organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

11-(p-Tolylsulfonyl)-8,14,24-trioxa-11.22.23-triazatetracvclo-[19.2.1.0^{2,7}.0^{15,20}]tetracosa-1(23),2,4,6,15,17,19,21-octaene

Xia Tian,^a Jian-Rong Han,^a* Xiao-Li Zhen,^a Zhen-Chao Li^a and Shou-Xin Liu^b‡

^aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and ^bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: Han_jianrong@126.com

Received 22 June 2009; accepted 29 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.106; data-to-parameter ratio = 15.1.

In the title compound, C₂₅H₂₃N₃O₅S, the central 1,3,4oxadiazole ring makes dihedral angles of 35.05 (7), 23.68 (7) and $82.55 (8)^\circ$, with the three benzene rings. In the crystal structure, the packing is stabilized by weak non-classical intermolecular $C-H \cdots O$ hydrogen bonds, which link the molecules into an infinite network.

Related literature

For related structures, see: Du, Hua & Jin (2001). For applications and synthesis of fluorescent sensors, see: Tong et al. (2000); Silva et al. (2000); Valeur & Leray (2000). For reference geometrical data, see: Du, Hua, Wang & Yan (2001).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector	12599 measured reflections
diffractometer	4656 independent reflections
Absorption correction: multi-scan	2878 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.044$
$T_{\min} = 0.932, \ T_{\max} = 0.964$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	308 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
4656 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

V = 2286.9 (6) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.22 \times 0.20 \text{ mm}$

 $\mu = 0.19 \text{ mm}^{-1}$

T = 294 K

7 - 4

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C10-H10A\cdots O4^{i}$	0.97	2.52	3.424 (3)	154
	$C20-H20\cdots O4^{i}$	0.93	2.39	3.314 (3)	173
	$C5-H5\cdots O4^{ii}$	0.93	2.51	3.253 (3)	137

Symmetry codes: (i) -x, -y + 2, -z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the NSFC of Hebei Province (No. B2009000670), the Foundation of the Education Department of Hebei Province and the Foundation of Hebei University of Science & Technology (No. XL200746), which are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2175).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Du, D. M., Hua, W. T. & Jin, X. L. (2001). J. Mol. Struct. 561, 145-152.

Du, D. M., Hua, W. T., Wang, Z. M. & Yan, C. H. (2001). Heteroat. Chem. 12, 480-484

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Silva, A. P. D., Fox, D. B., Huxley, A. J. M. & Moody, T. S. (2000). Coord. Chem. Rev. 205, 41-57.

Tong, A. J., Song, Y. S., Li, L. D., Hayashita, T., Teramae, N., Park, C. & Bartsch, R. A. (2000). Ana. Chim. Acta, 420, 57-64.

Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3-40.

C25H23N3O5S M = 477.52Monoclinic, $P2_1/c$ a = 13.0474 (19) Å b = 9.6809 (14) Åc = 18.261 (3) Å $\beta = 97.479 (3)^{\circ}$

[‡] Additional contact author, e-mail: chlsx@263.net.

supporting information

Acta Cryst. (2009). E65, o1792 [doi:10.1107/S1600536809025070]

11-(*p*-Tolylsulfonyl)-8,14,24-trioxa-11,22,23-triazatetracyclo-[19.2.1.0^{2,7}.0^{15,20}]tetracosa-1(23),2,4,6,15,17,19,21-octaene

