

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-(3-aminophenoxy)phenyl] ketone

Yang Wang,^a Xin-yi Zhu,^a Xiao-yan Ma,^b Guo-wei Gao^a and lian Men^a*

^aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and ^bCollege of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China Correspondence e-mail: menjian@scu.edu.cn

Received 27 June 2009; accepted 4 July 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.165; data-to-parameter ratio = 12.8.

In the molecule of the title compound, $C_{25}H_{20}N_2O_3$, the dihedral angles formed by adjacent benzene rings are 66.75 (8), 48.37 (8) and 71.43 (9) $^{\circ}$. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular N-H···O hydrogen bonds.

Related literature

For the properties and synthesis of the title compound, see: Wilson et al. (1990); Mehdipour-Ataei & Saidi (2008). For the applications of the title compound, see: Rao & Prabhakaran (1992).

Experimental

Crystal data

$C_{25}H_{20}N_2O_3$	$\alpha = 101.79 \ (4)^{\circ}$
$M_r = 396.43$	$\beta = 95.10 \ (4)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 107.86 \ (3)^{\circ}$
a = 7.370 (3) Å	V = 989.6 (6) Å ³
b = 11.856 (3) Å	Z = 2
c = 12.319 (3) Å	Mo $K\alpha$ radiation

 $0.48 \times 0.42 \times 0.23 \text{ mm}$

 $\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 292 K

Data collection

Enraf-Nonius CAD-4	2206 reflections with $I > 2\sigma(I)$		
diffractometer	$R_{int} = 0.006$		
Absorption correction: none	3 standard reflections		
3693 measured reflections	every 200 reflections		
3682 independent reflections	intensity decay: 1.5%		
Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.165$ S = 1.05	H atoms treated by a mixture o independent and constrained refinement		

S = 1.053682 reflections 288 parameters

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N1 - H1N1 \cdots O1^{i}$ 3.223 (5) 0.92(4)2.32 (4) 164 (3)

Symmetry code: (i) -x + 2, -y + 2, -z + 1.

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Undergraduates' Innovative Experiment Project of Sichuan University and thank Mr Zhi-Hua Mao of Sichuan University for the X-Ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2344).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Crvst. 22, 384-387.

Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.

Mehdipour-Ataei, S. & Saidi, S. (2008). Polym. Adv. Technol. 19, 889-894.

Rao, V. L. & Prabhakaran, P. V. (1992). Eur. Polym. J. 28, 363-366.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wilson, D., Stengenberger, H. D. & Hergenrother, P. M. (1990). In Polyimides. New York: Chapman and Hall.

supporting information

Acta Cryst. (2009). E65, o1823 [doi:10.1107/S1600536809025951]

Bis[4-(3-aminophenoxy)phenyl] ketone

Yang Wang, Xin-yi Zhu, Xiao-yan Ma, Guo-wei Gao and Jian Men

S1. Comment

Aromatic polyimides has found useful applications in aircraft technology, space vehicles, sea transport equipment and other applications due to their excellent thermal stability, good mechanical properties, low dielectric constants and intrinsic purity (Wilson *et al.*, 1990). The title compound is an important raw material for the synthesis of aromatic polyimides, as the presence of ether and ketone groups connected by aromatic rings greatly improves the chain flexibility (Rao & Prabhakaran, 1992; Mehdipour-Ataei & Saidi, 2008). Herein, we report the synthesis and crystal structure of the title compound.

The structure of the title compound (Fig. 1) is not planar. The dihedral angle between the two central benzene rings, ring A (C7–C12) and ring B (C14–C19), is 48.37 (8)°. Ring A forms a dihedral angle of 66.75 (8)° with the C1–C6 benzene ring. The corresponding dihedral angle between ring B and the C20–C25 benzene ring is 71.43 (9)°. The plane formed by atoms C10, C14, O1 and C13, makes a dihedral angle of 22.28 (12)° and 31.23 (8)° with ring A and B, respectively. The crystal structure is stabilized by N–H…O hydrogen bonds (Table 1) linking centrosymmetrically related molecules into dimers.

