inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

CsMgPO₄

Nataliya Yu. Strutynska,^a* Igor V. Zatovsky,^a Vyacheslav N. Baumer^b and Nikolay S. Slobodyanik^a

^aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01601 Kyiv, Ukraine, and ^bSTC 'Institute for Single Crystals', NAS of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine Correspondence e-mail: Strutynska_N@bigmir.net

Received 26 June 2009; accepted 1 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (P–O) = 0.001 Å; *R* factor = 0.021; *wR* factor = 0.047; data-to-parameter ratio = 27.7.

Caesium magnesium orthophosphate is built up from MgO_4 and PO_4 tetrahedra (both with . *m*. symmetry) linked together by corners, forming a three-dimensional framework. The Cs atoms have .*m*. site symmetry and are located in hexagonal channels running along the *a*- and *b*-axis directions.

Related literature

For the properties of double phosphates $A^{T}B^{II}PO_{4}$ (A^{I} = alkali metal; B^{II} = Ca, Sr, Ba, Zn, Cd, Pb) such as ferroelectric and non-linear optical behaviour, see: Blum *et al.* (1984); Elouadi *et al.* (1984); Sawada *et al.* (2003). Several polymorphs have been found among orthophosphates containing Cs and divalent metals, see: Blum *et al.* (1986) for CsZnPO₄. In contrast, CsMnPO₄ occurs in only one type, see: Yakubovich *et al.* (1990). The title compound is isotypic with the *Pnma* form of CsZnPO₄. For related structures, see: Yakubovich *et al.* (1990); Blum *et al.* (1986); Zaripov *et al.* (2008).

Experimental

Crystal data

CsMgPO₄ $M_r = 252.19$ Orthorhombic, *Pnma* a = 8.9327 (2) Å b = 5.5277 (2) Å c = 9.6487 (3) Å

Data collection

Oxford Diffraction Xcalibur-3 diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.413, T_{max} = 0.503$ $V = 476.43 (3) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 8.13 mm^{-1} T = 293 K 0.12 \times 0.10 \times 0.08 mm

8753 measured reflections 1137 independent reflections 874 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.021 & & 41 \text{ parameters} \\ wR(F^2) = 0.047 & & \Delta\rho_{\max} = 1.23 \text{ e} \text{ Å}^{-3} \\ S = 1.00 & & \Delta\rho_{\min} = -1.02 \text{ e} \text{ Å}^{-3} \\ 1137 \text{ reflections} & & \end{array}$

Table 1Selected bond lengths (Å).

Cs1-O2	3.1951 (9)	Mg1-O1	1.8847 (13)
$Cs1-O2^{i}$	3.2166 (9)	Mg1-O3 ^{iv}	1.8932 (13)
Cs1-O3 ⁱⁱ	3.4476 (11)	$Mg1-O2^{v}$	1.9228 (8)
Cs1-O1 ⁱ	3.5224 (11)	P1-O1	1.5056 (13)
Cs1-O1 ⁱⁱ	3.6496 (11)	P1-O3	1.5138 (13)
Cs1–O3 ⁱⁱⁱ	3.6968 (18)	P1-O2	1.5249 (8)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $-x + \frac{1}{2}$, -y + 1, $z + \frac{1}{2}$; (iii) $x + \frac{1}{2}$, y, $-z + \frac{3}{2}$; (iv) $x + \frac{1}{2}$, y, $-z + \frac{1}{2}$; (v) $-x + \frac{1}{2}$, -y, $z - \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *enCIFer* (Allen *et al.*, 2004).

