organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of 3-(ammoniomethyl)pyridinium dichloride

Wen-Xian Liang, Gang Wang and Zhi-Rong Qu*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: guzr@seu.edu.cn

Received 28 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.076; data-to-parameter ratio = 21.3.

The crystal structure of the title compound, $C_6H_{10}N_2^{2+}\cdot 2Cl^-$, has been reported previously in the non-standard setting $P2_1/a$ [Genet (1965). *Bull. Soc. Fr. Miner. Crist.* **88**, 463–470], with an *R* value of 0.16. The current redetermination improves significantly the precision of the geometric parameters. In the crystal packing, cations and anions are linked by intermolecular N-H···Cl and C-H···Cl hydrogen bonds into a three-dimensional network.

Related literature

For related structures, see: Genet (1965); Chtioui & Jouini (2004); Long et al. (1997).

Experimental

Crystal data	
$C_6H_{10}N_2^{2+}\cdot 2Cl^-$	a = 4.5874 (9) Å
$M_r = 181.06$	b = 12.650 (3) Å
Monoclinic, $P2_1/c$	c = 14.814 (3) Å

 $\beta = 93.61 (3)^{\circ}$ $V = 857.9 (3) Å^{3}$ Z = 4Mo *K* α radiation

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.720, T_{\rm max} = 0.909$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.076$ S = 1.081961 reflections

Table 1

ł	yd	lrogen	bond	geometry	(A, '	°).	
---	----	--------	------	----------	-------	-----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl2^{i}$	0.89	2.35	3.1914 (16)	157
$N1 - H1B \cdot \cdot \cdot Cl2^n$	0.89	2.27	3.1206 (16)	159
N1−H1C···Cl1 ⁱⁱⁱ	0.89	2.28	3.1622 (16)	170
$N2-H2\cdots Cl1^{iv}$	0.86	2.25	3.0520 (16)	154
$C3-H3\cdots Cl2^{i}$	0.93	2.77	3.606 (2)	150
$C6-H6A\cdots Cl1^{v}$	0.97	2.74	3.676 (2)	163
$C6-H6B\cdots Cl2^{vi}$	0.97	2.82	3.700 (2)	152
Symmetry codes: -x + 1, -y + 1, -z; $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}.$	$\begin{array}{cc} \text{(i)} & -x+1\\ \text{(iv)} & x+ \end{array}$	$y - \frac{1}{2}, -z + \frac{1}{2};$ 1, y + 1, z;	(ii) $x + 1, -y - (v) -x + 2, -y + 2$	$+\frac{3}{2}, z - \frac{1}{2};$ (iii) + 1, -z; (vi)

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2346).

References

Chtioui, A. & Jouini, A. (2004). J. Chem. Crystallogr. A34, 43–49.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Genet, F. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 463–470.
Long, G. S., Wei, M. & Willett, R. D. (1997). Inorg. Chem. 36, 3102–3107.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

8831 measured reflections

 $R_{\rm int} = 0.035$

92 parameters

 $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

1961 independent reflections

1684 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2009). E65, o1814 [doi:10.1107/S1600536809025859]

Redetermination of 3-(ammoniomethyl)pyridinium dichloride

Wen-Xian Liang, Gang Wang and Zhi-Rong Qu

S1. Comment

Pyridin-3-ylmethanamine is a important ligand used in coordination chemistry. Recently, there has been an increased interest in the properties of layer perovskite structures because of their applications in high temperature superconductivity. Two general classes of M(II) halide layer perovskite structures exist, the ammoniummethylprididine series (Chtioui & Jouini, 2004) and the ammoniummethylprididinium series (Long *et al.*, 1997). In the latter series, the asymmetrical dication bridges between layers, with both the NH₃⁺ group and the pyridinium N—H group hydrogen bonding to the halide ions in the layer. The cation-layer interactions involve an ammonium group that hydrogen bonds to the perovskite layer (Long *et al.*, 1997). We report herein the crystal structure of the title compound, which was prepared by the reaction of pyridin-3-ylmethanamine and hydrochloric acid. Its crystal structure has been reported previously in the non standard setting $P2_1/a$ (Genet, 1965), with an R value of 0.16. The current redetermination improves significantly the precision of the geometric parameters.