S2. Experimental

4,4'-Difluorobenzophenone (11.0 g, 0.05 mol), *m*-aminophenol (22.0 g, 0.20 mol) and anhydrous potassium carbonate (14.0 g, 0.10 mol) were dissolved in a solution of toluene (60 ml) and *N*,*N*-dimethylformamide (100 ml) in a three-necked flask. The mixture was heated to reflux and water was removed by azeotropic distillation. After complete dehydration, the mixture was poured to a large excess of ice water. Then, the precipitated solid was collected by filtration and recrystallized from ethanol to obtain a tan solid (16.5 g, 76% yield, m.p.411–413 K). Red single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a toluene solution.

S3. Refinement

H-atoms bound to nitrogen atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Bis[4-(3-aminophenoxy)phenyl] ketone

Crystal data	
$C_{25}H_{20}N_{2}O_{3}$ $M_{r} = 396.43$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.370 (3) Å b = 11.856 (3) Å c = 12.319 (3) Å a = 101.79 (4)° $\beta = 95.10$ (4)° $\gamma = 107.86$ (3)° V = 989.6 (6) Å ³	Z = 2 F(000) = 416 $D_x = 1.330 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 23 reflections $\theta = 5.4-5.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 292 K Block, red $0.48 \times 0.42 \times 0.23 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans 3693 measured reflections 3682 independent reflections 2206 reflections with $I > 2\sigma(I)$	$R_{int} = 0.006$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -4 \rightarrow 14$ $l = -14 \rightarrow 14$ 3 standard reflections every 200 reflections intensity decay: 1.5%
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.165$ $S = 1.05$ 3682 reflections288 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0943P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.23$ e Å ⁻³ $\Delta \rho_{min} = -0.24$ e Å ⁻³

Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.027 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

			-	II */II	
	λ	<i>y</i>	2	U _{iso} / U _{eq}	
01	0.4068 (2)	0.59493 (16)	0.42259 (15)	0.0665 (5)	
02	1.2554 (2)	0.95837 (18)	0.55618 (15)	0.0746 (6)	
03	0.0557 (2)	0.57862 (15)	0.86702 (15)	0.0623 (5)	
N1	1.7663 (5)	1.3024 (3)	0.7708 (4)	0.0988 (11)	
H1N1	1.729 (5)	1.346 (3)	0.725 (3)	0.116 (15)*	
H2N1	1.840 (5)	1.333 (3)	0.828 (3)	0.109 (15)*	
N2	-0.3694 (6)	0.6550 (4)	1.1145 (3)	0.1179 (13)	
H1N2	-0.378 (6)	0.581 (4)	1.131 (3)	0.119 (14)*	
H2N2	-0.399 (8)	0.712 (5)	1.153 (5)	0.19 (3)*	
C1	1.6441 (3)	1.1849 (2)	0.7619 (2)	0.0591 (7)	
C2	1.6600 (4)	1.1216 (3)	0.8431 (2)	0.0655 (7)	
H2	1.7550	1.1581	0.9064	0.079*	
C3	1.5354 (4)	1.0050 (3)	0.8303 (2)	0.0631 (7)	
H3	1.5464	0.9638	0.8859	0.076*	
C4	1.3949 (3)	0.9477 (2)	0.7371 (2)	0.0544 (6)	
H4	1.3115	0.8685	0.7286	0.065*	
C5	1.3819 (3)	1.0112 (2)	0.6574 (2)	0.0509 (6)	
C6	1.5030 (3)	1.1280 (2)	0.6682 (2)	0.0558 (7)	
H6	1.4901	1.1689	0.6126	0.067*	
C7	1.0692 (3)	0.8848 (2)	0.5542 (2)	0.0518 (6)	
C8	0.9903 (3)	0.7910 (2)	0.4600 (2)	0.0549 (6)	
H8	1.0622	0.7789	0.4031	0.066*	
C9	0.8035 (3)	0.7150 (2)	0.4507 (2)	0.0517 (6)	
H9	0.7494	0.6512	0.3869	0.062*	
C10	0.6938 (3)	0.73176 (19)	0.53531 (19)	0.0450 (6)	
C11	0.7750 (3)	0.8300 (2)	0.6275 (2)	0.0511 (6)	
H11	0.7023	0.8444	0.6834	0.061*	
C12	0.9628 (3)	0.9070 (2)	0.6377 (2)	0.0543 (6)	
H12	1.0165	0.9728	0.7000	0.065*	
C13	0.4904 (3)	0.6501 (2)	0.5182 (2)	0.0505 (6)	
C14	0.3844 (3)	0.63592 (19)	0.6137 (2)	0.0451 (6)	
C15	0.1849 (3)	0.61103 (19)	0.5934 (2)	0.0475 (6)	
H15	0.1256	0.6057	0.5218	0.057*	