The authors acknowledge the ICDD for financial support (grant No. 03–02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2075).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blum, D., Durif, A. & Averbuch-Pouchot, M. T. (1986). *Ferroelectrics*, **69**, 283–292.
- Blum, D., Peuzin, J. C. & Henry, J. Y. (1984). Ferroelectrics, 61, 265-279.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Elouadi, B., Elammari, L. & Ravez, J. (1984). Ferroelectrics, 56, 1021–1024.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sawada, A., Azumi, T., Ono, T., Aoyagi, S. & Kuroiwa, Y. (2003). Ferroelectrics, **291**, 3–10.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yakubovich, O. V., Simonov, M. A. & Mel'nikov, O. K. (1990). Z. Kristallogr. 35, 42–46.
- Zaripov, A. R., Asabina, E. A., Pet'kov, V. I., Kurazhkovskaya, V. S., Stefanovich, S. Yu. & Rovny, S. I. (2008). *Russ. J. Inorg. Chem.* 53, 861–866.

supporting information

Acta Cryst. (2009). E65, i58 [doi:10.1107/S1600536809025434]

CsMgPO₄

Nataliya Yu. Strutynska, Igor V. Zatovsky, Vyacheslav N. Baumer and Nikolay S. Slobodyanik

S1. Comment

Double phosphates $A^{I}B^{II}PO_{4}$ (A^{I} = alkali metal; B^{II} = Ca, Sr, Ba, Zn, Cd, Pb) exhibit important properties such as ferroelectric and nonlinear optical behaviour (Blum *et al.*, 1984; Elouadi *et al.*, 1984; Sawada *et al.*, 2003). Among some orthophosphates containing Cs and divalent metals, several polymorphs have been found. For instance, CsZnPO₄ occurs in a monoclinic (space group $P2_1/a$) and two orthorhombic types (space groups $Pna2_1$ and Pnma) (Blum *et al.*, 1986). In contrast, CsMnPO₄ occurs in only one type (space group $Pna2_1$) (Yakubovich *et al.*, 1990). CsMgPO₄, reported here, is isotypic with the *Pnma* form of CsZnPO₄.

Except for O2 (8d), all atoms are in special positions (4c) (Fig. 1). Each MgO₄ tetrahedron is linked with four PO₄ tetrahedra *via* common vertices, resulting in a three-dimensional framework with two types of hexagonal channels, filled by Cs atoms, along the a and b directions (Fig. 2). With a cut-off distance of 3.7 Å, the Cs atoms are 11-coordinate. In general, the principles of crystal structure building are equivalent to those in Cs M^{II} PO₄ ($M^{II} =$ Mn, Zn) (Yakubovich *et al.*, 1990; Blum *et al.*, 1986) and CsLi_{0.5}Al_{0.5}PO₄ (Zapirov *et al.*, 2008).

S2. Experimental

In the course of investigating the $Cs_2O-MgO-Bi_2O_3-P_2O_5$ system, the starting components $CsPO_3$ (3.0 g), MgO (0.113 g) and Bi_2O_3 (0.652 g) were finely ground and melted in a platinum crucible at 1273 K. The melt was kept at this temperature over 2 h to reach homogeneity and then cooled at a rate of 30 K h⁻¹ to 993 K. After the melt was cooled to room temperature and treated with a small amount of deionized water, colorless needle-shaped crystals were isolated. X-ray powder diffraction showed that $CsMgPO_4$ is the only crystalline product.

S3. Refinement

The deepest hole and the highest peak are 0.67 Å and 0.65 Å, respectively, from Cs1.

Figure 1

View of $CsMgPO_4$ with displacement ellipsoids at the 50% probability level.

Figure 2

Formation of hexagonal channels along a and b directions in CsMgPO₄ (PO₄, pink; MgO₄, yellow; Cs, blue).

