Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2-Methyl-2-(2-pyridyl)hexahydropyrimidine

#### Saud Al-Resayes

Department of Chemistry, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

Correspondence e-mail: sresayes@ksu.edu.sa

Received 29 June 2009; accepted 4 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.115; data-to-parameter ratio = 10.3.

In the aminal-type title compound,  $C_{10}H_{15}N_3$ , the sixmembered hexahydropyrimidine ring adopts a chair conformation and the N atoms are pyramidally coordinated. One of the two amido –NH units engages in intermolecular hydrogen bonding with the pyridyl N atom, generating a helical chain running along the *b* axis of the orthorhombic unit cell.

#### **Related literature**

The title compound is used in Fe(II) spin-crossover materials; see: Bréfuel *et al.* (2007).



Experimental

Crystal data  $C_{10}H_{15}N_3$  $M_r = 177.25$ 

Orthorhombic,  $P2_12_12_1$ a = 8.4070 (17) Å

```
b = 10.371 (2) Å

c = 11.363 (2) Å

V = 990.7 (3) Å<sup>3</sup>

Z = 4
```

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2007)  $T_{\rm min} = 0.97, T_{\rm max} = 0.99$ 

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.044 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.115 & \text{independent and constrained} \\ S &= 1.01 & \text{refinement} \\ 1324 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.20 \text{ e } \text{ Å}^{-3} \\ 128 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H                                    | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------------------------------------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots N1^{i}$       | 0.89 (3)                               | 2.31 (3)                | 3.188 (2)    | 168 (2)                              |
| Symmetry code: (i) -x       | $, y + \frac{1}{2}, -z + \frac{1}{2}.$ |                         |              |                                      |

Mo  $K\alpha$  radiation  $\mu = 0.07 \text{ mm}^{-1}$ 

 $0.35 \times 0.15 \times 0.15$  mm

8017 measured reflections

1324 independent reflections

1206 reflections with  $I > 2\sigma(I)$ 

T = 294 K

 $R_{\rm int} = 0.022$ 

Data collection: *CrystalClear* (Rigaku/MSC, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006) and *PLUTO* (Motherwell *et al.*, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2608).

#### References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bréfuel, N., Shova, S. & Tuchagues, J.-P. (2007). Eur. J. Inorg. Chem. pp. 4326– 4334.

Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.

Rigaku/MSC (2007). *CrystalClear*. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122. Westrip, S. P. (2009). *publCIF*. In preparation.

# supporting information

Acta Cryst. (2009). E65, o1874 [doi:10.1107/S1600536809025963]

## 2-Methyl-2-(2-pyridyl)hexahydropyrimidine

## Saud Al-Resayes

## S1. Comment

The title compound was known as precursor for syntheses of umsymmetrical tetradentate Schiff base ligands that form bistable Fe(II) spin crossover materials (Bréfuel *et al.* 2007).

The molecular packing of the title compound is supported by N— H…N intermolecular hydrogen bondings at H…A distance of 2.31 (3) and D— H…A angle of 168 (2)° and calculated with Pluto (Motherwell *et al.*, 1999), see Figure 2.

## S2. Experimental

1,3-Propane diamine (1 g, 0.013 mmol) was mixed with 1-(2-pyridinyl)-1-ethanone (1.635 g, 0.013 mmol) in 30 ml e thanol. The mixture was stirred under reflux for 5 h. The solution was concentrated under reduced pressure and the product was precipitated by addition of 30 ml of cool distilled water. Product was filtered off and washed three times with 15 ml of distilled water then dried under vacuum. Crude product was recrystallized from ethanol and allowed to stand at room temperature. Crystals were collected after 2 weeks.

### **S3. Refinement**

Hydrogen atoms were refined isotropically and were constrained to the ideal geometry using an appropriate riding model with  $U_{iso}(H)$  fixed at 1.2 times  $U_{eq}$  of the pivot atom. The —NH hydrogen atoms was located from difference Fourier map and refined isotropically without constraints. 949 Friedel-pair reflections were merged for a weak anomalous scatterer structure.



## Figure 1

Perspective drawings of the title compound showing the atom-numbering scheme. The atomic displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.



### Figure 2

N— H…N intermolecular hydrogen bonding pattern of the title compound with hydrogen bonding shown as broken lines. Symmetry code: -*x*, y + 1/2, -*z* + 1/2.

### 2-Methyl-2-(2-pyridyl)hexahydropyrimidine

#### Crystal data

 $C_{10}H_{15}N_3$   $M_r = 177.25$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.4070 (17) Å b = 10.371 (2) Å c = 11.363 (2) Å  $V = 990.7 (3) \text{ Å}^3$ Z = 4

#### Data collection

| Rigaku R-AXIS RAPID                      | 8017 measured reflections                                           |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 1324 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 1206 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.022$                                               |
| ωscans                                   | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ |
| Absorption correction: multi-scan        | $h = -10 \rightarrow 10$                                            |
| (CrystalClear; Rigaku/MSC, 2007)         | $k = -13 \rightarrow 12$                                            |
| $T_{\min} = 0.97, \ T_{\max} = 0.99$     | $l = -13 \rightarrow 14$                                            |
|                                          |                                                                     |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.115$                               | neighbouring sites                                         |
| S = 1.01                                        | H atoms treated by a mixture of independent                |
| 1324 reflections                                | and constrained refinement                                 |
| 128 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0907P)^2 + 0.0352P]$          |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.20$ e Å <sup>-3</sup>             |
|                                                 | $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F(000) = 384

