Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,5-Bis[2-(2-methoxyethoxy)phenyl]-1,3,4-oxadiazole

Xia Tian,^a Xiao-Li Zhen,^a Jian-Rong Han,^a* Chang-Xin Ming^a and Shou-Xin Liu^b[‡]

^aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and ^bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: Han_jianrong@126.com

Received 15 July 2009; accepted 22 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 17.4.

In the title compound, C₂₀H₂₂N₂O₅, the central 1,3,4oxadiazole ring is essentially planar [r.m.s. deviation from the best plane of 0.0011 Å] and makes dihedral angles of 4.10 (3) and 13.32 (4) $^{\circ}$ with the two benzene rings. In the crystal structure, the packing is stabilized by weak nonclassical intermolecular $C-H \cdots N$ hydrogen bonds, which link the molecules into an extended network.

Related literature

For the optical and electronic properties of 1.3,4-oxadizole and its dericatives, see: Emi & Toru (2006). Liu et al. (1997); Peng et al. (2006); Satoshi et al. (2000). For reference geometrical data: see: Tian et al. (2009). For related structures, see: Orgzall et al. (2005).

Experimental

Crystal data

$C_{20}H_{22}N_2O_5$	V = 1803.0 (6) Å ³
$M_r = 370.40$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.7264 (15) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 13.886 (3) Å	T = 293 K
c = 16.911 (3) Å	$0.16 \times 0.14 \times 0.10 \text{ mm}$
$\beta = 96.42 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.984, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	246 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
4290 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

13017 measured reflections

 $R_{\rm int} = 0.030$

4290 independent reflections

3635 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots N2^i$	0.93	2.62	3.385 (2)	140
Symmetry code: (i)	$-r + 1 v + \frac{1}{2} - \frac{1}{2}$	$7 \pm \frac{1}{2}$		

metry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Foundation of Hebei University of Science & Technology (No. XL200746).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2184).

References

- Emi, H. & Toru, K. (2006). Dyes Pigments, 70, 43-47.
- Liu, Y. Q., Jiang, X. Z., Li, Q. L. & Zhu, D. B. (1997). Synth. Met. 71, 1285-1286
- Orgzall, I., Franco, O., Reck, G. & Schulz, B. (2005). J. Mol. Struct. 749, 144-154.
- Peng, Z., Bao, H. X., Qi, X. Z., Bing, Y., Min, L. & Guo, Z. (2006). Synth. Met. 156. 705-713.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Satoshi, H., Keisuke, E. & Kazuaki, F. (2000). J. Appl. Phys. 87, 1968-1973.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tian, X., Han, J.-R., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2009). Acta Cryst. E65, o1792.

‡ Additional contact author, e-mail: chlsx@263.net.

supporting information

Acta Cryst. (2009). E65, o2010 [doi:10.1107/S1600536809028931]

2,5-Bis[2-(2-methoxyethoxy)phenyl]-1,3,4-oxadiazole

Xia Tian, Xiao-Li Zhen, Jian-Rong Han, Chang-Xin Ming and Shou-Xin Liu

S1. Comment

The optical and electronic properties of 1,3,4-oxadizole have received great attention in the field of electroluminescence (Emi *et al.*, 2006). A well known derivative of 1,3,4-oxadiazole, 2-(4-biphenyl)-5-(*tert*-butylphenyl)-1,3,4-oxadiazole (PBD), has been used as electron-injection material to improve the balance of charge carrier and to increase the photon/electron quantum efficiency (Liu *et al.*, 1997) and the electron-transporting material in organic electroluminescence device (Satoshi *et al.*, 2000). It has been demonstrated that modifying the side chains or inserting other heterocycles in 1,3,4-oxadizole system could result in good electroluminescent molecules as organic electroluminescence materials (Peng *et al.*, 2006). As part of an investigation on potential electroluminescent molecules by modifying the side chains of 2,5-diaryl-1,3,4-oxadizole, we reporte here the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O3/C10/N1/N2/C11) is essentially planar, with an r.m.s. deviation for fitted atoms of 0.0011 Å. It makes dihedral angles of, 13.32 (4) and 4.10 (3)°, respectively, with the benzene rings (C4—C9) and (C12—C17). The crystal packing is stabilized by weak non-classical intermolecular C—H···N hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Tian *et al.* 2009). The crystal structure of a 2,5-diaryl-1,3,4-oxadiazole derivative have been reported (Orgzall *et al.*, 2005).