Caesium magnesium orthophosphate

Crystal data

CsMgPO₄ $M_r = 252.19$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 8.9327 (2) Å b = 5.5277 (2) Å c = 9.6487 (3) Å V = 476.43 (3) Å³ Z = 4 F(000) = 456 $D_x = 3.516 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8753 reflections $\theta = 3.1-35.0^{\circ}$ $\mu = 8.13 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.12 \times 0.10 \times 0.08 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur-3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.413, T_{\max} = 0.503$ Refinement	8753 measured reflections 1137 independent reflections 874 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 35.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -8 \rightarrow 8$ $l = -15 \rightarrow 15$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.047$ S = 1.00 1137 reflections 41 parameters 0 restraints Primary atom site location: structure-invariant direct methods	map $w = 1/[\sigma^2(F_o^2) + (0.0265P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.018$ $\Delta\rho_{min} = -1.02$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008) Extinction coefficient: 0.0211 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cs1	0.497176 (11)	0.25	0.703332 (10)	0.02472 (2)	
Mg1	0.32166 (5)	0.25	0.08109 (5)	0.01434 (11)	
P1	0.20302 (4)	0.25	0.41474 (4)	0.01345 (7)	
01	0.26034 (19)	0.25	0.26799 (13)	0.0590 (6)	
O2	0.26291 (11)	0.02604 (13)	0.48850 (9)	0.0328 (2)	
O3	0.03356 (14)	0.25	0.41501 (19)	0.0345 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.02161 (4)	0.02632 (5)	0.02623 (4)	0	-0.00031 (4)	0
Mg1	0.01301 (19)	0.0133 (2)	0.0168 (2)	0	0.00166 (17)	0
P1	0.01272 (13)	0.01259 (14)	0.01505 (14)	0	0.00207 (12)	0
01	0.0594 (11)	0.1014 (17)	0.0162 (7)	0	0.0121 (7)	0
O2	0.0239 (4)	0.0190 (4)	0.0555 (6)	-0.0002(3)	-0.0016 (4)	0.0156 (4)
O3	0.0121 (4)	0.0286 (6)	0.0629 (10)	0	-0.0003 (6)	0

Geometric parameters (Å, °)