C16	0.0742 (3)	0.5943 (2)	0.6765 (2)	0.0521 (6)	
H16	-0.0585	0.5779	0.6615	0.063*	
C17	0.1629 (3)	0.6021 (2)	0.7822 (2)	0.0502 (6)	
C18	0.3584 (3)	0.6242 (2)	0.8042 (2)	0.0552 (6)	
H18	0.4165	0.6282	0.8757	0.066*	
C19	0.4680 (3)	0.6404 (2)	0.7205 (2)	0.0539 (6)	
H19	0.6000	0.6546	0.7356	0.065*	
C20	-0.0391 (3)	0.6582 (2)	0.9107 (2)	0.0470 (6)	
C21	-0.1542 (3)	0.6200 (2)	0.9866 (2)	0.0560 (6)	
H21	-0.1692	0.5443	1.0020	0.067*	
C22	-0.2484 (4)	0.6946 (3)	1.0405 (2)	0.0665 (7)	
C23	-0.2239 (4)	0.8067 (3)	1.0155 (3)	0.0705 (8)	
H23	-0.2847	0.8584	1.0514	0.085*	
C24	-0.1107 (4)	0.8412 (2)	0.9382 (2)	0.0635 (7)	
H24	-0.0982	0.9157	0.9210	0.076*	
C25	-0.0142 (3)	0.7687 (2)	0.8849 (2)	0.0550 (6)	
H25	0.0647	0.7937	0.8334	0.066*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0462 (10)	0.0733 (12)	0.0579 (12)	0.0017 (9)	-0.0019 (9)	0.0004 (9)
O2	0.0424 (10)	0.1008 (14)	0.0539 (12)	-0.0116 (9)	0.0015 (8)	0.0184 (10)
O3	0.0645 (11)	0.0627 (10)	0.0744 (13)	0.0286 (9)	0.0262 (10)	0.0307 (9)
N1	0.088 (2)	0.0664 (18)	0.105 (3)	-0.0097 (16)	-0.007(2)	0.0029 (18)
N2	0.136 (3)	0.121 (3)	0.142 (3)	0.069 (3)	0.092 (3)	0.059 (3)
C1	0.0427 (13)	0.0545 (15)	0.0680 (18)	0.0079 (12)	0.0060 (13)	0.0026 (13)
C2	0.0490 (15)	0.0799 (19)	0.0562 (17)	0.0168 (14)	-0.0056 (13)	0.0050 (14)
C3	0.0568 (16)	0.0775 (18)	0.0614 (18)	0.0285 (14)	0.0051 (14)	0.0232 (15)
C4	0.0461 (13)	0.0527 (14)	0.0602 (16)	0.0117 (11)	0.0058 (12)	0.0129 (12)
C5	0.0317 (11)	0.0637 (15)	0.0497 (15)	0.0084 (11)	0.0058 (11)	0.0092 (12)
C6	0.0421 (13)	0.0581 (15)	0.0662 (17)	0.0109 (12)	0.0091 (12)	0.0217 (13)
C7	0.0373 (12)	0.0609 (15)	0.0496 (15)	0.0040 (11)	0.0012 (11)	0.0184 (12)
C8	0.0405 (13)	0.0699 (16)	0.0527 (16)	0.0158 (12)	0.0086 (11)	0.0151 (13)
C9	0.0449 (13)	0.0532 (14)	0.0467 (15)	0.0110 (11)	-0.0030 (11)	0.0025 (11)
C10	0.0368 (12)	0.0481 (13)	0.0460 (14)	0.0111 (10)	-0.0010 (10)	0.0101 (11)
C11	0.0395 (13)	0.0554 (14)	0.0544 (16)	0.0122 (11)	0.0072 (11)	0.0107 (12)
C12	0.0446 (14)	0.0606 (15)	0.0450 (14)	0.0052 (11)	-0.0002 (11)	0.0075 (11)
C13	0.0394 (13)	0.0462 (13)	0.0580 (17)	0.0100 (11)	-0.0019 (12)	0.0062 (12)
C14	0.0324 (11)	0.0424 (12)	0.0548 (15)	0.0075 (9)	-0.0002 (10)	0.0100 (11)
C15	0.0379 (12)	0.0471 (13)	0.0491 (14)	0.0094 (10)	-0.0064 (11)	0.0066 (11)
C16	0.0331 (12)	0.0540 (14)	0.0647 (17)	0.0119 (10)	0.0018 (12)	0.0109 (12)
C17	0.0476 (14)	0.0433 (12)	0.0589 (16)	0.0128 (10)	0.0094 (12)	0.0140 (11)
C18	0.0460 (14)	0.0611 (15)	0.0527 (16)	0.0105 (11)	-0.0043 (12)	0.0176 (12)
C19	0.0336 (12)	0.0553 (14)	0.0661 (17)	0.0072 (10)	-0.0026 (12)	0.0167 (12)
C20	0.0384 (12)	0.0478 (13)	0.0482 (14)	0.0095 (10)	-0.0022 (11)	0.0089 (11)
C21	0.0472 (13)	0.0560 (15)	0.0651 (17)	0.0156 (12)	0.0063 (12)	0.0189 (13)
C22	0.0605 (17)	0.0778 (19)	0.0654 (19)	0.0269 (15)	0.0164 (14)	0.0179 (15)

