organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(1-Adamantylamino)-3-methyl-1phenylquinoline-2,4(1H,3H)-dione

Niusha Mahmoodi,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 30 June 2009; accepted 7 July 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.106; data-to-parameter ratio = 13.4.

The structure of the title compound, $C_{26}H_{28}N_2O_2$, contains essentially planar quinoline and benzene rings, the maximum deviations from the best plane being 0.086 (2) and 0.0056 (19) Å, respectively; the dihedral angle between the rings is 82.87 (4)°. The adamantane cage consists of three fused cyclohexane rings in classical chair conformations, with C-C-C angles in the range 107.85 (15)-111.35 (15)°. Enantiomers are linked alternately into chains along the c axis via short N-H···O interactions and further C-H··· π interactions stabilize pairs of enantiomers, forming a two-dimensional network.

Related literature

For the synthesis and biological activity of related compounds, see: Kafka et al. (2002); Navyar et al. (2007). For the properties of adamantane-containing compounds, see: van Bommel et al. (2001). For a related structure, see: Shishkina et al. (2001). For background to $C-H\cdots\pi$ interactions, see: Nishio (2004); Jorgensen & Severance (1990).

Crystal data

C26H28N2O2	$V = 2073.68 (17) \text{ Å}^3$
$M_r = 400.50$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.9714 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 24.1041 (11) Å	$T = 120 { m K}$
c = 9.3805 (5) Å	$0.30 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 113.111 \ (5)^{\circ}$	

Data collection

Kuma KM-4 CCD diffractometer Absorption correction: none 22477 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 \\ wR(F^2) &= 0.106 \end{split}$$
272 parameters H-atom parameters constrained S = 0.88 $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.25$ e Å⁻³ 3648 reflections

3648 independent reflections

 $R_{\rm int} = 0.051$

2226 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots O2^{i}$ $C25 - H25A \cdots Cg1^{ii}$	0.88	2.29	3.125 (2)	158
	0.95	2.91	3.659 (2)	136

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1. Cg1 is the centroid of the C13-C18 ring.

Data collection: Xcalibur (Oxford Diffraction, 2006); cell refinement: Xcalibur; data reduction: Xcalibur; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Financial support for this work from the Science Foundation of the Czech Republic (grant No. 203/07/03) and by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2176).

References

- Bommel, K. J. C. van, Metselaar, G. A., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 5405-5412.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Jorgensen, W. L. & Severance, D. L. (1990). J. Am. Chem. Soc. 112, 4768-4774.

- Kafka, S., Klasek, A., Polis, J. & Kosmrlj, J. (2002). Heterocycles, 57, 1659-1682.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Nayyar, A., Monga, V., Malde, A., Coutinho, E. & Jain, R. (2007). Bioorg. Med. Chem. 15, 626-640.
- Nishio, M. (2004). CrystEngComm, 6, 130-158.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Amer, M. & Sidorenko, L. V. (2001). Acta Cryst. E57, 0414-0415.

supporting information

Acta Cryst. (2009). E65, o1866 [doi:10.1107/S1600536809026464]

3-(1-Adamantylamino)-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione

Niusha Mahmoodi, Marek Nečas and Robert Vícha

S1. Comment

A number of compounds that include the quinoline moiety have well known chemotherapeutical properties. From a pharmacological point of view, two very important and seemingly contradictory properties may be improved when the adamantane substituent is introduced into biologically active compounds. The solubility in aqueous media may be enhanced by complexation of adamantane with β -cyclodextrin and the liphophilic adamantane cage may accelerate permeability through biological membranes (van Bommel *et al.*, 2001). Recently, some quinolines bearing adamantyl substituents have been introduced as promising anti-tuberculosis agents (Nayyar *et al.*, 2007).

