Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Hydroxybenzohydrazide

Rifat Ara Jamal, ${ }^{\text {a }}$ U Uzma Ashiq, ${ }^{\text {a }}$ Muhammad Nadeem Arshad, ${ }^{\text {b }}$ Zahida Tasneem Maqsood ${ }^{\text {a }}$ and Islam Ullah Khan ${ }^{\text {b }}$
a Department of Chemistry, University of Karachi, Karachi 75270, Pakistan, and
${ }^{\text {b }}$ Department of Chemistry, Government College University, Lahore, Pakistan
Correspondence e-mail: rifat_jamal@yahoo.com

Received 17 June 2009; accepted 29 June 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.118$; data-to-parameter ratio $=15.9$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, the mean planes of the benzene ring and the planar hydrazide group are inclined at $25.75(6)^{\circ}$ with respect to each other. The structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For related structures see: Ashiq, Jamal et al. (2008, 2009); Hanif et al. (2007); Jamal et al. (2008); Kallel et al. (1992); Saraogi et al. (2002). For the biological activity of hydrazides, see: Ara et al. (2007); Ashiq, Ara et al. (2008); Maqsood et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=152.15$
Monoclinic, $P 2_{1} / c$
$a=5.0587$ (2) А
$b=17.2149(9) \AA$
$c=7.8178(5) \AA$
$\beta=93.489(2)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\text {min }}=0.965, T_{\text {max }}=0.992$
$V=679.55(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.32 \times 0.18 \times 0.12 \mathrm{~mm}$

7324 measured reflections
1697 independent reflections
1348 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.118 \quad$ independent and constrained
$S=1.06$ refinement
1697 reflections
107 parameters

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.13	$2.9243(14)$	153
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{iij}}$	0.82	1.98	$2.7852(16)$	174
$\mathrm{~N} 2-\mathrm{H} 12 \cdots \mathrm{O}^{\text {iii }}$	$0.89(2)$	$2.37(2)$	$3.223(2)$	160
$\mathrm{~N} 2-\mathrm{H} 22 \cdots \mathrm{O}^{\text {iv }}$	$0.90(2)$	$2.22(2)$	$3.056(2)$	155

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv)
$-x+1,-y+1,-z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and Bana International for their support in collecting the crystallographic data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2171).

References

Ara, R., Ashiq, U., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Lodhi, M. A. \& Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.

Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. \& Choudhary, M. I. (2008). Chem. Biodivers. 5, 82-92.

Ashiq, U., Jamal, R. A., Mahroof-Tahir, M., Keramidas, A. D., Maqsood, Z. T., Khan, K. M. \& Tahir, M. N. (2008). Anal. Sci X, 24, 103-104.
Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. \& Khan, I. U. (2009). Acta Cryst. E65, o1551.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hanif, M., Qadeer, G., Rama, N. H., Rafiq, M. \& Ružička, A. (2007). Acta Cryst. E63, 04829.
Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. \& Khan, I. U. (2008). Acta Cryst. E64, o2188.
Kallel, A., Amor, B. H., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 198, 137-140.
Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., MahroofTahir, M. \& Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37-42.
Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. \& Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

4-Hydroxybenzohydrazide

Rifat Ara Jamal, Uzma Ashiq, Muhammad Nadeem Arshad, Zahida Tasneem Maqsood and Islam Ullah Khan

S1. Comment

Hydrazides are known to have different biological activities (Ashiq, Ara et al., 2008; Ara et al., 2007). In order to study the biological activity of 4-hydroxybenzohydrazide, we undertook the synthesis of the title compound, (I), and report its crystal structure in this paper. The title compound was found to be antifungal (Maqsood et al., 2006). The crystal structures of benzhydrazide (Kallel et al., 1992), para-chloro (Saraogi et al., 2002), para-bromo (Ashiq, Jamal et al., 2008), para-iodo (Jamal et al., 2008) and para-methoxy (Ashiq, Jamal et al., 2009) analogues of (I) have already been reported. The structure of (I) is isomorphous with its 3-hydroxy analogue (Hanif et al., 2007).
The molecular structure of (I) has been presented in Fig. 1. The bond distances and bond angles in (I) are similar to the corresponding distances and angles reported in the structures quoted above. In (I), the mean-planes of the benzene ring (C1-C6) and planar hydrazide group (N1/N2/O2/C7) are inclined at 25.75 (6) ${ }^{\circ}$ with respect to each other. The molecular packing diagram (Fig. 2) shows the presence of four intermolecular hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (details are given in Table 1).