supporting information

C23	0.0716 (19)	0.0689 (18)	0.072 (2)	0.0342 (15)	0.0058 (16)	0.0045 (15)
C24	0.0725 (18)	0.0523 (15)	0.0602 (18)	0.0216 (14)	-0.0049 (14)	0.0076 (13)
C25	0.0520 (14)	0.0529 (14)	0.0546 (16)	0.0118 (12)	0.0022 (12)	0.0128 (12)

Geometric parameters (Å, °)

01—C13	1.226 (3)	C10—C11	1.384 (3)	
O2—C7	1.377 (3)	C10—C13	1.484 (3)	
O2—C5	1.390 (3)	C11—C12	1.383 (3)	
O3—C17	1.387 (3)	C11—H11	0.9300	
O3—C20	1.390 (3)	C12—H12	0.9300	
N1—C1	1.384 (4)	C13—C14	1.478 (3)	
N1—H1N1	0.92 (4)	C14—C19	1.386 (3)	
N1—H2N1	0.79 (4)	C14—C15	1.396 (3)	
N2-C22	1.383 (4)	C15—C16	1.373 (3)	
N2—H1N2	0.93 (4)	C15—H15	0.9300	
N2—H2N2	0.84 (5)	C16—C17	1.377 (3)	
C1—C6	1.381 (4)	C16—H16	0.9300	
C1—C2	1.384 (4)	C17—C18	1.374 (3)	
C2—C3	1.373 (4)	C18—C19	1.374 (3)	
С2—Н2	0.9300	C18—H18	0.9300	
C3—C4	1.375 (4)	C19—H19	0.9300	
С3—Н3	0.9300	C20—C21	1.370 (3)	
C4—C5	1.368 (3)	C20—C25	1.373 (3)	
C4—H4	0.9300	C21—C22	1.387 (4)	
C5—C6	1.370 (3)	C21—H21	0.9300	
С6—Н6	0.9300	C22—C23	1.387 (4)	
С7—С8	1.371 (3)	C23—C24	1.364 (4)	
C7—C12	1.379 (3)	C23—H23	0.9300	
С8—С9	1.374 (3)	C24—C25	1.380 (4)	
С8—Н8	0.9300	C24—H24	0.9300	
C9—C10	1.394 (3)	C25—H25	0.9300	
С9—Н9	0.9300			
C7—O2—C5	120.22 (19)	C7—C12—H12	120.5	
C17—O3—C20	119.63 (18)	C11—C12—H12	120.5	
C1—N1—H1N1	117 (2)	O1—C13—C14	119.2 (2)	
C1—N1—H2N1	115 (3)	O1—C13—C10	119.3 (2)	
H1N1—N1—H2N1	124 (4)	C14—C13—C10	121.5 (2)	
C22—N2—H1N2	118 (2)	C19—C14—C15	117.8 (2)	
C22—N2—H2N2	112 (4)	C19—C14—C13	124.5 (2)	
H1N2—N2—H2N2	127 (5)	C15—C14—C13	117.6 (2)	
C6C1N1	119.0 (3)	C16—C15—C14	121.7 (2)	
C6—C1—C2	118.8 (2)	C16—C15—H15	119.2	
N1-C1-C2	122.2 (3)	C14—C15—H15	119.2	
C3—C2—C1	120.1 (3)	C15—C16—C17	118.9 (2)	
C3—C2—H2	120.0	C15—C16—H16	120.6	
C1—C2—H2	120.0	C17—C16—H16	120.6	