The molecule of the title compound (Fig. 1) consists of planar benzene and quinoline rings with maximum deviations from the best plane being 0.0056 (18) Å for C23 and 0.086 (2) Å for C12, respectively. The dihedral angle between quinoline and benzene rings is 82.87 (4)°. The torsion angles describing the alignment of the adamantane and quinoline moiety C12–C11–N1–C1 and C11–N1–C1–C8 are -73.9 (2)° and 16.8 (2)°, respectively. Enantiomers alternate in chains along the *c* axis, and are linked *via* N1–H1a···O2 short interactions (Table 1, Fig. 2). Pairs of inverse enantiomers are stabilized by edge-to-face C–H··· π interactions with the H···Cg distance being 2.914 (2) Å (Cg is the centroid of C13–C18).

S2. Experimental

The title compound was prepared according to a slightly modified literature procedure of Kafka *et al.* (2002). Adamantane-1-amine hydrochloride (200 mg, 1.07 mmol) was dissolved in 3 ml of DMF and triethylamine (212 mg, 2.1 mmol) was added dropwise at 273 K. Into this mixture, a solution of *N*-phenyl-3-chloro-3-methylquinoline-2,4-dione (153 mg, 0.535 mmol) in 3 ml of DMF was added dropwise at 273 K. The resulting solution was stirred for 93 h at room temperature until starting material disappeared (according to TLC). The mixture was poured into crushed ice, extracted several times with diethyl ether, the combined organic portions were dried over sodium sulfate and the crude product was obtained after evaporation of solvent under reduced pressure. The title compound was isolated from complex crude material by column chromatography (silica gel, ethyl acetate:hexane 1:4 v/v) as a pale yellow crystalline powder (53 mg, 25%, mp 449–451 K). The single crystal suitable for X-ray analysis was obtained by spontaneous evaporation from chloroform solution at 298 K.

S3. Refinement

Hydrogen atoms were positioned geometrically and refined as riding using standard *SHELXL-97* facilities, with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of their parent atoms.

Figure 1

Ellipsoid plot of the asymmetric unit with atoms represented at 50% probability.

Figure 2

The crystal packing viewed perpendicular to the *bc* plane. Hydrogen atoms are omitted except for those participating in H-bonds.

3-(1-Adamantylamino)-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione

Crystal data	
$C_{26}H_{28}N_2O_2$	F(000) = 856
$M_r = 400.50$	$D_{\rm x} = 1.283 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = $451-449$ K
Hall symbol: -P 2ybc	Mo <i>Ka</i> radiation, $\lambda = 0.71073$ Å
a = 9.9714 (4) Å	Cell parameters from 24803 reflections
b = 24.1041 (11) Å	$\theta = 2.8 - 27.5^{\circ}$
c = 9.3805 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 113.111(5)^{\circ}$	T = 120 K
$V = 2073.68 (17) Å^3$	Block, yellow
Z = 4	$0.30 \times 0.30 \times 0.20$ mm

Data collection

Kuma KM-4 CCD	3648 independent reflections
diffractometer	2226 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{int} = 0.051$
Graphite monochromator	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.8^{\circ}$
Detector resolution: 0.06 pixels mm ⁻¹	$h = -9 \rightarrow 11$
ω scans	$k = -28 \rightarrow 28$
22477 measured reflections	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 0.88	H-atom parameters constrained
3648 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.53$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.25$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.70469 (14)	0.07427 (5)	0.94015 (15)	0.0323 (3)	
O2	0.63111 (15)	0.23091 (5)	0.61207 (17)	0.0406 (4)	
N1	0.57413 (16)	0.17819 (6)	0.85742 (19)	0.0350 (4)	
H1A	0.6030	0.1960	0.9464	0.042*	
N2	0.73524 (16)	0.06678 (6)	0.71431 (16)	0.0228 (4)	
C1	0.4160 (2)	0.16879 (7)	0.7732 (2)	0.0262 (5)	
C2	0.3379 (2)	0.22270 (7)	0.6974 (2)	0.0322 (5)	
H2A	0.3761	0.2355	0.6203	0.039*	
H2B	0.3585	0.2518	0.7776	0.039*	
C3	0.1719 (2)	0.21405 (8)	0.6168 (2)	0.0340 (5)	
H3A	0.1237	0.2495	0.5680	0.041*	
C4	0.1132 (2)	0.19508 (8)	0.7362 (2)	0.0390 (6)	
H4A	0.0064	0.1897	0.6853	0.047*	
H4B	0.1327	0.2239	0.8171	0.047*	
C5	0.1858 (2)	0.14072 (9)	0.8107 (2)	0.0370 (5)	
H5A	0.1469	0.1284	0.8888	0.044*	
C6	0.1570 (2)	0.09630 (8)	0.6867 (2)	0.0380 (5)	

