## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Diaquabis(5-carboxy-1H-pyrazole-3-carboxylato- $\kappa^{2} N^{2}, O^{3}$ )cobalt(II) dihydrate

Hui-Dong Xie, ${ }^{\text {a }}$ Li Jin ${ }^{\text {a }}$ and Cheng-Zhi Xie ${ }^{\text {b }}$<br>${ }^{\text {a }}$ School of Science, Xi'an University of Architecture \& Technology, Xi'an 710055, People's Republic of China, and ${ }^{\mathbf{b}}$ Tianjin Medical University, Tianjin 300070, People's Republic of China<br>Correspondence e-mail: xhd02@mails.thu.edu.cn

Received 18 July 2009; accepted 23 July 2009
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; $R$ factor $=0.048 ; w R$ factor $=0.142$; data-to-parameter ratio $=11.6$.

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\text {II }}$ ion lies on an inversion center and is coordinated in a distorted octahedral environment. In the crystal structure, complex and water molecules are linked into a three-dimensional network by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Related literature

For a mononuclear zinc(II) complex with a pyrazole-3,5dicarboxylato ligand, see: Xie et al. (2006) and for a cobalt(III) complex with a 5 -carboxy- 1 H -pyrazole-3-carboxylato ligand, see: Xie et al. (2007). The 3,5-pyrazoledicarboxylic acid ligand is asymmetric and has six potential coordination sites which can act to link together metal centers through a number of bridging modes, see: King et al. (2004). A variety of complexes containing this ligand have been reported, see: Frisch \& Cahill (2005); King et al. (2003, 2004); Li et al. (2005); Pan, Ching et al. (2001); Pan, Frydel et al. (2001).


## Experimental

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=441.18$
Monoclinic, $P 2_{1} / c$
$V=809.9(5) \AA^{3}$
$Z=2$
$a=10.030$ (3) A
Mo $K \alpha$ radiation
$b=12.483$ (4) $\AA$
$c=6.827$ (2) $\AA$
$\beta=108.641$ (4) ${ }^{\circ}$

## Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.713, T_{\text {max }}=0.854$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.142$
$S=1.12$
1502 reflections
129 parameters
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
$0.32 \times 0.27 \times 0.14 \mathrm{~mm}$

5748 measured reflections $R_{\text {int }}=0.036$ 1502 independent reflections 1331 reflections with $I>2 \sigma(I)$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{Co} 1-\mathrm{O} 5$ | $2.065(3)$ | $\mathrm{O} 1-\mathrm{C} 1$ | $1.262(5)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $2.108(3)$ | $\mathrm{O} 2-\mathrm{C} 1$ | $1.256(5)$ |
| $\mathrm{Co} 1-\mathrm{O} 1$ | $2.120(3)$ |  |  |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 5$ | 180 | $\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$ | $103.22(11)$ |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 1$ | $90.84(12)$ | $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{O} 1$ | $88.82(12)$ |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$ | $89.16(12)$ | $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1$ | $76.78(11)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$ | 180 | $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$ | 180 |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$ | $91.18(12)$ |  |  |

Symmetry code: (i) $-x+1,-y+2,-z$.

Table 2
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {ii }}$ | 0.82 | 1.73 | 2.535 (4) | 169 |
| $\mathrm{O} 5-\mathrm{H} 1 W \cdots \mathrm{O} 3^{\text {iii }}$ | 0.83 | 2.07 | 2.887 (4) | 171 |
| $\mathrm{O} 5-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {iv }}$ | 0.83 | 1.91 | 2.726 (4) | 171 |
| $\mathrm{O} 6-\mathrm{H} 4 W \cdots \mathrm{O}^{\text {v }}$ | 0.85 (11) | 2.06 (11) | 2.828 (5) | 149 (10) |
| $\mathrm{O} 6-\mathrm{H} 3 W \cdots \mathrm{O}{ }^{\text {vi }}$ | 0.84 | 2.30 | 2.932 (5) | 132 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 6^{\text {vii }}$ | 0.86 | 1.91 | 2.714 (5) | 155 |

Symmetry codes: (ii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (v)
$-x+1,-y+1,-z$; (vi) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (vii) $x, y+1, z$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the University Youth Fund (grant No. RC0735) for financial support.