C2—C3—C4	121.5 (3)	C18—C17—C16	120.8 (2)
С2—С3—Н3	119.2	C18—C17—O3	118.1 (2)
С4—С3—Н3	119.2	C16—C17—O3	121.0 (2)
C5—C4—C3	117.7 (2)	C19—C18—C17	119.9 (2)
C5—C4—H4	121.2	C19—C18—H18	120.0
C3—C4—H4	121.2	C17—C18—H18	120.0
C4-C5-C6	127.2 122.2(2)	C_{18} C_{19} C_{14}	120.0 120.9(2)
C4-C5-O2	122.2(2) 122.2(2)	C_{18} C_{19} H_{19}	119.6
C6-C5-O2	122.2(2) 1154(2)	C_{14} C_{19} H_{19}	119.6
$C_{2} = C_{2} = C_{2}$	119.4(2) 119.8(2)	C_{21} C_{20} C_{25}	122 1 (2)
C5-C6-H6	120.1	$C_{21} = C_{20} = C_{23}$	122.1(2) 1144(2)
C1-C6-H6	120.1	$C_{21} = C_{20} = C_{3}$	123.5(2)
$C_{1} = C_{0} = H_{0}$	120.1 115.7(2)	$C_{23} = C_{20} = C_{33}$	123.3(2)
$C_{8} = C_{7} = C_{12}$	113.7(2) 121.3(2)	$C_{20} = C_{21} = C_{22}$	119.7(2)
$C_{8} = C_{7} = C_{12}$	121.3(2) 122.0(2)	$C_{20} = C_{21} = H_{21}$	120.1
02 - 07 - 012	122.9(2)	N2 C22 C21	120.1
$C/-C_{8}$	119.2 (2)	$N_2 = C_{22} = C_{21}$	120.0(3)
C = C = H	120.4	$N_2 - C_{22} - C_{23}$	121.2(3)
C9—C8—H8	120.4	$C_{21} = C_{22} = C_{23}$	118.8 (3)
	121.1 (2)	$C_{24} = C_{23} = C_{22}$	120.0 (3)
C8—C9—H9	119.4	C24—C23—H23	120.0
С10—С9—Н9	119.4	С22—С23—Н23	120.0
C11—C10—C9	118.4 (2)	C23—C24—C25	121.9 (2)
C11—C10—C13	122.8 (2)	C23—C24—H24	119.0
C9—C10—C13	118.6 (2)	C25—C24—H24	119.0
C12—C11—C10	120.9 (2)	C20—C25—C24	117.4 (2)
C12—C11—H11	119.5	C20—C25—H25	121.3
C10—C11—H11	119.5	C24—C25—H25	121.3
C7—C12—C11	119.0 (2)		
C6—C1—C2—C3	-0.7 (4)	O1—C13—C14—C19	147.9 (2)
N1—C1—C2—C3	-179.9 (3)	C10-C13-C14-C19	-33.6 (3)