S2. Experimental

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-4-hydroxybenzoate ($3.32 \mathrm{~g}, 20 \mathrm{mmol}$) in 75 ml e thanol, hydrazine hydrate (5.0 ml , 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 4-hydroxybenzohydrazide (yield 65\%) (Maqsood et al., 2006).

S3. Refinement

H atoms were positioned geometrically, with aromatic $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{N} 1-\mathrm{H} 1$ distances $0.93,0.82$ and $0.86 \AA$, respectively, and constrained to ride on their parent atoms. The H -atoms attached to N 2 atom were taken from Fourier synthesis and their coordinates were refined. The thermal parameter of H -atoms of was taken 1.2 times the equivalent isotropic displacement parameters of their parent C and N -atoms and 1.5 times the $\mathrm{O}-\mathrm{atom}$.

Figure 1
ORTEP plot of the title compound with the ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown by dashed lines.

4-Hydroxybenzohydrazide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=152.15$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=5.0587$ (2) \AA
$b=17.2149(9) \AA$
$c=7.8178$ (5) \AA
$\beta=93.489(2)^{\circ}$
$V=679.55(6) \AA^{3}$
$Z=4$
$F(000)=320$
$D_{\mathrm{x}}=1.487 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2993 reflections
$\theta=2.9-28.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colourless
$0.32 \times 0.18 \times 0.12 \mathrm{~mm}$

Data collection

Bruker Kappa APEX2 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.965, T_{\text {max }}=0.992$

> 7324 measured reflections
> 1697 independent reflections
> 1348 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.023$
> $\theta_{\max }=28.3^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-22 \rightarrow 23$
> $l=-10 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.118$
$S=1.06$
1697 reflections
107 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.7565(2)$	$0.04052(5)$	$0.14740(17)$	$0.0478(3)$
H1A	0.8946	0.0291	0.2020	0.072^{*}
O2	$0.36833(17)$	$0.38981(5)$	$0.10180(14)$	$0.0364(3)$
N1	$0.8045(2)$	$0.40995(6)$	$0.15266(16)$	$0.0331(3)$
H1	0.9606	0.3900	0.1554	0.040^{*}
N2	$0.7783(2)$	$0.49074(6)$	$0.1772(2)$	$0.0381(3)$
H12	$0.647(4)$	$0.4969(10)$	$0.247(2)$	0.046^{*}
H22	$0.736(3)$	$0.5124(10)$	$0.075(2)$	0.046^{*}
C1	$0.6499(2)$	$0.27877(7)$	$0.12927(16)$	$0.0244(3)$
C2	$0.4705(2)$	$0.22850(7)$	$0.04589(17)$	$0.0299(3)$
H2	0.3217	0.2486	-0.0145	0.036^{*}
C3	$0.5095(3)$	$0.14912(8)$	$0.05121(18)$	$0.0335(3)$
H3	0.3892	0.1161	-0.0066	0.040^{*}
C4	$0.7289(3)$	$0.11891(7)$	$0.14320(18)$	$0.0304(3)$
C5	$0.9081(2)$	$0.16847(7)$	$0.22869(19)$	$0.0325(3)$