[^0]
## metal-organic compounds

## References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Frisch, M. \& Cahill, C. L. (2005). Dalton Trans. pp. 1518-1523.
King, P., Clerac, R., Anson, C. E., Coulon, C. \& Powell, A. K. (2003). Inorg. Chem. 42, 3492-3500.
King, P., Clerac, R., Anson, C. E. \& Powell, A. K. (2004). Dalton Trans. pp. 852-861
Li, X.-H., Lei, X.-X., Tian, Y.-G. \& Wang, S. (2005). Acta Cryst. E61, m702m704.

Pan, L., Ching, N., Huang, X.-Y. \& Li, J. (2001). Chem. Eur. J. 7, 4431-4437. Pan, L., Frydel, T., Sander, M. B., Huang, X.-Y. \& Li, J. (2001). Inorg. Chem. 40, 1271-1283.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xie, H.-D., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. \& Shen, D.-Z. (2006). Acta Cryst. E62, m3119-m3121.
Xie, H.-D., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. \& Shen, D.-Z. (2007). Acta Cryst. E63, m1477-m1479.

## supporting information

Acta Cryst. (2009). E65, m1009-m1010 [doi:10.1107/S1600536809029456]

## Diaquabis(5-carboxy-1H-pyrazole-3-carboxylato- $\kappa^{2} N^{2}, O^{3}$ )cobalt(II) dihydrate Hui-Dong Xie, Li Jin and Cheng-Zhi Xie

## S1. Comment

In the past few decades, self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have received a great deal of attention in the field of supramolecular chemistry and crystal engineering. The 3,5-pyrazoledicarboxylic acid ligand is asymmetric and has six potential coordination sites which can act to link together metal centers through a number of bridging modes (King et al., 2004). A variety of complexes containing this ligand have been reported (Frisch et al., 2005; King et al., 2003, 2004; Pan, Ching et al., 2001; Pan, Frydel et al., 2001; Li et al., 2005).
The molecular structure of the title complex, (I), is shown in Fig. 1. The $\mathrm{Co}^{\mathrm{II}}$ ion is located on an inversion center and is coordinated in a distorted octahedral environment. The axial sites are occupied by water molecules and the equatorial plane is fromed by two oxygen donors and two nitrogen donors from two chelating 5-carboxy-pyrazole-3-carboxylato ligands. In the crystal structure complex and water molecules are linked into a three-dimensional network by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## S2. Experimental

A mixture of cobalt(II) nitrate (hexhydrate) ( $0.2 \mathrm{mmol}, 58 \mathrm{mg}$ ), 3,5-pyrazoledicarboxylic acid ( $0.4 \mathrm{mmol}, 62 \mathrm{mg}$ ) and $\mathrm{H}_{2} \mathrm{O}(18.0 \mathrm{ml})$ in a 1:2:5000 molar ratio was sealed in a 25 ml stainless steel reactor with a Teflon liner. The autoclave was kept at 423 K for 3 d , then cooled to room temperature at a rate of $4 \mathrm{~K} / \mathrm{h}$. Orange block-shaped crystals of the title complex were collected by filtration for the structural analysis.

## S3. Refinement

All H atoms bonded to C and N atoms were initially located in difference Fourier maps but were subsequently refined in a riding-model approximation with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$. The O atoms bonded to the carboxylic group and the coordinated water atom were included in calculated positions and refined in a riding-model approximation with $\mathrm{O}-\mathrm{H}=0.82-0.83 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2-1.5 U_{\mathrm{eq}}(\mathrm{O})$. One of the solvent water H atoms was included with $\mathrm{O}-\mathrm{H}=0.84 ; U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$ and the other H atom was refined isotropically.



Figure 1
The molecular structure of (I), with atom labels and $35 \%$ probability displacement ellipsoids for non-H atoms [symmetry code: (A) $-x+1,-y+2,-z]$. Only the unique solvent water molecule is shown.


## Figure 2

Part of the crystal structure of (I) showing the donor acceptor distances of hydrogen bonds as dashed lines. H atoms have been omitted for clarity.