Cs1—02	3.1951 (9)	Mg1—Cs1 ^{xiii}	4.1402 (4)
Cs1—O2 ⁱ	3.1951 (9)	P1—O1	1.5056 (13)
Cs1—O2 ⁱⁱ	3.2166 (9)	P1-03	1.5138 (13)
Cs1—O2 ⁱⁱⁱ	3.2166 (9)	P1—O2 ⁱ	1.5249 (8)
Cs1–O3 ^{iv}	3.4476 (11)	P1	1.5249 (8)
$Cs1-O3^{v}$	3.4476 (11)	$P1 - Cs1^{ix}$	3.8727 (3)
$Cs1 - O1^{vi}$	3 5224 (11)	$P1 - Cs1^{xiii}$	3 8727 (3)
$Cs1-O1^{ii}$	3.5224 (11)	$P1 - Cs1^{vi}$	4 0136 (3)
$Cs1 = O1^{v}$	3 6496 (11)	$P1 - Cs1^{ii}$	4 0136 (3)
$Cs1 - O1^{iv}$	3 6496 (11)	$P1 - Cs1^{xiv}$	4 1184 (4)
$Cs1-O3^{vii}$	3 6968 (18)	$01-Cs1^{vi}$	3 5224 (11)
$Cs1 - M\sigma1^{vi}$	3 8189 (4)	$01-Cs1^{ii}$	3 5224 (11)
$M\sigma 1 = 01$	1 8847 (13)	$01 - Cs1^{ix}$	3 6496 (11)
$Mg1 = O3^{viii}$	1.8037(13)	$01 - Cs1^{xiii}$	3 6496 (11)
$Mg1 = 03^{ix}$	1.0932 (13)	$\Omega^2 - Mg^{1v}$	1 9228 (8)
$Mg1 = O2^x$	1.9228 (8)	Ω^2 Ω^2 Ω^2	3 2166 (9)
Mg1 = O2 $Mg1 = Cg1^{vi}$	3,8189(4)	$\Omega_2 = \Theta_3 \Gamma$	1,8932(13)
Mg1 - Cs1	3.8180(4)	$O_3 = C_5 I^{ix}$	3.4476(11)
Mg1 - Cs1 $Mg1 - Cs1^{xi}$	3.9678(5)	$O_3 - C_{s1}^{xiii}$	3.4476 (11)
Mg1 - Cs1 $Mg1 - Cs1^{xii}$	3.9916 (5)	$O_3 - C_{s1}^{xiv}$	3 6968 (18)
Mg1 - Cs1	3.9910(3)	05-051	5.0908 (18)
wigi-Csi	4.1402 (4)		
O2-Cs1-O2 ⁱ	45.59 (3)	O1—Mg1—Cs1 ^{ix}	61.80 (3)
O2—Cs1—O2 ⁱⁱ	83.06 (3)	O3 ^{viii} —Mg1—Cs1 ^{ix}	133.01 (2)
$O2^i$ —Cs1—O2 ⁱⁱ	104.291 (19)	O2 ^{ix} —Mg1—Cs1 ^{ix}	48.11 (3)
O2—Cs1—O2 ⁱⁱⁱ	104.291 (19)	O2 ^x —Mg1—Cs1 ^{ix}	113.07 (3)
O2 ⁱ —Cs1—O2 ⁱⁱⁱ	83.06 (3)	Cs1 ^{vi} —Mg1—Cs1 ^{ix}	128.277 (13)
O2 ⁱⁱ —Cs1—O2 ⁱⁱⁱ	56.64 (3)	Cs1 ⁱⁱ —Mg1—Cs1 ^{ix}	69.709 (5)
O2—Cs1—O3 ^{iv}	130.00 (3)	Cs1 ^{xi} —Mg1—Cs1 ^{ix}	122.243 (9)
$O2^{i}$ —Cs1—O3 ^{iv}	91.24 (3)	Cs1 ^{xii} —Mg1—Cs1 ^{ix}	72.323 (7)
O2 ⁱⁱ —Cs1—O3 ^{iv}	140.73 (3)	O1—Mg1—Cs1 ^{xiii}	61.80 (3)
$O2^{iii}$ —Cs1—O3 ^{iv}	90.78 (3)	O3 ^{viii} —Mg1—Cs1 ^{xiii}	133.01 (2)
O2—Cs1—O3 ^v	91.24 (3)	O2 ^{ix} —Mg1—Cs1 ^{xiii}	113.07 (3)
$O2^{i}$ —Cs1—O3 ^v	130.00 (3)	O2 ^x —Mg1—Cs1 ^{xiii}	48.11 (3)
O2 ⁱⁱ —Cs1—O3 ^v	90.78 (3)	Cs1 ^{vi} —Mg1—Cs1 ^{xiii}	69.709 (5)
O2 ⁱⁱⁱ —Cs1—O3 ^v	140.73 (3)	Cs1 ⁱⁱ —Mg1—Cs1 ^{xiii}	128.277 (14)
$O3^{iv}$ —Cs1—O3 ^v	106.58 (5)	Cs1 ^{xi} —Mg1—Cs1 ^{xiii}	122.243 (9)
O2-Cs1-O1vi	139.27 (2)	Cs1 ^{xii} —Mg1—Cs1 ^{xiii}	72.323 (7)
$O2^i$ —Cs1—O1 ^{vi}	98.61 (3)	Cs1 ^{ix} —Mg1—Cs1 ^{xiii}	83.758 (9)
$O2^{ii}$ —Cs1—O1 ^{vi}	90.44 (3)	O1—P1—O3	109.98 (10)
O2 ⁱⁱⁱ —Cs1—O1 ^{vi}	42.55 (2)	$O1$ — $P1$ — $O2^i$	108.64 (5)
O3 ^{iv} —Cs1—O1 ^{vi}	51.20 (3)	O3—P1—O2 ⁱ	110.49 (5)
O3 ^v —Cs1—O1 ^{vi}	129.16 (3)	O1—P1—O2	108.64 (5)
O2—Cs1—O1 ⁱⁱ	98.61 (3)	O3—P1—O2	110.49 (5)
O2 ⁱ —Cs1—O1 ⁱⁱ	139.27 (2)	O2 ⁱ —P1—O2	108.56 (7)
02 ⁱⁱ —Cs1—O1 ⁱⁱ	42.55 (2)	O1—P1—Cs1	116.78 (7)