S2. Experimental

2,5-Di(*o*-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), NaH (0.5 g, 20 mmol) and 1-chloro-2-methoxyethane (0.75 g, 8 mmol) were added and dissolved in 50 ml of THF, the mixture was stirred refluxing for 10 h. giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 81% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate solution at room temperature.

S3. Refinement

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methylene H atoms and $U_{iso}(H) = 1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2

Packing diagram for (I), with H bonds drawn as dashed lines; H-atom not involved in interactions have been excludeed

2,5-Bis[2-(2-methoxyethoxy)phenyl]-1,3,4-oxadiazole

Crystal data	
$C_{20}H_{22}N_2O_5$	F(000) = 784
$M_r = 370.40$	$D_{\rm x} = 1.364 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4968 reflections
a = 7.7264 (15) Å	$\theta = 2.4 - 27.9^{\circ}$
b = 13.886 (3) Å	$\mu=0.10~\mathrm{mm^{-1}}$
c = 16.911 (3) Å	T = 293 K
$\beta = 96.42 \ (3)^{\circ}$	Prism, colourless
V = 1803.0 (6) Å ³	$0.16 \times 0.14 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Rigaku Saturn	13017 measured reflections
diffractometer	4290 independent reflections
Radiation source: rotating anode	3635 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{int} = 0.030$
ω scans	$\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(<i>CrystalClear</i> ; Rigaku, 2005)	$k = -13 \rightarrow 18$
$T_{\min} = 0.984, T_{\max} = 0.990$	$l = -20 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
S = 1.04	H-atom parameters constrained
4290 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0696P)^2 + 0.0999P]$
246 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.25$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.88655 (10)	0.03469 (6)	0.35096 (5)	0.0284 (2)	
O2	0.63462 (10)	0.15549 (5)	0.25616 (5)	0.02362 (19)	
03	0.35245 (9)	0.06943 (5)	0.04514 (4)	0.01871 (17)	
O4	0.23221 (10)	0.04689 (5)	-0.10258 (4)	0.02263 (18)	
05	0.18138 (11)	0.24756 (6)	-0.15011 (6)	0.0307 (2)	
N1	0.40253 (12)	0.02963 (6)	0.17243 (6)	0.0230 (2)	
N2	0.30539 (12)	-0.04406 (6)	0.13138 (6)	0.0228 (2)	
C1	0.89595 (18)	-0.05579 (9)	0.38968 (8)	0.0337 (3)	
H1A	0.9211	-0.0464	0.4460	0.051*	
H1B	0.9865	-0.0937	0.3706	0.051*	
H1C	0.7866	-0.0886	0.3787	0.051*	
C2	0.76278 (15)	0.09686 (9)	0.38010(7)	0.0265 (3)	
H2A	0.8027	0.1161	0.4342	0.032*	
H2B	0.6524	0.0636	0.3804	0.032*	
C3	0.73965 (15)	0.18388 (8)	0.32781 (7)	0.0245 (2)	
H3A	0.6825	0.2348	0.3543	0.029*	