	0 2052	0.0612	0 7251	0.046*
	0.2033	0.0013	0.7551	0.040*
	0.0309 0.2151 (2)	0.0895	0.0333	0.040°
	0.2131(2) 0.1042	0.11515(7)	0.3074 (2)	0.0293 (3)
Π/A	0.1945	0.0001	0.4033	0.033°
	0.3810 (2)	0.12404 (8)	0.0483(2)	0.0310 (3)
HðA	0.4292	0.0888	0.6960	0.038*
Пор	0.4207	0.1333	0.3707	0.038
(9)	0.3527 (2)	0.14985 (8)	0.8907 (2)	0.0350 (5)
H9A	0.3735	0.1/82	0.9729	0.042*
H9B C10	0.4003	0.1148	0.9402	0.042*
	0.1428 (2)	0.16958 (8)	0.4931 (2)	0.0334 (5)
HIOA	0.1818	0.1817	0.4161	0.040*
HI0B	0.0363	0.1639	0.4385	0.040*
CII	0.6844 (2)	0.16025 (7)	0.8039 (2)	0.0265 (5)
C12	0.70522 (19)	0.09696 (7)	0.8239 (2)	0.0256 (5)
C13	0.72468 (19)	0.08849 (7)	0.5697 (2)	0.0234 (4)
C14	0.74683 (19)	0.05400 (8)	0.4616 (2)	0.0271 (5)
H14A	0.7713	0.0161	0.4860	0.033*
C15	0.7334 (2)	0.07470 (8)	0.3187 (2)	0.0320 (5)
H15A	0.7493	0.0508	0.2463	0.038*
C16	0.6972 (2)	0.12964 (8)	0.2799 (2)	0.0342 (5)
H16A	0.6870	0.1434	0.1812	0.041*
C17	0.6760 (2)	0.16425 (8)	0.3864 (2)	0.0309 (5)
H17A	0.6519	0.2021	0.3606	0.037*
C18	0.68945 (19)	0.14453 (7)	0.5323 (2)	0.0250 (4)
C19	0.6637 (2)	0.18194 (7)	0.6430 (2)	0.0285 (5)
C20	0.8325 (2)	0.18413 (7)	0.9155 (2)	0.0344 (5)
H20A	0.8316	0.2246	0.9049	0.052*
H20B	0.9110	0.1685	0.8898	0.052*
H20C	0.8488	0.1744	1.0224	0.052*
C21	0.7661 (2)	0.00838 (7)	0.74680 (19)	0.0218 (4)
C22	0.9084 (2)	-0.01042 (7)	0.80389 (19)	0.0255 (5)
H22A	0.9861	0.0148	0.8194	0.031*
C23	0.9372 (2)	-0.06604 (8)	0.8385 (2)	0.0306 (5)
H23A	1.0347	-0.0793	0.8764	0.037*
C24	0.8235 (2)	-0.10230 (8)	0.8176 (2)	0.0335 (5)
H24A	0.8435	-0.1404	0.8427	0.040*
C25	0.6813 (2)	-0.08353 (8)	0.7607 (2)	0.0350 (5)
H25A	0.6037	-0.1087	0.7467	0.042*
C26	0.6517 (2)	-0.02784 (7)	0.7239 (2)	0.0299 (5)
H26A	0.5541	-0.0147	0.6834	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0378 (9)	0.0373 (8)	0.0255 (8)	-0.0002 (6)	0.0164 (7)	0.0002 (6)
02	0.0436 (9)	0.0292 (8)	0.0539 (10)	0.0039 (7)	0.0245 (8)	0.0057 (7)
N1	0.0229 (10)	0.0466 (10)	0.0344 (10)	-0.0003 (8)	0.0102 (8)	-0.0187 (8)