Xia Tian, Jian-Rong Han, Xiao-Li Zhen, Zhen-Chao Li and Shou-Xin Liu

S1. Comment

The development of fluorescent sensors for organic molecules is of great practical importance in chemical, biological, and pharmaceutical sciences (Silva *et al.*, 2000; Valeur *et al.*, 2000). Therefore, the design and synthesis of new functionalized macrocycles for selective recognition of other species is of great interest to chemists. Many functionalized macrocycles have been synthesized and employed to develop fluorescent sensors (Tong *et al.*, 2000). 2,5-Diaryl-1,3,4-oxadizole forms chiral macrocyclic phosphoramidate receptors with phosphorus oxychloride, and their crystal structures have been reported (Du, Hua & Jin, 2001). As part of an investigation of the potential recognition properties of macrocycles, we now reported the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O1/C1/N1/N2/C18) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0017 Å. It makes dihedral angles of 35.05 (7), 23.68 (7) and 82.55 (8)°, respectively, with the benzene rings (C2—C7), (C12—C17) and (C19—C24). The crystal packing is stabilized by weak non-classical intermolecular C—H…O hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Du, Hua, Wang & Yan 2001).

S2. Experimental

2,5-Di(*o*-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), K₂CO₃ (1.4 g, 10 mmol) and tri-(*p*-phenylsulfonyl) diethanol amine (2.3 g, 4 mmol) were added and dissolved in 50 ml of DMF and the mixture was stirred at 413 K for 20 h giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 65% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate.

S3. Refinement

The H atoms were included in calculated positions (C—H = 0.93-0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C)or 1.5Ueq(methyl C).

Figure 1

The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2

Packing diagram for (I), with H bonds drawn as dashed lines; H-atoms not involved in interactions have been excluded.

11-(*p*-Tolylsulfonyl)-8,14,24-trioxa-11,22,23-triazatetracyclo[19.2.1.0^{2,7}.0^{15,20}]tetracosa-1(23),2,4,6,15,17,19,21-octaene

F(000) = 1000

 $\theta = 2.4 - 24.5^{\circ}$

 $\mu = 0.19 \text{ mm}^{-1}$ T = 294 K

Prism, colourless

 $0.30 \times 0.22 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.387 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3043 reflections

Crystal data

 $C_{25}H_{23}N_{3}O_{5}S$ $M_{r} = 477.52$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 13.0474 (19) Å b = 9.6809 (14) Å c = 18.261 (3) Å $\beta = 97.479$ (3)° V = 2286.9 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	12599 measured reflections
diffractometer	4656 independent reflections
Radiation source: fine-focus sealed tube	2878 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 16$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 11$
$T_{\min} = 0.932, T_{\max} = 0.964$	$l = -18 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.01	H-atom parameters constrained
4656 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2 + 0.4604P]$
308 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	0.08777 (4)	1.10726 (6)	0.12913 (3)	0.03359 (16)
N1	0.52489 (14)	0.5209 (2)	0.19897 (11)	0.0429 (5)
N2	0.56917 (14)	0.5766 (2)	0.13898 (11)	0.0433 (5)