H3B	0.8519	0.2073	0.3156	0.029*
C4	0.60454 (14)	0.22178 (7)	0.19721 (7)	0.0207 (2)
C5	0.66365 (15)	0.31641 (8)	0.20354 (7)	0.0251 (2)
Н5	0.7257	0.3378	0.2506	0.030*
C6	0.62996 (15)	0.37886 (8)	0.13967 (8)	0.0281 (3)
H6	0.6681	0.4423	0.1445	0.034*
C7	0.53997 (16)	0.34777 (8)	0.06861 (8)	0.0280 (3)
H7	0.5217	0.3894	0.0254	0.034*
C8	0.47746 (15)	0.25413 (8)	0.06264 (7)	0.0235 (2)
H8	0.4158	0.2335	0.0153	0.028*
C9	0.50575 (14)	0.19043 (7)	0.12671 (6)	0.0197 (2)
C10	0.42605 (13)	0.09472 (7)	0.11946 (6)	0.0182 (2)
C11	0.27775 (13)	-0.01706 (7)	0.05765 (6)	0.0176 (2)
C12	0.17690 (13)	-0.06928 (7)	-0.00691 (6)	0.0177 (2)
C13	0.09329 (14)	-0.15339 (7)	0.01298 (7)	0.0219 (2)
H13	0.1025	-0.1731	0.0658	0.026*
C14	-0.00307 (15)	-0.20810 (8)	-0.04446 (7)	0.0250 (2)
H14	-0.0577	-0.2642	-0.0304	0.030*
C15	-0.01745 (15)	-0.17859 (8)	-0.12307 (7)	0.0245 (2)
H15	-0.0796	-0.2161	-0.1620	0.029*
C16	0.05963 (14)	-0.09390 (8)	-0.14445 (7)	0.0219 (2)
H16	0.0471	-0.0741	-0.1973	0.026*
C17	0.15615 (13)	-0.03817 (7)	-0.08668 (6)	0.0185 (2)
C18	0.20669 (15)	0.08174 (8)	-0.18286 (6)	0.0238 (2)
H18A	0.0833	0.0859	-0.2010	0.029*
H18B	0.2607	0.0385	-0.2179	0.029*
C19	0.28879 (15)	0.17939 (8)	-0.18332 (7)	0.0248 (2)
H19A	0.4026	0.1780	-0.1526	0.030*
H19B	0.3040	0.1977	-0.2375	0.030*
C20	0.25736 (17)	0.34043 (8)	-0.14647 (9)	0.0329 (3)
H20A	0.3644	0.3391	-0.1117	0.049*
H20B	0.1787	0.3855	-0.1265	0.049*
H20C	0.2805	0.3597	-0.1988	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0249 (4)	0.0240 (4)	0.0367 (5)	0.0018 (3)	0.0058 (4)	0.0001 (3)
O2	0.0248 (4)	0.0227 (4)	0.0218 (4)	-0.0033 (3)	-0.0042 (3)	-0.0033 (3)
03	0.0215 (4)	0.0161 (4)	0.0181 (4)	-0.0008 (3)	0.0002 (3)	-0.0014 (3)
O4	0.0308 (4)	0.0193 (4)	0.0175 (4)	-0.0038 (3)	0.0014 (3)	0.0012 (3)
05	0.0235 (4)	0.0208 (4)	0.0497 (6)	0.0002 (3)	0.0120 (4)	0.0026 (4)
N1	0.0257 (5)	0.0205 (5)	0.0215 (5)	-0.0025 (4)	-0.0034 (4)	-0.0006 (3)
N2	0.0259 (5)	0.0198 (5)	0.0216 (5)	-0.0030 (4)	-0.0028 (4)	0.0002 (3)
C1	0.0361 (7)	0.0287 (6)	0.0355 (7)	0.0017 (5)	-0.0001 (6)	0.0022 (5)
C2	0.0234 (6)	0.0327 (6)	0.0227 (6)	0.0019 (5)	-0.0003 (4)	-0.0062 (4)
C3	0.0203 (5)	0.0274 (6)	0.0243 (6)	0.0003 (4)	-0.0035 (4)	-0.0091 (4)
C4	0.0174 (5)	0.0205 (5)	0.0248 (6)	0.0020 (4)	0.0043 (4)	-0.0037 (4)

C5	0.0204 (5)	0.0236 (6)	0.0314 (6)	-0.0018 (4)	0.0031 (5)	-0.0082 (4)	
C6	0.0266 (6)	0.0173 (5)	0.0413 (7)	-0.0023 (4)	0.0079 (5)	-0.0040 (5)	
C7	0.0300 (6)	0.0213 (6)	0.0335 (7)	0.0003 (4)	0.0070 (5)	0.0028 (4)	
C8	0.0247 (6)	0.0208 (5)	0.0252 (6)	0.0008 (4)	0.0033 (4)	-0.0009 (4)	
C9	0.0172 (5)	0.0186 (5)	0.0234 (6)	0.0012 (4)	0.0030 (4)	-0.0029 (4)	
C10	0.0166 (5)	0.0197 (5)	0.0178 (5)	0.0022 (4)	-0.0001 (4)	-0.0025 (4)	
C11	0.0169 (5)	0.0141 (5)	0.0218 (5)	0.0019 (4)	0.0025 (4)	0.0000 (4)	
C12	0.0168 (5)	0.0156 (5)	0.0205 (5)	0.0032 (4)	0.0013 (4)	-0.0026 (4)	
C13	0.0221 (5)	0.0191 (5)	0.0242 (6)	0.0020 (4)	0.0013 (4)	0.0016 (4)	
C14	0.0238 (6)	0.0181 (5)	0.0328 (6)	-0.0025 (4)	0.0015 (5)	-0.0006 (4)	
C15	0.0212 (5)	0.0218 (6)	0.0295 (6)	0.0004 (4)	-0.0022 (5)	-0.0075 (4)	
C16	0.0221 (5)	0.0235 (5)	0.0199 (5)	0.0036 (4)	0.0010 (4)	-0.0039 (4)	
C17	0.0180 (5)	0.0167 (5)	0.0212 (5)	0.0024 (4)	0.0038 (4)	-0.0015 (4)	
C18	0.0278 (6)	0.0263 (6)	0.0170 (5)	0.0018 (4)	0.0008 (4)	0.0022 (4)	
C19	0.0227 (6)	0.0262 (6)	0.0260 (6)	0.0028 (4)	0.0051 (5)	0.0057 (4)	
C20	0.0271 (6)	0.0227 (6)	0.0492 (8)	-0.0015 (5)	0.0058 (6)	0.0042 (5)	