The asymmetric unit of the title compound (Fig. 1) consists of a two independent chloride anions and a 3-(ammoniomethyl)pyridinium dication. In the cation, the plane through the C2/C6/N2 atoms is tilted by 68.13 (14)° with respect to the pyridine ring. In the crystal packing (Fig. 2), intermolecular N—H…Cl and C—H…Cl hydrogen bonds (Table 1) connect neighbouring cations and anions into a three-dimensional network.

S2. Experimental

A mixture of (pyridin-3-yl)methanamine (0.1 mol, 0.108 g) and HCl (0.2 mol, 0.73 g) were dissolved in water (10 ml). Colourless single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvent over a period of 48 h.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å, N—H = 0.86-0.89 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Packing diagram of the title compound viewed along the *a* axis>. Hydrogen bonds are shown as dashed lines.

3-(ammoniomethyl)pyridinium dichloride

Crystal data

 $C_{6}H_{10}N_{2}^{2+}.2Cl^{-}$ $M_{r} = 181.06$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 4.5874 (9) Å b = 12.650 (3) Å c = 14.814 (3) Å $\beta = 93.61$ (3)° V = 857.9 (3) Å³ Z = 4

Data collection

Rigaku SCXmini	8831 measured reflections
diffractometer	1961 independent reflections
Radiation source: fine-focus sealed tube	1684 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
Detector resolution: 13.662 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
CCD_Profile_fitting scans	$h = -5 \rightarrow 5$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(CrystalClear; Rigaku, 2005)	$l = -19 \rightarrow 19$
$T_{\min} = 0.720, \ T_{\max} = 0.909$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

F(000) = 376

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.69 \text{ mm}^{-1}$ T = 293 K

Prism. colourless

 $0.50 \times 0.45 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.402 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8048 reflections

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.08	H-atom parameters constrained
1961 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 0.274P]$
92 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or aqui	valant	isotropic	dignl	acomont	naramotors	18	2
1 ruciionui	utomic	coordinates	unu	isonopie	n equi	vuieni	isonopic	uispi	ucemeni	purumeters	$(\mathbf{A}$	•)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.34023 (9)	0.98847 (3)	0.37672 (3)	0.03348 (13)
0.9075 (3)	0.64924 (10)	-0.01920 (10)	0.0333 (3)
0.7885	0.6098	0.0120	0.050*
0.9905	0.6091	-0.0598	0.050*
	x 0.34023 (9) 0.9075 (3) 0.7885 0.9905	x y 0.34023 (9) 0.98847 (3) 0.9075 (3) 0.64924 (10) 0.7885 0.6098 0.9905 0.6091	x y z 0.34023 (9) 0.98847 (3) 0.37672 (3) 0.9075 (3) 0.64924 (10) -0.01920 (10) 0.7885 0.6098 0.0120 0.9905 0.6091 -0.0598