C1—C2—C3—C4	0.9 (4)	O1—C13—C14—C15	-29.1 (3)
C2—C3—C4—C5	-0.5 (4)	C10-C13-C14-C15	149.3 (2)
C3—C4—C5—C6	-0.1 (4)	C19—C14—C15—C16	1.5 (3)
C3—C4—C5—O2	174.8 (2)	C13-C14-C15-C16	178.8 (2)
C7—O2—C5—C4	43.0 (3)	C14—C15—C16—C17	-0.1 (3)
C7—O2—C5—C6	-141.8 (2)	C15—C16—C17—C18	-1.1 (3)
C4—C5—C6—C1	0.2 (4)	C15—C16—C17—O3	-176.1 (2)
O2—C5—C6—C1	-174.9 (2)	C20-O3-C17-C18	116.9 (2)
N1-C1-C6-C5	179.4 (3)	C20-O3-C17-C16	-68.0 (3)
C2-C1-C6-C5	0.1 (4)	C16—C17—C18—C19	0.9 (4)
C5—O2—C7—C8	-147.3 (2)	O3—C17—C18—C19	176.0 (2)
C5—O2—C7—C12	36.4 (4)	C17—C18—C19—C14	0.6 (4)
02—C7—C8—C9	-178.7 (2)	C15—C14—C19—C18	-1.8 (3)
C12—C7—C8—C9	-2.4 (4)	C13—C14—C19—C18	-178.8 (2)
C7—C8—C9—C10	0.0 (4)	C17—O3—C20—C21	174.4 (2)
C8—C9—C10—C11	2.4 (3)	C17—O3—C20—C25	-8.5 (3)
C8—C9—C10—C13	177.4 (2)	C25—C20—C21—C22	-0.5 (4)
	~ /		\ /

C9-C10-C11-C12 C13-C10-C11-C12 C8-C7-C12-C11 O2-C7-C12-C11 C10-C11-C12-C7 C11-C10-C13-O1	-2.4 (3) -177.1 (2) 2.4 (4) 178.4 (2) 0.1 (4) 154.3 (2) -20.4 (3)	O3-C20-C21-C22 C20-C21-C22-N2 C20-C21-C22-C23 N2-C22-C23-C24 C21-C22-C23-C24 C22-C23-C24-C25 C21-C20-C25-C24	176.6 (2) 178.0 (3) 0.3 (4) -177.0 (3) 0.8 (4) -1.6 (4) -0.2 (4)
C11—C10—C13—O1	154.3 (2)	C22—C23—C24—C25	-1.6 (4)
C9—C10—C13—O1	-20.4 (3)	C21—C20—C25—C24	-0.2 (4)
C11—C10—C13—C14	-24.2 (3)	O3—C20—C25—C24	-177.1 (2)
C9—C10—C13—C14	161.1 (2)	C23—C24—C25—C20	1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N1…O1 ⁱ	0.92 (4)	2.32 (4)	3.223 (5)	164 (3)

Symmetry code: (i) -x+2, -y+2, -z+1.