 $\theta = 3.0 - 27.5^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ T = 294 K

Plate, yellow

 $0.35 \times 0.15 \times 0.15$  mm

 $D_{\rm x} = 1.188 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 7168 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|--------------|--------------|--------------|-----------------------------|
| N1 | 0.20810 (17) | 0.34068 (14) | 0.21846 (15) | 0.0473 (4)                  |
| C1 | 0.3442 (2)   | 0.27459 (18) | 0.2066 (2)   | 0.0562 (5)                  |
| H1 | 0.3416       | 0.1859       | 0.2183       | 0.067*                      |
| N2 | 0.05820 (18) | 0.66511 (13) | 0.16234 (14) | 0.0475 (3)                  |
|    |              |              |              |                             |

| H2A  | -0.026(3)     | 0.711 (2)    | 0.187 (2)     | 0.063 (6)* |
|------|---------------|--------------|---------------|------------|
| C2   | 0.4872 (2)    | 0.3304 (2)   | 0.17791 (18)  | 0.0553 (5) |
| H2   | 0.5789        | 0.2809       | 0.1707        | 0.066*     |
| N3   | -0.08570 (15) | 0.46514 (15) | 0.18351 (14)  | 0.0436 (3) |
| H3A  | -0.087 (3)    | 0.391 (2)    | 0.221 (2)     | 0.063 (6)* |
| C3   | 0.49114 (19)  | 0.4615 (2)   | 0.16021 (17)  | 0.0518 (4) |
| H3   | 0.5861        | 0.5025       | 0.1410        | 0.062*     |
| C4   | 0.35197 (19)  | 0.53176 (17) | 0.17129 (16)  | 0.0445 (4) |
| H4   | 0.3523        | 0.6205       | 0.1599        | 0.053*     |
| C5   | 0.21182 (17)  | 0.46810 (14) | 0.19969 (13)  | 0.0364 (3) |
| C6   | 0.05402 (18)  | 0.53948 (14) | 0.22108 (14)  | 0.0385 (3) |
| C7   | 0.0394 (3)    | 0.5618 (2)   | 0.35388 (16)  | 0.0574 (5) |
| H7A  | 0.1299        | 0.6097       | 0.3812        | 0.086*     |
| H7B  | 0.0352        | 0.4802       | 0.3936        | 0.086*     |
| H7C  | -0.0560       | 0.6095       | 0.3701        | 0.086*     |
| C8   | -0.0901 (2)   | 0.44394 (19) | 0.05613 (18)  | 0.0536 (4) |
| H8A  | -0.1817       | 0.3918       | 0.0356        | 0.064*     |
| H8B  | 0.0051        | 0.3987       | 0.0311        | 0.064*     |
| C9   | -0.1001 (3)   | 0.5740 (2)   | -0.00463 (18) | 0.0630 (5) |
| H9A  | -0.0978       | 0.5624       | -0.0893       | 0.076*     |
| H9B  | -0.1990       | 0.6164       | 0.0161        | 0.076*     |
| C10  | 0.0403 (2)    | 0.6562 (2)   | 0.03398 (18)  | 0.0574 (5) |
| H10A | 0.1370        | 0.6202       | 0.0009        | 0.069*     |
| H10B | 0.0274        | 0.7424       | 0.0022        | 0.069*     |
|      |               |              |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| N1  | 0.0406 (7)  | 0.0382 (6)  | 0.0631 (9)  | 0.0007 (6)  | 0.0038 (7)  | 0.0057 (6)  |
| C1  | 0.0532 (10) | 0.0419 (8)  | 0.0737 (12) | 0.0105 (8)  | 0.0012 (9)  | 0.0040 (9)  |
| N2  | 0.0480 (7)  | 0.0342 (6)  | 0.0602 (8)  | 0.0046 (6)  | 0.0084 (7)  | 0.0023 (6)  |
| C2  | 0.0406 (8)  | 0.0658 (11) | 0.0594 (10) | 0.0145 (8)  | 0.0010 (7)  | -0.0043 (9) |
| N3  | 0.0321 (6)  | 0.0439 (7)  | 0.0549 (8)  | -0.0012 (5) | 0.0053 (5)  | 0.0062 (7)  |
| C3  | 0.0340 (7)  | 0.0649 (10) | 0.0564 (9)  | -0.0048 (7) | 0.0033 (7)  | -0.0035 (9) |
| C4  | 0.0388 (7)  | 0.0425 (7)  | 0.0522 (9)  | -0.0059 (6) | 0.0040 (6)  | -0.0022 (7) |
| C5  | 0.0340 (7)  | 0.0353 (7)  | 0.0400 (7)  | -0.0006 (6) | 0.0011 (6)  | -0.0017 (6) |
| C6  | 0.0371 (7)  | 0.0359 (7)  | 0.0427 (7)  | 0.0006 (6)  | 0.0067 (6)  | 0.0007 (6)  |
| C7  | 0.0614 (11) | 0.0643 (11) | 0.0466 (9)  | 0.0089 (9)  | 0.0088 (8)  | -0.0057 (8) |
| C8  | 0.0415 (8)  | 0.0590 (10) | 0.0603 (10) | -0.0022 (8) | -0.0019 (7) | -0.0084 (8) |
| C9  | 0.0568 (11) | 0.0812 (13) | 0.0509 (10) | 0.0073 (10) | -0.0036 (8) | 0.0088 (10) |
| C10 | 0.0591 (10) | 0.0551 (9)  | 0.0579 (10) | 0.0062 (9)  | 0.0097 (9)  | 0.0181 (9)  |
|     |             |             |             |             |             |             |