N3	0.18176 (14)	0.99856 (19)	0.12592 (10)	0.0368 (5)
01	0.40350 (11)	0.62864 (15)	0.12555 (8)	0.0346 (4)
02	0.26584 (14)	0.73372 (16)	0.20414 (9)	0.0478 (5)
03	0.35451 (12)	0.84722 (17)	0.04510 (8)	0.0452 (4)
04	-0.00564 (11)	1.04490 (16)	0.09383 (9)	0.0417 (4)
05	0.09239 (13)	1.15346 (17)	0.20368 (9)	0.0470 (4)
C1	0.42829(17)	0.5545 (2)	0.18849(12)	0.0317 (5)
C2	0.34817(16)	0.5205(2)	0.23424(11)	0.0317(5)
C3	0.35206 (18)	0.3940(2)	0.23121(11) 0.27068(12)	0.0397(6)
Н3	0.4059	0.3331	0.2658	0.0397 (0)
C4	0.7714(19)	0.3576(2)	0.31399 (13)	0.0437 (6)
Сч НЛ	0.2803	0.2728	0.3381	0.052*
C5	0.2805	0.2728 0.4482 (3)	0.3381 0.32114 (13)	0.032
U5	0.19770 (19)	0.4482 (3)	0.32114(13) 0.3408	0.0443(0)
	0.1407	0.4230	0.3490 0.28641 (12)	0.033°
	0.19281 (19)	0.3732(2)	0.28041 (15)	0.0424 (0)
H6	0.1393	0.6360	0.2924	0.051*
C/	0.26/29(18)	0.6122(2)	0.24268 (12)	0.0354 (5)
08	0.2383 (2)	0.8580 (2)	0.238/0 (13)	0.0436 (6)
H8A	0.2783	0.8672	0.2871	0.052*
H8B	0.1656	0.8563	0.2448	0.052*
C9	0.26014 (17)	0.9778 (2)	0.19023 (12)	0.0380 (6)
H9A	0.2653	1.0614	0.2197	0.046*
H9B	0.3266	0.9629	0.1731	0.046*
C10	0.18136 (17)	0.9098 (2)	0.06069 (12)	0.0354 (5)
H10A	0.1165	0.9236	0.0291	0.042*
H10B	0.1832	0.8143	0.0769	0.042*
C11	0.26861 (17)	0.9320 (2)	0.01498 (13)	0.0393 (6)
H11A	0.2465	0.9067	-0.0360	0.047*
H11B	0.2888	1.0285	0.0165	0.047*
C12	0.42882 (17)	0.8148 (2)	0.00178 (12)	0.0351 (5)
C13	0.43787 (18)	0.8787 (3)	-0.06523 (13)	0.0429 (6)
H13	0.3909	0.9467	-0.0833	0.052*
C14	0.51633 (19)	0.8415 (3)	-0.10495 (14)	0.0473 (7)
H14	0.5211	0.8837	-0.1501	0.057*
C15	0.58800 (19)	0.7424 (3)	-0.07867(14)	0.0470 (7)
H15	0.6413	0.7190	-0.1055	0.056*
C16	0.57964 (18)	0.6787(2)	-0.01234(13)	0.0413 (6)
H16	0.6278	0.6119	0.0054	0.050*
C17	0.50033 (16)	0.7125(2)	0.02867(12)	0.020
C18	0.49498 (16)	0.7129(2) 0.6389(2)	0.02007(12) 0.09783(12)	0.0329(5)
C19	0.11113 (16)	1,2493(2)	0.07799(12)	0.0320(5)
C20	0.09314(19)	1.2195(2) 1.2366(2)	-0.00310(13)	0.0329(5)
С20 H20	0.0687	1.1537	-0.0244	0.0418(0)
C21	0.0007 0.1115 (2)	1 3/70 (2)	-0.04710(14)	0.030
U21	0.1113(2) 0.0003	1.3470 (3)	-0.0082	0.0403 (7)
C22	0.07750 (10)	1.3370	-0.0903	0.038
C22	0.14/09(19)	1.4/13(2) 1.4821(2)	-0.010/4(13)	0.0430(0)
U23	0.10452(19)	1.4021 (2)	0.03903 (13)	0.0491 (/)
п23	0.1883	1.3031	0.0804	0.039*

0.14638 (18)	1.3728 (2)	0.10435 (14)	0.0425 (6)
0.1580	1.3825	0.1554	0.051*
0.1681 (3)	1.5912 (3)	-0.06588 (18)	0.0734 (9)
0.1336	1.6721	-0.0511	0.110*
0.1425	1.5692	-0.1162	0.110*
0.2411	1.6082	-0.0616	0.110*
	0.14638 (18) 0.1580 0.1681 (3) 0.1336 0.1425 0.2411	0.14638 (18)1.3728 (2)0.15801.38250.1681 (3)1.5912 (3)0.13361.67210.14251.56920.24111.6082	0.14638 (18)1.3728 (2)0.10435 (14)0.15801.38250.15540.1681 (3)1.5912 (3)-0.06588 (18)0.13361.6721-0.05110.14251.5692-0.11620.24111.6082-0.0616

