119.8 (5)	O1—C5—H5B	109.5
C1—C2—H2A	120.1	H5A—C5—H5B	109.5
C3—C2—H2A	120.1	O1—C5—H5C	109.5
O1—C3—C2	124.0 (4)	H5A—C5—H5C	109.5
O1—C3—C4	116.9 (3)	H5B—C5—H5C	109.5
C2—C3—C4	119.1 (4)		
$C2^{i}$ — $C1$ — $C2$ — $C3$	0.5 (11)	O1—C3—C4—C3 ⁱ	179.6 (3)
C5—O1—C3—C2	-0.7 (6)	$C2-C3-C4-C3^{i}$	0.1 (7)
C5	179.9 (4)	O1—C3—C4—I1	-1.9 (5)
C1—C2—C3—O1	-179.7 (5)	C2—C3—C4—I1	178.6 (3)
C1—C2—C3—C4	-0.3 (7)		

Symmetry code: (i) -x+2, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1 A ··· $Cg1$ ⁱⁱ	0.93	2.94	3.824 (9)	159

Symmetry code: (ii) -x, y+1, z.