Geometric parameters (Å, °)

01—C1	1.4149 (15)	С6—Н6	0.9300
O1—C2	1.4171 (14)	C7—C8	1.3868 (16)
O2—C4	1.3577 (13)	С7—Н7	0.9300
O2—C3	1.4360 (13)	C8—C9	1.3969 (15)
O3—C11	1.3593 (12)	C8—H8	0.9300
O3—C10	1.3663 (13)	C9—C10	1.4641 (15)
O4—C17	1.3594 (13)	C11—C12	1.4611 (14)
O4—C18	1.4341 (13)	C12—C13	1.3940 (15)
O5—C20	1.4154 (14)	C12—C17	1.4085 (15)
O5—C19	1.4158 (14)	C13—C14	1.3833 (15)
N1-C10	1.2996 (14)	C13—H13	0.9300
N1—N2	1.4057 (13)	C14—C15	1.3837 (17)
N2-C11	1.2967 (14)	C14—H14	0.9300
C1—H1A	0.9600	C15—C16	1.3845 (16)
C1—H1B	0.9600	C15—H15	0.9300
C1—H1C	0.9600	C16—C17	1.3952 (15)
C2—C3	1.4963 (17)	C16—H16	0.9300
C2—H2A	0.9700	C18—C19	1.4973 (16)
C2—H2B	0.9700	C18—H18A	0.9700
С3—НЗА	0.9700	C18—H18B	0.9700
С3—Н3В	0.9700	C19—H19A	0.9700
C4—C5	1.3913 (15)	C19—H19B	0.9700
C4—C9	1.4108 (15)	C20—H20A	0.9600
C5—C6	1.3870 (17)	C20—H20B	0.9600
С5—Н5	0.9300	C20—H20C	0.9600
C6—C7	1.3882 (18)		
C1—O1—C2	112.44 (10)	N1—C10—O3	112.30 (9)
C4—O2—C3	117.88 (9)	N1—C10—C9	131.57 (10)