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0316 (3)	0.0310 (3)	0.0389 (3)	0.0016 (2)	0.0070 (2)	-0.0041 (3)
N1	0.0330 (12)	0.0535 (13)	0.0413 (12)	0.0021 (10)	0.0018 (9)	0.0105 (10)
N2	0.0297 (11)	0.0533 (13)	0.0470 (12)	0.0021 (9)	0.0046 (9)	0.0092 (11)
N3	0.0369 (11)	0.0369 (11)	0.0345 (11)	0.0112 (9)	-0.0032 (8)	-0.0079 (9)
01	0.0283 (8)	0.0425 (9)	0.0338 (9)	0.0033 (7)	0.0068 (7)	0.0083 (7)
O2	0.0724 (12)	0.0332 (9)	0.0422 (10)	0.0133 (8)	0.0241 (9)	0.0074 (8)
03	0.0427 (10)	0.0574 (11)	0.0379 (9)	0.0199 (8)	0.0143 (8)	0.0123 (8)
O4	0.0284 (8)	0.0413 (9)	0.0558 (10)	-0.0063 (7)	0.0069 (7)	-0.0041 (8)
05	0.0565 (11)	0.0475 (10)	0.0388 (10)	0.0057 (8)	0.0130 (8)	-0.0086 (8)
C1	0.0338 (13)	0.0307 (12)	0.0296 (12)	-0.0003 (10)	0.0005 (10)	0.0015 (10)
C2	0.0346 (13)	0.0328 (12)	0.0268 (12)	-0.0005 (10)	0.0011 (10)	0.0009 (10)
C3	0.0420 (14)	0.0397 (13)	0.0370 (14)	0.0039 (11)	0.0042 (11)	0.0031 (12)
C4	0.0531 (16)	0.0376 (13)	0.0414 (14)	-0.0006 (12)	0.0099 (12)	0.0082 (12)
C5	0.0472 (15)	0.0469 (15)	0.0415 (14)	-0.0025 (12)	0.0163 (12)	0.0051 (12)
C6	0.0444 (14)	0.0436 (15)	0.0415 (14)	0.0086 (11)	0.0144 (12)	0.0017 (12)
C7	0.0447 (14)	0.0359 (13)	0.0261 (12)	0.0028 (11)	0.0065 (10)	0.0017 (10)
C8	0.0556 (16)	0.0386 (14)	0.0376 (14)	0.0100 (12)	0.0100 (12)	-0.0022 (11)
C9	0.0374 (13)	0.0351 (13)	0.0394 (14)	0.0019 (10)	-0.0033 (11)	-0.0012 (11)
C10	0.0348 (13)	0.0323 (12)	0.0382 (13)	0.0060 (10)	0.0013 (10)	-0.0053 (11)
C11	0.0410 (14)	0.0378 (13)	0.0382 (13)	0.0092 (11)	0.0019 (11)	0.0056 (11)
C12	0.0318 (13)	0.0421 (14)	0.0323 (13)	0.0005 (11)	0.0079 (10)	-0.0021 (11)
C13	0.0377 (14)	0.0531 (16)	0.0382 (14)	0.0018 (12)	0.0060 (11)	0.0086 (12)
C14	0.0455 (16)	0.0631 (17)	0.0344 (14)	-0.0098 (13)	0.0097 (12)	0.0043 (13)
C15	0.0371 (14)	0.0630 (17)	0.0436 (15)	-0.0064 (13)	0.0159 (12)	-0.0067 (14)
C16	0.0343 (14)	0.0472 (15)	0.0436 (15)	0.0004 (11)	0.0098 (11)	-0.0036 (12)
C17	0.0282 (12)	0.0350 (12)	0.0339 (13)	-0.0025 (10)	0.0054 (10)	-0.0024 (10)
C18	0.0254 (12)	0.0338 (12)	0.0370 (13)	-0.0006 (10)	0.0044 (10)	-0.0028 (10)
C19	0.0266 (12)	0.0301 (12)	0.0415 (14)	0.0044 (9)	0.0022 (10)	-0.0040 (11)
C20	0.0510 (15)	0.0307 (13)	0.0437 (15)	-0.0045 (11)	0.0056 (12)	-0.0087 (12)
C21	0.0591 (17)	0.0454 (15)	0.0414 (15)	-0.0025 (13)	0.0096 (13)	-0.0019 (13)
C22	0.0445 (15)	0.0355 (14)	0.0558 (17)	0.0005 (11)	0.0093 (12)	0.0040 (13)
C23	0.0549 (17)	0.0289 (13)	0.0609 (18)	-0.0068 (12)	-0.0022 (13)	-0.0063 (13)
C24	0.0474 (15)	0.0337 (14)	0.0441 (15)	-0.0008 (11)	-0.0022 (12)	-0.0059 (12)
C25	0.094 (2)	0.0480 (17)	0.080 (2)	-0.0076 (16)	0.0186 (19)	0.0143 (16)