O2 ⁱⁱⁱ —Cs1—O1 ⁱⁱ	90.44 (3)	O3—P1—Cs1	133.24 (7)
O3 ^{iv} —Cs1—O1 ⁱⁱ	129.16 (3)	O2 ⁱ —P1—Cs1	54.54 (3)
O3 ^v —Cs1—O1 ⁱⁱ	51.20 (3)	O2—P1—Cs1	54.54 (3)
$O1^{vi}$ — $Cs1$ — $O1^{ii}$	103.38 (4)	O1—P1—Cs1 ^{ix}	70.23 (4)
$O2$ — $Cs1$ — $O1^{v}$	53.46 (2)	O3—P1—Cs1 ^{ix}	62.56 (4)
$O2^{i}$ —Cs1—O1 ^v	89.52 (3)	$O2^{i}$ —P1—Cs1 ^{ix}	170.83 (4)
$O2^{ii}$ —Cs1—O1 ^v	99.15 (2)	O2—P1—Cs1 ^{ix}	80.12 (3)
$O2^{iii}$ — $Cs1$ — $O1^{v}$	151.35 (2)	$Cs1$ — $P1$ — $Cs1^{ix}$	134.428 (4)
$O3^{iv}$ — $Cs1$ — $O1^{v}$	117.11 (3)	O1—P1—Cs1 ^{xiii}	70.23 (4)
O3 ^v —Cs1—O1 ^v	40.66 (3)	O3—P1—Cs1 ^{xiii}	62.56 (4)
$O1^{vi}$ — $Cs1$ — $O1^{v}$	165.554 (5)	O2 ⁱ —P1—Cs1 ^{xiii}	80.12 (3)
$O1^{ii}$ —Cs1—O1 ^v	77.288 (3)	O2—P1—Cs1 ^{xiii}	170.83 (4)
$O2$ — $Cs1$ — $O1^{iv}$	89.52 (3)	Cs1—P1—Cs1 ^{xiii}	134.428 (4)
$O2^{i}$ —Cs1—O1 ^{iv}	53.46 (2)	$Cs1^{ix}$ $P1$ $Cs1^{xiii}$	91.069 (8)
O2 ⁱⁱ —Cs1—O1 ^{iv}	151.35 (2)	$O1$ — $P1$ — $Cs1^{vi}$	60.41 (4)
$O2^{iii}$ — $Cs1$ — $O1^{iv}$	99.15 (2)	$O3$ — $P1$ — $Cs1^{vi}$	131.89 (3)
$O3^{iv}$ — $Cs1$ — $O1^{iv}$	40.66 (3)	$O2^{i}$ —P1—Cs1 ^{vi}	48.65 (4)
O3 ^v —Cs1—O1 ^{iv}	117.11 (3)	$O2$ — $P1$ — $Cs1^{vi}$	117.22 (4)
$O1^{vi}$ — $Cs1$ — $O1^{iv}$	77.288 (3)	$Cs1$ — $P1$ — $Cs1^{vi}$	75.434 (6)
O1 ⁱⁱ —Cs1—O1 ^{iv}	165.554 (5)	$Cs1^{ix}$ — $P1$ — $Cs1^{vi}$	130.546 (10)
O1v-Cs1-O1iv	98.45 (4)	$Cs1^{xiii}$ — $P1$ — $Cs1^{vi}$	70.558 (4)
O2—Cs1—O3 ^{vii}	134.74 (2)	O1—P1—Cs1 ⁱⁱ	60.41 (4)
O2 ⁱ —Cs1—O3 ^{vii}	134.74 (2)	O3—P1—Cs1 ⁱⁱ	131.89 (3)
O2 ⁱⁱ —Cs1—O3 ^{vii}	120.97 (2)	$O2^{i}$ —P1—Cs1 ⁱⁱ	117.22 (4)