0.8058	0.7007	-0.0474	0.050*
1.1364 (4)	0.69588 (14)	0.04332 (13)	0.0365 (4)
1.2888	0.7253	0.0084	0.044*
1.2231	0.6405	0.0815	0.044*
1.1087 (4)	0.88417 (13)	0.08977 (12)	0.0337 (4)
1.2349	0.9000	0.0449	0.040*
0.8274 (4)	0.94441 (14)	0.20641 (12)	0.0370 (4)
0.7619	1.0005	0.2403	0.044*
1.0214 (3)	0.78119 (13)	0.10227 (11)	0.0293 (4)
0.7351 (4)	0.84350 (14)	0.22213 (12)	0.0371 (4)
0.6060	0.8304	0.2668	0.045*
0.8357 (4)	0.76140 (14)	0.17102 (12)	0.0349 (4)
0.7788	0.6924	0.1826	0.042*
0.40819 (11)	0.14752 (3)	0.10233 (3)	0.04427 (15)
1.0124 (3)	0.96146 (11)	0.14194 (10)	0.0367 (4)
1.0724	1.0249	0.1336	0.044*
	0.8058 1.1364 (4) 1.2888 1.2231 1.1087 (4) 1.2349 0.8274 (4) 0.7619 1.0214 (3) 0.7351 (4) 0.6060 0.8357 (4) 0.7788 0.40819 (11) 1.0124 (3) 1.0724	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0384 (2)	0.0291 (2)	0.0340 (2)	-0.00167 (16)	0.01032 (17)	-0.00133 (16)
N1	0.0389 (8)	0.0256 (7)	0.0362 (8)	0.0047 (6)	0.0099 (6)	-0.0021 (6)
C6	0.0310 (9)	0.0315 (9)	0.0479 (11)	0.0040 (7)	0.0086 (8)	-0.0028 (8)
C1	0.0347 (9)	0.0314 (9)	0.0352 (9)	0.0001 (7)	0.0041 (7)	0.0029 (7)
C5	0.0440 (10)	0.0354 (10)	0.0311 (9)	0.0044 (8)	-0.0011 (8)	-0.0071 (7)
C2	0.0260 (8)	0.0284 (8)	0.0331 (9)	0.0020 (6)	-0.0008(7)	-0.0010 (7)
C4	0.0406 (10)	0.0407 (10)	0.0306 (9)	-0.0030 (8)	0.0064 (8)	-0.0032 (7)
C3	0.0390 (10)	0.0297 (9)	0.0363 (10)	-0.0038 (7)	0.0044 (8)	0.0005 (7)
Cl1	0.0486 (3)	0.0305 (2)	0.0547 (3)	0.00301 (18)	0.0108 (2)	0.00943 (19)
N2	0.0462 (9)	0.0237 (7)	0.0397 (9)	-0.0029 (6)	-0.0014 (7)	0.0013 (6)

Geometric parameters (Å, °)

N1—C6	1.478 (2)	C1—H1	0.9300
N1—H1A	0.8900	C5—N2	1.334 (2)
N1—H1B	0.8900	C5—C4	1.369 (3)
N1—H1C	0.8900	C5—H5	0.9300
C6—C2	1.504 (2)	C2—C3	1.391 (2)
С6—Н6А	0.9700	C4—C3	1.382 (2)
С6—Н6В	0.9700	C4—H4	0.9300
C1—N2	1.338 (2)	С3—Н3	0.9300
C1—C2	1.379 (2)	N2—H2	0.8600
C6—N1—H1A	109.5	N2—C5—C4	119.33 (16)
C6—N1—H1B	109.5	N2—C5—H5	120.3
H1A—N1—H1B	109.5	C4—C5—H5	120.3
C6—N1—H1C	109.5	C1—C2—C3	117.69 (16)
H1A—N1—H1C	109.5	C1—C2—C6	118.97 (16)

H1B—N1—H1C	109.5	C3—C2—C6	123.31 (15)	
N1—C6—C2	112.88 (13)	C5—C4—C3	119.34 (17)	
N1—C6—H6A	109.0	C5—C4—H4	120.3	
С2—С6—Н6А	109.0	C3—C4—H4	120.3	
N1—C6—H6B	109.0	C4—C3—C2	120.47 (16)	
С2—С6—Н6В	109.0	С4—С3—Н3	119.8	
H6A—C6—H6B	107.8	С2—С3—Н3	119.8	
N2—C1—C2	120.23 (16)	C5—N2—C1	122.89 (15)	
N2—C1—H1	119.9	C5—N2—H2	118.6	
C2—C1—H1	119.9	C1—N2—H2	118.6	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····Cl2 ⁱ	0.89	2.35	3.1914 (16)	157
N1—H1B····Cl2 ⁱⁱ	0.89	2.27	3.1206 (16)	159
N1—H1C···Cl1 ⁱⁱⁱ	0.89	2.28	3.1622 (16)	170
N2—H2···Cl1 ^{iv}	0.86	2.25	3.0520 (16)	154
C3—H3···Cl2 ⁱ	0.93	2.77	3.606 (2)	150
C6—H6A···Cl1 ^v	0.97	2.74	3.676 (2)	163
C6—H6B····Cl2 ^{vi}	0.97	2.82	3.700 (2)	152

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*+1, -*y*+3/2, *z*-1/2; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*+1, *y*+1, *z*; (v) -*x*+2, -*y*+1, -*z*; (vi) -*x*+2, *y*-1/2, -*z*+1/2.