supporting information

N2	0.0263 (9)	0.0234 (8)	0.0208 (8)	0.0005 (7)	0.0117 (7)	0.0007 (7)
C1	0.0224 (12)	0.0297 (11)	0.0263 (11)	-0.0021 (8)	0.0093 (9)	-0.0035 (8)
C2	0.0351 (13)	0.0297 (11)	0.0341 (12)	-0.0013 (9)	0.0161 (10)	-0.0044 (9)
C3	0.0368 (13)	0.0327 (11)	0.0313 (12)	0.0090 (10)	0.0120 (10)	0.0020 (9)
C4	0.0324 (13)	0.0495 (13)	0.0382 (13)	-0.0009 (10)	0.0171 (11)	-0.0093 (10)
C5	0.0329 (13)	0.0547 (14)	0.0274 (12)	-0.0028 (10)	0.0161 (10)	0.0029 (10)
C6	0.0361 (13)	0.0414 (12)	0.0361 (12)	-0.0090 (10)	0.0137 (10)	0.0019 (10)
C7	0.0309 (12)	0.0328 (11)	0.0239 (11)	-0.0034 (9)	0.0097 (9)	-0.0024 (9)
C8	0.0305 (12)	0.0320 (11)	0.0326 (12)	-0.0005 (9)	0.0127 (10)	-0.0024 (9)
C9	0.0349 (13)	0.0408 (12)	0.0271 (11)	-0.0013 (10)	0.0097 (10)	-0.0006 (9)
C10	0.0328 (13)	0.0402 (12)	0.0272 (11)	-0.0022 (9)	0.0116 (10)	0.0002 (9)
C11	0.0234 (12)	0.0276 (10)	0.0294 (11)	0.0007 (8)	0.0115 (9)	-0.0020 (8)
C12	0.0205 (11)	0.0319 (11)	0.0231 (11)	0.0005 (8)	0.0074 (9)	-0.0020 (9)
C13	0.0162 (11)	0.0315 (11)	0.0225 (10)	-0.0042 (8)	0.0074 (8)	0.0000 (8)
C14	0.0248 (12)	0.0300 (11)	0.0272 (11)	-0.0018 (9)	0.0108 (9)	-0.0003 (9)
C15	0.0310 (13)	0.0428 (12)	0.0243 (11)	-0.0058 (10)	0.0130 (10)	-0.0023 (9)
C16	0.0323 (13)	0.0461 (13)	0.0250 (11)	-0.0074 (10)	0.0120 (10)	0.0060 (9)
C17	0.0247 (12)	0.0333 (11)	0.0329 (12)	-0.0048 (9)	0.0094 (10)	0.0083 (9)
C18	0.0177 (11)	0.0300 (11)	0.0277 (11)	-0.0012 (8)	0.0091 (9)	0.0038 (8)
C19	0.0192 (11)	0.0247 (11)	0.0411 (13)	-0.0003 (9)	0.0113 (10)	0.0005 (9)
C20	0.0284 (13)	0.0300 (11)	0.0423 (13)	-0.0007 (9)	0.0112 (10)	-0.0042 (9)
C21	0.0248 (12)	0.0248 (10)	0.0173 (10)	-0.0004 (9)	0.0100 (8)	-0.0015 (8)
C22	0.0260 (12)	0.0294 (11)	0.0209 (10)	-0.0038 (9)	0.0092 (9)	-0.0019 (8)
C23	0.0345 (13)	0.0319 (11)	0.0217 (11)	0.0064 (10)	0.0070 (9)	0.0010 (8)
C24	0.0531 (16)	0.0258 (11)	0.0241 (11)	0.0018 (11)	0.0177 (11)	0.0020 (9)
C25	0.0463 (15)	0.0320 (12)	0.0324 (12)	-0.0139 (10)	0.0215 (11)	-0.0052 (9)
C26	0.0256 (12)	0.0348 (12)	0.0309 (12)	-0.0028 (9)	0.0128 (9)	-0.0021 (9)