Geometric parameters (Å, °)

<u></u> <u></u> <u></u> <u></u> <u></u>	1.4268 (16)	C10—C11	1.512 (3)
S1—O4	1.4355 (16)	C10—H10A	0.9700
S1—N3	1.6227 (18)	C10—H10B	0.9700
S1—C19	1.765 (2)	C11—H11A	0.9700
N1—C1	1.292 (3)	C11—H11B	0.9700
N1—N2	1.410 (2)	C12—C13	1.390 (3)
N2—C18	1.295 (3)	C12—C17	1.405 (3)
N3—C9	1.467 (3)	C13—C14	1.377 (3)
N3—C10	1.468 (3)	C13—H13	0.9300
O1—C1	1.358 (2)	C14—C15	1.381 (3)
O1—C18	1.359 (2)	C14—H14	0.9300
O2—C7	1.370 (3)	C15—C16	1.376 (3)
O2—C8	1.426 (3)	C15—H15	0.9300
O3—C12	1.365 (2)	C16—C17	1.393 (3)
O3—C11	1.439 (3)	C16—H16	0.9300
C1—C2	1.458 (3)	C17—C18	1.459 (3)
C2—C3	1.392 (3)	C19—C24	1.379 (3)
C2—C7	1.403 (3)	C19—C20	1.384 (3)
C3—C4	1.381 (3)	C20—C21	1.378 (3)
С3—Н3	0.9300	С20—Н20	0.9300
C4—C5	1.376 (3)	C21—C22	1.384 (3)
C4—H4	0.9300	C21—H21	0.9300
C5—C6	1.381 (3)	C22—C23	1.377 (3)
С5—Н5	0.9300	C22—C25	1.510 (3)
C6—C7	1.383 (3)	C23—C24	1.381 (3)
С6—Н6	0.9300	С23—Н23	0.9300
C8—C9	1.508 (3)	C24—H24	0.9300
C8—H8A	0.9700	C25—H25A	0.9600
C8—H8B	0.9700	C25—H25B	0.9600
С9—Н9А	0.9700	C25—H25C	0.9600
С9—Н9В	0.9700		
O5—S1—O4	119.22 (10)	H10A—C10—H10B	107.4
O5—S1—N3	107.43 (10)	O3—C11—C10	108.23 (17)
O4—S1—N3	108.21 (9)	O3—C11—H11A	110.1
O5—S1—C19	108.71 (10)	C10-C11-H11A	110.1
O4—S1—C19	105.52 (10)	O3—C11—H11B	110.1
N3—S1—C19	107.21 (10)	C10-C11-H11B	110.1
C1—N1—N2	106.20 (18)	H11A—C11—H11B	108.4
C18—N2—N1	106.15 (17)	O3—C12—C13	123.8 (2)
C9—N3—C10	119.84 (17)	O3—C12—C17	116.69 (19)
C9—N3—S1	120.75 (15)	C13—C12—C17	119.5 (2)
C10—N3—S1	119.07 (14)	C14—C13—C12	120.1 (2)
C1	103.30 (16)	C14—C13—H13	120.0
C7—O2—C8	118.99 (17)	C12—C13—H13	120.0
C12—O3—C11	119.08 (17)	C13—C14—C15	121.0 (2)