C11—O3—C10	102.96 (8)	O3—C10—C9	116.00 (9)
C17—O4—C18	117.63 (8)	N2-C11-O3	112.21 (9)
C20—O5—C19	111.58 (9)	N2-C11-C12	126.29 (9)
C10—N1—N2	105.90 (9)	O3—C11—C12	121.50 (9)
C11—N2—N1	106.62 (9)	C_{13} C_{12} C_{17}	118 81 (10)
O1 C1 H1A	100.5	C_{12} C_{12} C_{11}	117.27(10)
$O_1 = C_1 = H_1 R$	109.5	C17 - C12 - C11	117.27(10) 122.80(0)
	109.5		123.89 (9)
HIA—CI—HIB	109.5		121.22 (11)
O1—C1—H1C	109.5	C14—C13—H13	119.4
H1A—C1—H1C	109.5	C12—C13—H13	119.4
H1B—C1—H1C	109.5	C13—C14—C15	119.41 (10)
O1—C2—C3	109.09 (10)	C13—C14—H14	120.3
O1—C2—H2A	109.9	C15—C14—H14	120.3
C3—C2—H2A	109.9	C14—C15—C16	120.79 (10)
01—C2—H2B	109.9	C14—C15—H15	119.6
$C_3 - C_2 - H_2B$	109.9	C_{16} C_{15} H_{15}	119.6
	108.3	C_{15} C_{16} C_{17}	120.01 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5 107.21(0)	$C_{15} = C_{16} = U_{16}$	120.01 (10)
02 - C3 - C2	107.21 (9)		120.0
02—C3—H3A	110.3	C1/C16H16	120.0
С2—С3—НЗА	110.3	O4—C17—C16	123.53 (10)
O2—C3—H3B	110.3	O4—C17—C12	116.78 (9)
С2—С3—Н3В	110.3	C16—C17—C12	119.69 (10)
НЗА—СЗ—НЗВ	108.5	O4—C18—C19	107.28 (9)
O2—C4—C5	123.78 (10)	O4—C18—H18A	110.3
O2—C4—C9	116.32 (9)	C19—C18—H18A	110.3
C5—C4—C9	119.90 (10)	O4—C18—H18B	110.3
C6-C5-C4	119 94 (11)	C19-C18-H18B	110.3
C6 C5 H5	120.0	H18A C18 H18B	108.5
C_{4} C_{5} H_{5}	120.0	05 C10 C19	100.5
C4C3	120.0	05 C10 U10A	109.03 (9)
	120.79 (11)	O5—C19—H19A	109.7
С5—С6—Н6	119.6	С18—С19—Н19А	109.7
С7—С6—Н6	119.6	O5—C19—H19B	109.7
C8—C7—C6	119.43 (11)	C18—C19—H19B	109.7
С8—С7—Н7	120.3	H19A—C19—H19B	108.2
С6—С7—Н7	120.3	O5—C20—H20A	109.5
C7—C8—C9	120.94 (11)	O5—C20—H20B	109.5
С7—С8—Н8	119.5	H20A—C20—H20B	109.5
С9—С8—Н8	119.5	O5—C20—H20C	109.5
C8—C9—C4	118 89 (10)	H20A—C20—H20C	109 5
C8-C9-C10	118 81 (10)	$H_{20}B_{-}C_{20}H_{20}C$	109.5
$C_4 = C_9 = C_{10}$	122.26(10)	11200 020 11200	109.5
04-09-010	122.20 (10)		
C10—N1—N2—C11	-0.40 (12)	N1—N2—C11—O3	1.21 (12)
C1 - 01 - C2 - C3	-170.86(10)	N1—N2—C11—C12	-17778(9)
$C_{4} = 0^{2} = 0^{3} = 0^{2}$	-176 18 (9)	$C10_{-03}$ $C11_{-N2}$	-1.48(11)
-02 - 03 - 02	76.04 (11)	$C_{10} = 0_3 = 0_{11} = 0_{12}$	177 56 (0)
$C_1 = C_2 = C_3 = C_2$	(0.04(11))	10-03-011-012	111.30(9)
02 - 04 - 05	-2.09 (13)	$N_2 - C_{11} - C_{12} - C_{13}$	4.11 (16)
C3—O2—C4—C9	177.96 (9)	O3—C11—C12—C13	-174.79 (9)

O2—C4—C5—C6	178.67 (10)	N2-C11-C12-C17	-177.65 (10)
C9—C4—C5—C6	-2.00 (17)	O3—C11—C12—C17	3.44 (16)
C4—C5—C6—C7	-1.03 (18)	C17—C12—C13—C14	2.55 (16)
C5—C6—C7—C8	2.46 (18)	C11—C12—C13—C14	-179.12 (10)
C6—C7—C8—C9	-0.83 (18)	C12—C13—C14—C15	-0.30 (17)
C7—C8—C9—C4	-2.15 (17)	C13—C14—C15—C16	-1.66 (17)
C7—C8—C9—C10	175.47 (10)	C14—C15—C16—C17	1.30 (17)
O2—C4—C9—C8	-177.06 (9)	C18—O4—C17—C16	1.85 (15)
C5—C4—C9—C8	3.56 (16)	C18—O4—C17—C12	-177.53 (9)
O2—C4—C9—C10	5.40 (15)	C15—C16—C17—O4	-178.37 (10)
C5-C4-C9-C10	-173.98 (10)	C15—C16—C17—C12	0.99 (16)
N2—N1—C10—O3	-0.54 (12)	C13—C12—C17—O4	176.54 (9)
N2—N1—C10—C9	174.94 (10)	C11—C12—C17—O4	-1.68 (15)
C11-O3-C10-N1	1.22 (11)	C13—C12—C17—C16	-2.87 (15)
C11—O3—C10—C9	-175.03 (9)	C11—C12—C17—C16	178.92 (9)
C8—C9—C10—N1	-165.11 (11)	C17—O4—C18—C19	175.03 (9)
C4—C9—C10—N1	12.43 (18)	C20	177.69 (10)
C8—C9—C10—O3	10.25 (14)	O4—C18—C19—O5	-75.52 (11)
C4—C9—C10—O3	-172.21 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H…A
C5—H5…N2 ⁱ	0.93	2.62	3.385 (2)	140

Symmetry code: (i) -x+1, y+1/2, -z+1/2.