Geometric parameters (Å, °)

01—C12	1.222 (2)	С9—Н9В	0.9900
O2—C19	1.229 (2)	C10—H10A	0.9900
N1-C11	1.443 (2)	C10—H10B	0.9900
N1—C1	1.478 (2)	C11—C19	1.533 (3)
N1—H1A	0.8800	C11—C12	1.541 (3)
N2-C12	1.384 (2)	C11—C20	1.548 (3)
N2-C13	1.419 (2)	C13—C14	1.394 (2)
N2-C21	1.448 (2)	C13—C18	1.405 (2)
C1—C8	1.529 (2)	C14—C15	1.387 (2)
C1—C2	1.538 (2)	C14—H14A	0.9500
C1—C9	1.539 (3)	C15—C16	1.383 (3)
C2—C3	1.540 (3)	C15—H15A	0.9500
C2—H2A	0.9900	C16—C17	1.380 (3)
C2—H2B	0.9900	C16—H16A	0.9500
C3—C10	1.521 (3)	C17—C18	1.404 (3)
C3—C4	1.523 (3)	C17—H17A	0.9500
С3—НЗА	1.0000	C18—C19	1.472 (3)
C4—C5	1.527 (3)	C20—H20A	0.9800

C4—H4A	0.9900	C20—H20B	0.9800
C4—H4B	0.9900	C20—H20C	0.9800
C5—C6	1.523 (3)	C21—C22	1.381 (2)
C5—C9	1.549 (3)	C21—C26	1.384 (2)
C5—H5A	1.0000	C22—C23	1.383 (2)
C6—C7	1 517 (3)	C22—H22A	0.9500
C6—H6A	0.9900	C^{23} C^{24}	1 383 (3)
C6—H6B	0.9900	C23—H23A	0.9500
C7-C10	1 528 (2)	C_{24} C_{25}	1.381(3)
C7 - C8	1.526 (2)	C24 C25	0.9500
C7 $H7A$	1,0000	$C_{24} = 112471$	1 389 (3)
	0.0000	$C_{25} = C_{20}$	1.389 (3)
	0.9900	C26_H26A	0.9500
	0.9900	C20—H20A	0.9300
С9—Н9А	0.9900		
C11—N1—C1	124.55 (15)	C3—C10—C7	110.04 (15)
C_{11} N_{1} H_{1A}	117 7	C3-C10-H10A	109 7
C1—N1—H1A	117.7	C7-C10-H10A	109.7
$C_{12} = N_{2} = C_{13}$	124.03 (15)	C_3 — C_{10} — H_{10B}	109.7
C12 = N2 = C21	121.03(13) 11640(14)	C7_C10_H10B	109.7
$C_{12} = N_2 = C_{21}$	110.40(14) 110.32(14)	H_{10A} C_{10} H_{10B}	109.7
N1 C1 C8	117.32(14) 112.90(15)	N1 C11 C19	100.2
N1 = C1 = C3	112.90(13) 110.07(14)	N1 = C11 = C12	114.43(15)
11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	110.97(14) 108.72(15)	11 - 011 - 012	109.63(13) 114.63(15)
$C_0 - C_1 - C_2$	108.72(13) 108.21(15)	19 - 11 - 12	114.03(13) 107.08(15)
NI = CI = C9	106.51(15) 107.02(15)	NI = CII = C20	107.98(13)
C_{8}	107.95 (15)	C19 - C11 - C20	105.25(15)
$C_2 = C_1 = C_9$	107.85 (15)	C12— $C11$ — $C20$	103.83 (14)
C1 - C2 - C3	111.34 (15)	01—C12—N2	120.37 (16)
C1—C2—H2A	109.4	01	120.26 (16)
C3—C2—H2A	109.4	N2—C12—C11	119.20 (16)
C1—C2—H2B	109.4	C14—C13—C18	119.17 (16)
C3—C2—H2B	109.4	C14—C13—N2	120.12 (16)
H2A—C2—H2B	108.0	C18—C13—N2	120.70 (16)
C10—C3—C4	109.61 (16)	C15—C14—C13	120.37 (17)
C10—C3—C2	108.44 (15)	C15—C14—H14A	119.8
C4—C3—C2	109.23 (16)	C13—C14—H14A	119.8
С10—С3—НЗА	109.8	C16—C15—C14	120.99 (18)
С4—С3—Н3А	109.8	C16—C15—H15A	119.5
С2—С3—НЗА	109.8	C14—C15—H15A	119.5
C3—C4—C5	110.11 (16)	C17—C16—C15	119.10 (18)
C3—C4—H4A	109.6	C17—C16—H16A	120.5
C5—C4—H4A	109.6	C15—C16—H16A	120.5
C3—C4—H4B	109.6	C16—C17—C18	121.18 (18)
C5—C4—H4B	109.6	С16—С17—Н17А	119.4
H4A—C4—H4B	108.2	C18—C17—H17A	119.4
C6—C5—C4	109.88 (16)	C17—C18—C13	119.19 (17)
C6—C5—C9	108.32 (16)	C17—C18—C19	120.23 (17)
C4—C5—C9	109.05 (16)	C13—C18—C19	120.57 (16)