N1-C1-O1	112.27 (18)	C13—C14—H14	119.5
N1-C1-C2	128.1.(2)	C15—C14—H14	119.5
01-C1-C2	119 65 (18)	C16-C15-C14	119.3 (2)
C_{3} C_{2} C_{7}	119.0(2)	C16—C15—H15	120.3
C_{3} C_{2} C_{1}	119.0 (2)	C_{14} C_{15} H_{15}	120.3
$C_7 C_2 C_1$	119.2(2) 121.7(2)	C_{15} C_{16} C_{17}	120.3 121.2(2)
$C_{4} - C_{3} - C_{2}$	121.7(2) 120.9(2)	C15 - C16 - H16	121.2 (2)
$C_1 C_2 C_2$	110.5	C17 C16 H16	119.4
$C_2 = C_3 = H_3$	119.5	$C_{16} = C_{17} = C_{12}$	119.4 118.0(2)
$C_2 - C_3 - H_3$	119.3	$C_{10} = C_{17} = C_{12}$	118.9(2) 118.3(2)
$C_{5} = C_{4} = C_{5}$	119.5 (2)	$C_{10} = C_{17} = C_{18}$	110.5(2) 122.82(10)
$C_3 = C_4 = H_4$	120.4	$N_2 = C_1 R = O_1$	122.82(19)
$C_3 = C_4 = H_4$	120.4	$N_2 = C_{18} = C_{17}$	112.06(19)
C4 - C5 - U5	121.0 (2)	$N_2 = C_{18} = C_{17}$	127.8(2)
C4—C5—H5	119.5	01 - 018 - 017	120.08 (19)
C6-C5-H5	119.5	$C_{24} = C_{19} = C_{20}$	119.8 (2)
C5-C6-C/	120.1 (2)	C24—C19—S1	120.53 (18)
С5—С6—Н6	120.0	C20—C19—S1	119.62 (17)
С/—С6—Н6	120.0	C21—C20—C19	119.9 (2)
O2—C7—C6	123.7 (2)	C21—C20—H20	120.1
O2—C7—C2	116.57 (19)	С19—С20—Н20	120.1
C6—C7—C2	119.7 (2)	C20—C21—C22	121.1 (2)
O2—C8—C9	108.12 (18)	C20—C21—H21	119.4
O2—C8—H8A	110.1	C22—C21—H21	119.4
С9—С8—Н8А	110.1	C23—C22—C21	118.0 (2)
O2—C8—H8B	110.1	C23—C22—C25	121.6 (2)
С9—С8—Н8В	110.1	C21—C22—C25	120.4 (2)
H8A—C8—H8B	108.4	C22—C23—C24	121.9 (2)
N3—C9—C8	114.2 (2)	С22—С23—Н23	119.1
N3—C9—H9A	108.7	С24—С23—Н23	119.1
С8—С9—Н9А	108.7	C19—C24—C23	119.3 (2)
N3—C9—H9B	108.7	C19—C24—H24	120.4
С8—С9—Н9В	108.7	C23—C24—H24	120.4
Н9А—С9—Н9В	107.6	С22—С25—Н25А	109.5
N3—C10—C11	116.19 (19)	С22—С25—Н25В	109.5
N3—C10—H10A	108.2	H25A—C25—H25B	109.5
C11—C10—H10A	108.2	С22—С25—Н25С	109.5
N3—C10—H10B	108.2	H25A—C25—H25C	109.5
C11—C10—H10B	108.2	H25B—C25—H25C	109.5
C1—N1—N2—C18	0.1 (2)	C11—O3—C12—C17	-168.81 (19)
O5—S1—N3—C9	-7.8 (2)	O3—C12—C13—C14	178.8 (2)
O4—S1—N3—C9	-137.76 (17)	C17—C12—C13—C14	0.2 (3)
C19—S1—N3—C9	108.86 (18)	C12-C13-C14-C15	-1.1 (4)
O5—S1—N3—C10	165.50 (16)	C13—C14—C15—C16	1.0 (4)
04 - 81 - N3 - C10	35.56 (19)	C14-C15-C16-C17	-0.1(4)
C19 = S1 = N3 = C10	-77.82 (18)	C15-C16-C17-C12	-0.8(3)
$N_2 - N_1 - C_1 - O_1$	0.2 (2)	C_{15} C_{16} C_{17} C_{12} C_{12}	178.9 (2)
$N_2 - N_1 - C_1 - C_2$	179 1 (2)	03-C12-C17-C16	-1780(2)
112 111 $01 - 02$	1, 2, 1 (2)	$0.5 \ 0.12 \ 0.17 - 0.10$	1/0.0 (2)