H5	1.0545	0.1484	0.2915	0.039^{*}
C6	$0.8685(2)$	$0.24751(7)$	$0.22038(18)$	$0.0307(3)$
H6	0.9904	0.2805	0.2768	0.037^{*}
C7	$0.5947(2)$	$0.36334(7)$	$0.12527(16)$	$0.0255(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0407(6)$	$0.0216(5)$	$0.0792(9)$	$0.0012(4)$	$-0.0124(5)$	$0.0027(5)$
O2	$0.0201(4)$	$0.0278(5)$	$0.0605(7)$	$0.0024(3)$	$-0.0032(4)$	$0.0034(4)$
N1	$0.0203(5)$	$0.0213(5)$	$0.0574(7)$	$0.0009(4)$	$-0.0008(5)$	$-0.0007(5)$
N2	$0.0305(6)$	$0.0206(5)$	$0.0627(9)$	$-0.0015(4)$	$-0.0020(6)$	$0.0009(5)$
C1	$0.0202(5)$	$0.0231(5)$	$0.0299(6)$	$0.0007(4)$	$0.0011(4)$	$0.0016(5)$
C2	$0.0238(6)$	$0.0277(6)$	$0.0372(7)$	$-0.0002(4)$	$-0.0061(5)$	$0.0024(5)$
C3	$0.0299(6)$	$0.0277(6)$	$0.0418(8)$	$-0.0046(5)$	$-0.0057(5)$	$-0.0017(5)$
C4	$0.0288(6)$	$0.0208(6)$	$0.0418(7)$	$-0.0002(5)$	$0.0037(5)$	$0.0024(5)$
C5	$0.0240(6)$	$0.0274(6)$	$0.0450(8)$	$0.0033(5)$	$-0.0061(5)$	$0.0045(5)$
C6	$0.0238(6)$	$0.0266(6)$	$0.0408(7)$	$-0.0009(5)$	$-0.0067(5)$	$-0.0006(5)$
C7	$0.0210(5)$	$0.0241(6)$	$0.0311(6)$	$0.0011(4)$	$0.0004(4)$	$0.0013(5)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C4	1.3569 (14)	C1-C7	1.4824 (16)
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.8200	C2-C3	1.3809 (17)
O2-C7	1.2356 (14)	C2-H2	0.9300
N1-C7	1.3376 (15)	C3-C4	1.3866 (18)
N1-N2	1.4113 (15)	C3-H3	0.9300
N1-H1	0.8600	C4-C5	1.3864 (18)
N2-H12	0.89 (2)	C5-C6	1.3762 (17)
N2-H22	0.90 (2)	C5-H5	0.9300
C1-C6	1.3870 (17)	C6-H6	0.9300
C1-C2	1.3876 (17)		
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C2-C3-H3	120.2
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	122.18 (10)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
C7-N1-H1	118.9	O1-C4-C5	122.50 (12)
N2-N1-H1	118.9	O1-C4-C3	117.60 (12)
N1-N2-H12	106.3 (11)	C5-C4-C3	119.90 (12)
N1—N2-H22	108.1 (11)	C6-C5-C4	119.78 (12)
H12-N2-H22	110.4 (17)	C6-C5-H5	120.1
C6-C1-C2	118.52 (11)	C4-C5-H5	120.1
C6- $\mathrm{C} 1-\mathrm{C} 7$	122.35 (11)	C5-C6-C1	121.13 (12)
C2- $\mathrm{C} 1-\mathrm{C} 7$	119.05 (11)	C5-C6-H6	119.4
C3-C2-C1	120.98 (12)	C1-C6-H6	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 1$	121.45 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5	O2-C7- ${ }^{\text {- }}$	122.48 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.68 (12)	N1-C7-C1	116.04 (10)

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.8(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.79(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$178.80(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(2)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.61(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.8(2)$

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.81(12)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 2$	$7.9(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$-170.63(12)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-152.94(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$23.90(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$25.57(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-157.60(12)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.13	$2.9243(14)$	153
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.82	1.98	$2.7852(16)$	174
$\mathrm{~N} 2 — \mathrm{H} 12 \cdots{ }^{\text {iii }}$	$0.89(2)$	$2.37(2)$	$3.223(2)$	160
$\mathrm{~N} 2 — \mathrm{H} 22 \cdots \mathrm{O}^{2 \mathrm{iv}}$	$0.90(2)$	$2.22(2)$	$3.056(2)$	155

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+2, y-1 / 2,-z+1 / 2$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $-x+1,-y+1,-z$.