С6—С5—Н5А	109.9	O2—C19—C18	121.71 (18)
C4—C5—H5A	109.9	O2—C19—C11	118.74 (17)
С9—С5—Н5А	109.9	C18—C19—C11	119.50 (15)
C7—C6—C5	109.93 (16)	C11—C20—H20A	109.5
С7—С6—Н6А	109.7	C11—C20—H20B	109.5
С5—С6—Н6А	109.7	H20A—C20—H20B	109.5
С7—С6—Н6В	109.7	C11—C20—H20C	109.5
С5—С6—Н6В	109.7	H20A—C20—H20C	109.5
H6A—C6—H6B	108.2	H20B—C20—H20C	109.5
C6—C7—C10	110.18 (16)	C22—C21—C26	120.75 (16)
C6-C7-C8	109.08 (16)	C22—C21—N2	120.11 (15)
C10—C7—C8	109.17 (15)	C26—C21—N2	119.11 (16)
C6—C7—H7A	109.5	$C_{21} - C_{22} - C_{23}$	119.75 (17)
C10—C7—H7A	109.5	C21—C22—H22A	120.1
C8—C7—H7A	109.5	C23—C22—H22A	120.1
C1 - C8 - C7	110 40 (15)	C_{24} C_{23} C_{22}	119 76 (19)
C1 - C8 - H8A	109.6	C_{24} C_{23} H_{23A}	120.1
C7 - C8 - H8A	109.6	C^{22} C^{23} H^{23} H	120.1
$C_1 - C_8 - H_{8B}$	109.6	$C_{22} = C_{23} = C_{23}$	120.53 (18)
C7 - C8 - H8B	109.6	$C_{25} = C_{24} = C_{25}$	119.7
H8A - C8 - H8B	108.1	$C_{23} = C_{24} = H_{24A}$	119.7
C1 - C9 - C5	111.07 (15)	C_{24} C_{25} C_{26} C_{26}	119.86 (19)
C1 - C9 - H9A	109.4	$C_{24} = C_{25} = C_{26}$	120.1
C_{5} C_{9} H_{9A}	109.4	$C_{24} = C_{25} = H_{25} A$	120.1
C1 - C9 - H9B	109.4	$C_{20} = C_{20} = H_{20} K$	110 33 (10)
$C_{1} = C_{2} = H_{2}B$	109.4	$C_{21} = C_{20} = C_{23}$	119.33 (19)
	109.4	$C_{21} = C_{20} = H_{20}$	120.3
119A—C9—119B	108.0	C25-C20-1120A	120.3
C11—N1—C1—C8	16.8 (2)	N1—C11—C12—N2	144.29 (16)
C11—N1—C1—C2	-105.55 (19)	C19—C11—C12—N2	13.8 (2)
C11—N1—C1—C9	136.25 (18)	C20-C11-C12-N2	-100.45 (18)
N1—C1—C2—C3	-176.90 (15)	C12—N2—C13—C14	-175.37 (16)
C8—C1—C2—C3	58.4 (2)	C21—N2—C13—C14	-1.3 (2)
C9—C1—C2—C3	-58.42 (19)	C12—N2—C13—C18	3.5 (3)
C1—C2—C3—C10	-59.6 (2)	C21—N2—C13—C18	177.59 (16)
C1—C2—C3—C4	59.8 (2)	C18—C13—C14—C15	-0.4(3)
C10—C3—C4—C5	58.9 (2)	N2-C13-C14-C15	178.54 (16)
C2-C3-C4-C5	-59.7 (2)	C13—C14—C15—C16	-0.4(3)
$C_{3}-C_{4}-C_{5}-C_{6}$	-58.9 (2)	C14—C15—C16—C17	0.8 (3)
C3-C4-C5-C9	59.7 (2)	C15-C16-C17-C18	-0.5(3)