C18—O1—C1—N1 C18—O1—C1—C2	-0.4(2) -179.42(19)	C13—C12—C17—C16 O3—C12—C17—C18	0.8 (3) 2.3 (3)
N1—C1—C2—C3	-34.2 (3)	C13—C12—C17—C18	-178.9 (2)
O1—C1—C2—C3	144.6 (2)	N1—N2—C18—O1	-0.4 (2)
N1—C1—C2—C7	145.6 (2)	N1—N2—C18—C17	-179.5 (2)
O1—C1—C2—C7	-35.6 (3)	C1	0.5 (2)
C7—C2—C3—C4	0.7 (3)	C1-01-C18-C17	179.69 (19)
C1—C2—C3—C4	-179.5 (2)	C16—C17—C18—N2	23.2 (3)
C2—C3—C4—C5	-0.1 (4)	C12—C17—C18—N2	-157.1 (2)
C3—C4—C5—C6	-0.8 (4)	C16—C17—C18—O1	-155.8 (2)
C4—C5—C6—C7	1.1 (4)	C12—C17—C18—O1	23.8 (3)
C8—O2—C7—C6	41.7 (3)	O5—S1—C19—C24	10.7 (2)
C8—O2—C7—C2	-140.3 (2)	O4—S1—C19—C24	139.72 (18)
C5—C6—C7—O2	177.4 (2)	N3—S1—C19—C24	-105.10 (19)
C5—C6—C7—C2	-0.5 (3)	O5—S1—C19—C20	-168.80 (18)
C3—C2—C7—O2	-178.5 (2)	O4—S1—C19—C20	-39.8 (2)
C1—C2—C7—O2	1.7 (3)	N3—S1—C19—C20	75.4 (2)
C3—C2—C7—C6	-0.4 (3)	C24—C19—C20—C21	0.6 (3)
C1—C2—C7—C6	179.8 (2)	S1-C19-C20-C21	-179.84 (19)
C7—O2—C8—C9	170.55 (19)	C19—C20—C21—C22	-0.1 (4)
C10—N3—C9—C8	-78.4 (3)	C20-C21-C22-C23	-0.4 (4)
S1—N3—C9—C8	94.9 (2)	C20—C21—C22—C25	179.6 (2)
O2—C8—C9—N3	78.3 (2)	C21—C22—C23—C24	0.3 (4)
C9—N3—C10—C11	-70.9 (3)	C25—C22—C23—C24	-179.6 (2)
S1—N3—C10—C11	115.71 (19)	C20-C19-C24-C23	-0.7 (3)
C12—O3—C11—C10	159.53 (19)	S1—C19—C24—C23	179.78 (18)
N3-C10-C11-O3	87.7 (2)	C22—C23—C24—C19	0.2 (4)
C11—O3—C12—C13	12.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	Н…А	$D \cdots A$	D—H··· A
C10—H10A…O4 ⁱ	0.97	2.52	3.424 (3)	154
C20— $H20$ ···O4 ⁱ	0.93	2.39	3.314 (3)	173
C5—H5…O4 ⁱⁱ	0.93	2.51	3.253 (3)	137

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, *y*-1/2, -*z*+1/2.