## Geometric parameters (Å, °)

| N1-C1 | 1.340 (2) | C4—H4  | 0.9300    |  |
|-------|-----------|--------|-----------|--|
| N1—C5 | 1.339 (2) | C5—C6  | 1.539 (2) |  |
| C1—C2 | 1.374 (3) | C6—C7  | 1.532 (2) |  |
| C1—H1 | 0.9300    | C7—H7A | 0.9600    |  |
|       |           |        |           |  |

# supporting information

| N2         | 1.469 (3)   | С7—Н7В        | 0.9600      |
|------------|-------------|---------------|-------------|
| N2—C6      | 1.464 (2)   | С7—Н7С        | 0.9600      |
| N2—H2A     | 0.89 (3)    | C8—C9         | 1.517 (3)   |
| C2—C3      | 1.375 (3)   | C8—H8A        | 0.9700      |
| С2—Н2      | 0.9300      | C8—H8B        | 0.9700      |
| N3—C6      | 1.468 (2)   | C9—C10        | 1.521 (3)   |
| N3—C8      | 1.464 (3)   | С9—Н9А        | 0.9700      |
| N3—H3A     | 0.88 (3)    | С9—Н9В        | 0.9700      |
| C3—C4      | 1.384 (2)   | C10—H10A      | 0.9700      |
| С3—Н3      | 0.9300      | C10—H10B      | 0.9700      |
| C4—C5      | 1.389 (2)   |               |             |
| C1—N1—C5   | 117.95 (14) | N2-C6-C5      | 109.60 (12) |
| N1-C1-C2   | 123.75 (16) | C7—C6—C5      | 107.30 (14) |
| N1—C1—H1   | 118.1       | C6—C7—H7A     | 109.5       |
| C2-C1-H1   | 118.1       | C6—C7—H7B     | 109.5       |
| C10—N2—C6  | 113.21 (14) | H7A—C7—H7B    | 109.5       |
| C10—N2—H2A | 105.3 (17)  | С6—С7—Н7С     | 109.5       |
| C6—N2—H2A  | 108.1 (16)  | H7A—C7—H7C    | 109.5       |
| C3—C2—C1   | 118.18 (16) | H7B—C7—H7C    | 109.5       |
| С3—С2—Н2   | 120.9       | N3—C8—C9      | 108.52 (16) |
| C1—C2—H2   | 120.9       | N3—C8—H8A     | 110.0       |
| C6—N3—C8   | 112.72 (13) | С9—С8—Н8А     | 110.0       |
| C6—N3—H3A  | 109.1 (16)  | N3—C8—H8B     | 110.0       |
| C8—N3—H3A  | 110.1 (16)  | С9—С8—Н8В     | 110.0       |
| C2—C3—C4   | 119.15 (16) | H8A—C8—H8B    | 108.4       |
| С2—С3—Н3   | 120.4       | C10—C9—C8     | 108.91 (16) |
| С4—С3—Н3   | 120.4       | С10—С9—Н9А    | 109.9       |
| C5—C4—C3   | 119.22 (16) | С8—С9—Н9А     | 109.9       |
| C5—C4—H4   | 120.4       | С10—С9—Н9В    | 109.9       |
| C3—C4—H4   | 120.4       | С8—С9—Н9В     | 109.9       |
| N1—C5—C4   | 121.74 (15) | H9A—C9—H9B    | 108.3       |
| N1—C5—C6   | 115.44 (13) | N2—C10—C9     | 113.65 (16) |
| C4—C5—C6   | 122.65 (13) | N2-C10-H10A   | 108.8       |
| N3—C6—N2   | 110.72 (13) | C9-C10-H10A   | 108.8       |
| N3—C6—C7   | 107.56 (13) | N2-C10-H10B   | 108.8       |
| N2—C6—C7   | 108.46 (14) | C9—C10—H10B   | 108.8       |
| N3—C6—C5   | 113.03 (12) | H10A—C10—H10B | 107.7       |

## Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|------------------------------|-------------|----------|--------------|---------|
| N2— $H2A$ ···N1 <sup>i</sup> | 0.89 (3)    | 2.31 (3) | 3.188 (2)    | 168 (2) |

Symmetry code: (i) -x, y+1/2, -z+1/2.