O2 ⁱⁱⁱ —Cs1—O3 ^{vii}	120.97 (2)	O2—P1—Cs1 ⁱⁱ	48.65 (4)
O3 ^{iv} —Cs1—O3 ^{vii}	54.33 (3)	Cs1—P1—Cs1 ⁱⁱ	75.434 (6)
O3 ^v —Cs1—O3 ^{vii}	54.33 (3)	$Cs1^{ix}$ $P1$ $Cs1^{ii}$	70.558 (4)
O1 ^{vi} —Cs1—O3 ^{vii}	82.40 (2)	$Cs1^{xiii}$ — $P1$ — $Cs1^{ii}$	130.546 (10)
O1 ⁱⁱ —Cs1—O3 ^{vii}	82.40 (2)	$Cs1^{vi}$ $P1$ $Cs1^{ii}$	87.043 (8)
O1 ^v —Cs1—O3 ^{vii}	83.40 (2)	O1—P1—Cs1 ^{xiv}	173.36 (7)
O1 ^{iv} —Cs1—O3 ^{vii}	83.40 (2)	O3—P1—Cs1 ^{xiv}	63.38 (7)
O2—Cs1—Mg1 ^{vi}	155.689 (15)	$O2^{i}$ P1 Cs1 ^{xiv}	74.87 (4)
O2 ⁱ —Cs1—Mg1 ^{vi}	110.517 (14)	O2—P1—Cs1 ^{xiv}	74.87 (4)
O2 ⁱⁱ —Cs1—Mg1 ^{vi}	111.987 (18)	Cs1—P1—Cs1 ^{xiv}	69.857 (6)
$O2^{iii}$ —Cs1—Mg1 ^{vi}	71.807 (16)	$Cs1^{ix}$ $P1$ $Cs1^{xiv}$	105.375 (7)
O3 ^{iv} —Cs1—Mg1 ^{vi}	29.64 (2)	$Cs1^{xiii}$ $P1$ $Cs1^{xiv}$	105.375 (7)
O3 ^v —Cs1—Mg1 ^{vi}	106.93 (3)	$Cs1^{vi}$ $P1$ $Cs1^{xiv}$	123.498 (7)
O1 ^{vi} —Cs1—Mg1 ^{vi}	29.40 (2)	$Cs1^{ii}$ —P1— $Cs1^{xiv}$	123.498 (7)
O1 ⁱⁱ —Cs1—Mg1 ^{vi}	105.34 (2)	P1—O1—Mg1	177.02 (12)
O1 ^v —Cs1—Mg1 ^{vi}	136.22 (2)	P1—O1—Cs1 ^{vi}	97.77 (4)
$O1^{iv}$ —Cs1—Mg1 ^{vi}	68.03 (2)	Mg1—O1—Cs1 ^{vi}	84.06 (4)
O3 ^{vii} —Cs1—Mg1 ^{vi}	54.563 (11)	P1—O1—Cs1 ⁱⁱ	97.77 (4)
O1—Mg1—O3 ^{viii}	105.76 (8)	Mg1—O1—Cs1 ⁱⁱ	84.06 (4)
O1—Mg1—O2 ^{ix}	109.29 (4)	Cs1 ^{vi} —O1—Cs1 ⁱⁱ	103.38 (4)
O3 ^{viii} —Mg1—O2 ^{ix}	113.71 (4)	P1—O1—Cs1 ^{ix}	86.93 (5)
O1—Mg1—O2 ^x	109.29 (4)	Mg1—O1—Cs1 ^{ix}	91.12 (4)
O3 ^{viii} —Mg1—O2 ^x	113.71 (4)	$Cs1^{vi}$ — $O1$ — $Cs1^{ix}$	174.41 (4)
$O2^{ix}$ —Mg1— $O2^{x}$	105.04 (6)	Cs1 ⁱⁱ —O1—Cs1 ^{ix}	78.860 (3)