C4-C5-C6-C7	58.6 (2)	$C_{16} - C_{17} - C_{18} - C_{13}$	-0.2(3)
C9-C5-C6-C7	-604(2)	C_{16} C_{17} C_{18} C_{19}	-17886(17)
C_{5} C_{6} C_{7} C_{10}	-58.6(2)	C14-C13-C18-C17	0.6(3)
C_{5} C_{6} C_{7} C_{8}	61.2(2)	N_{2} C_{13} C_{18} C_{17}	-178 27 (15)
$N_1 - C_1 - C_8 - C_7$	178 59 (15)	C_{14} C_{13} C_{18} C_{19}	179 30 (16)
C_{2} C_{1} C_{8} C_{7}	-57 8 (2)	$N_{-13}^{-13} = C_{18}^{-16} = C_{19}^{-19}$	0.4(3)
$C_2 = C_1 = C_3 = C_7$	58.92 (19)	C17 - C18 - C19 - O2	-0.5(3)
$C_{1} = C_{1} = C_{1}$	-60.80 (19)	$C_{13} = C_{10} = C$	-170 14 (17)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	00.00 (19)	013 - 010 - 019 - 02	1/2.14(1/)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.7 (2) $178.45 (15)$ $-59.0 (2)$ $58.3 (2)$ $59.9 (2)$ $-59.7 (2)$ $-58.7 (2)$ $60.4 (2)$ $58.9 (2)$ $-60.9 (2)$ $56.7 (2)$ $-73.9 (2)$ $173.51 (16)$ $173.79 (16)$ $-0.4 (2)$ $-11.0 (2)$ $174.78 (15)$	$\begin{array}{c} C17-C18-C19-C11\\ C13-C18-C19-C11\\ N1-C11-C19-O2\\ C12-C11-C19-O2\\ C20-C11-C19-O2\\ N1-C11-C19-O2\\ N1-C11-C19-C18\\ C12-C11-C19-C18\\ C20-C11-C19-C18\\ C12-N2-C21-C22\\ C13-N2-C21-C22\\ C13-N2-C21-C22\\ C13-N2-C21-C26\\ C26-C21-C22-C23\\ N2-C21-C22-C23\\ C21-C22-C23-C24\\ C22-C23-C24-C25\\ C23-C24-C25\\ C23-C24$	-177.74 (16) 3.6 (3) 44.2 (2) 172.40 (16) -74.2 (2) -138.47 (17) -10.3 (2) 103.15 (18) -101.15 (19) 84.3 (2) 77.1 (2) -97.42 (19) 0.1 (3) 178.30 (15) -0.9 (3) 0.8 (3) 0.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.4 (2) -11.0 (2) 174.78 (15) -40.5 (2) -170.96 (16) 74.8 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.9 (3) \\ 0.8 (3) \\ 0.0 (3) \\ 0.8 (3) \\ -177.47 (16) \\ -0.8 (3) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H··· <i>A</i>	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O2 ⁱ	0.88	2.29	3.125 (2)	158
C25—H25 A ···Cg1 ⁱⁱ	0.95	2.91	3.659 (2)	136

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, -y, -z+1.