O1—Mg1—Cs1 ^{v1}	66.55 (3)	$P1-O1-Cs1^{xm}$	86.93 (5)
O3 ^{viii} —Mg1—Cs1 ^{vi}	64.25 (3)	Mg1—O1—Cs1 ^{xiii}	91.12 (4)
$O2^{ix}$ —Mg1—Cs1 ^{vi}	173.66 (3)	Cs1 ^{vi} —O1—Cs1 ^{xiii}	78.860 (3)
$O2^{x}$ —Mg1—Cs1 ^{vi}	81.10 (3)	Cs1 ⁱⁱ —O1—Cs1 ^{xiii}	174.41 (4)
O1—Mg1—Cs1 ⁱⁱ	66.55 (3)	Cs1 ^{ix} —O1—Cs1 ^{xiii}	98.45 (4)
O3 ^{viii} —Mg1—Cs1 ⁱⁱ	64.25 (3)	P1—O2—Mg1 ^v	136.32 (7)
O2 ^{ix} —Mg1—Cs1 ⁱⁱ	81.10 (3)	P1—O2—Cs1	102.59 (4)
O2 ^x —Mg1—Cs1 ⁱⁱ	173.66 (3)	Mg1 ^v —O2—Cs1	105.27 (4)
Cs1 ^{vi} —Mg1—Cs1 ⁱⁱ	92.725 (11)	P1—O2—Cs1 ⁱⁱ	110.51 (4)
O1—Mg1—Cs1 ^{xi}	173.62 (6)	Mg1 ^v —O2—Cs1 ⁱⁱ	98.78 (3)
O3 ^{viii} —Mg1—Cs1 ^{xi}	67.86 (6)	Cs1—O2—Cs1 ⁱⁱ	96.94 (3)
O2 ^{ix} —Mg1—Cs1 ^{xi}	74.24 (3)	P1—O3—Mg1 ^{xii}	178.96 (13)
O2 ^x —Mg1—Cs1 ^{xi}	74.24 (3)	P1—O3—Cs1 ^{ix}	94.51 (5)
$Cs1^{vi}$ —Mg1—Cs1 ^{xi}	109.444 (9)	Mg1 ^{xii} —O3—Cs1 ^{ix}	86.11 (4)
Cs1 ⁱⁱ —Mg1—Cs1 ^{xi}	109.444 (9)	P1—O3—Cs1 ^{xiii}	94.51 (5)
O1—Mg1—Cs1 ^{xii}	116.54 (5)	Mg1 ^{xii} —O3—Cs1 ^{xiii}	86.11 (4)
O3 ^{viii} —Mg1—Cs1 ^{xii}	137.70 (6)	Cs1 ^{ix} —O3—Cs1 ^{xiii}	106.58 (5)
O2 ^{ix} —Mg1—Cs1 ^{xii}	52.79 (3)	P1—O3—Cs1 ^{xiv}	95.14 (8)
O2 ^x —Mg1—Cs1 ^{xii}	52.79 (3)	Mg1 ^{xii} —O3—Cs1 ^{xiv}	83.82 (6)
Cs1 ^{vi} —Mg1—Cs1 ^{xii}	133.015 (6)	$Cs1^{ix}$ — $O3$ — $Cs1^{xiv}$	125.67 (3)
Cs1 ⁱⁱ —Mg1—Cs1 ^{xii}	133.015 (6)	$Cs1^{xiii}$ —O3— $Cs1^{xiv}$	125.67 (3)
$Cs1^{xi}$ —Mg1—Cs1 ^{xii}	69.840 (9)		

Symmetry codes: (i) *x*, -*y*+1/2, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, *y*+1/2, -*z*+1; (iv) -*x*+1/2, -*y*+1, *z*+1/2; (v) -*x*+1/2, -*y*, *z*+1/2; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*+1/2, *y*, -*z*+3/2; (viii) *x*+1/2, *y*, -*z*+1/2; (ix) -*x*+1/2, -*y*, *z*-1/2; (x) -*x*+1/2, *y*+1/2, *z*-1/2; (xi) *x*, *y*, *z*-1; (xii) *x*-1/2, *y*, -*z*+1/2; (xiii) -*x*+1/2, -*y*+1, *z*-1/2; (xiii) *x*-1/2, *y*, -*z*+3/2.