## Diaquabis(5-carboxy-1H-pyrazole-3-carboxylato- $\kappa^{2} N^{2}, O^{3}$ )cobalt(II) dihydrate

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=441.18$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.030$ (3) $\AA$
$b=12.483$ (4) $\AA$
$c=6.827$ (2) $\AA$
$\beta=108.641(4)^{\circ}$
$V=809.9(5) \AA^{3}$
$Z=2$

## Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.713, T_{\text {max }}=0.854$
$F(000)=450$
$D_{\mathrm{x}}=1.809 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2747 reflections
$\theta=2.7-27.9^{\circ}$
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Block, orange
$0.32 \times 0.27 \times 0.14 \mathrm{~mm}$

5748 measured reflections
1502 independent reflections
1331 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-8 \rightarrow 8$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.142$
$S=1.12$
1502 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0775 P)^{2}+1.4115 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=0.84$ e $\AA^{-3}$
> $\Delta \rho_{\text {min }}=-0.44 \mathrm{e} \AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Co1 | 0.5000 | 1.0000 | 0.0000 | $0.0227(3)$ |
| O1 | $0.5183(3)$ | $0.8358(2)$ | $-0.0667(5)$ | $0.0308(6)$ |
| O2 | $0.6657(3)$ | $0.6977(2)$ | $-0.0142(5)$ | $0.0337(7)$ |
| O3 | $1.1998(3)$ | $0.9569(3)$ | $0.3134(5)$ | $0.0408(8)$ |
| O4 | $1.0960(3)$ | $1.1105(2)$ | $0.3529(5)$ | $0.0366(7)$ |
| H4 | 1.1772 | 1.1324 | 0.3977 | $0.055^{*}$ |
| O5 | $0.4797(3)$ | $0.9554(3)$ | $0.2803(5)$ | $0.0378(7)$ |
| H1W | 0.4031 | 0.9594 | 0.3020 | $0.045^{*}$ |
| H2W | 0.5296 | 0.9069 | 0.3484 | $0.045^{*}$ |
| O6 | $0.7621(4)$ | $0.2301(3)$ | $0.2670(8)$ | $0.0684(13)$ |
| H3W | 0.7617 | 0.2926 | 0.3116 | $0.082^{*}$ |
| N1 | $0.7187(3)$ | $0.9727(3)$ | $0.1137(5)$ | $0.0238(7)$ |
| N2 | $0.8371(3)$ | $1.0290(2)$ | $0.1925(5)$ | $0.0237(7)$ |
| H2 | 0.8402 | 1.0958 | 0.2251 | $0.028^{*}$ |
| C1 | $0.6402(4)$ | $0.7957(3)$ | $-0.0049(6)$ | $0.0239(8)$ |
| C2 | $0.7586(4)$ | $0.8723(3)$ | $0.0850(6)$ | $0.0232(7)$ |
| C3 | $0.9054(4)$ | $0.8646(3)$ | $0.1462(6)$ | $0.0255(8)$ |
| H3 | 0.9595 | 0.8047 | 0.1422 | $0.031^{*}$ |
| C4 | $0.9519(4)$ | $0.9668(3)$ | $0.2143(6)$ | $0.0246(8)$ |
| C5 | $1.0964(4)$ | $1.0103(3)$ | $0.2981(6)$ | $0.0264(8)$ |
| H4W | $0.678(12)$ | $0.232(9)$ | $0.182(18)$ | $0.19(4)^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Co1 | $0.0135(4)$ | $0.0169(4)$ | $0.0356(4)$ | $0.0024(2)$ | $0.0049(3)$ | $0.0001(3)$ |
| O1 | $0.0156(13)$ | $0.0203(13)$ | $0.0522(17)$ | $0.0011(10)$ | $0.0046(11)$ | $-0.0035(12)$ |
| O2 | $0.0203(14)$ | $0.0210(14)$ | $0.0535(18)$ | $0.0006(10)$ | $0.0031(12)$ | $-0.0062(12)$ |
| O3 | $0.0198(15)$ | $0.0342(16)$ | $0.066(2)$ | $0.0006(12)$ | $0.0106(14)$ | $-0.0041(15)$ |
| O4 | $0.0207(14)$ | $0.0269(15)$ | $0.0568(19)$ | $-0.0042(11)$ | $0.0048(13)$ | $-0.0063(13)$ |
| O5 | $0.0292(16)$ | $0.0418(17)$ | $0.0443(16)$ | $0.0129(13)$ | $0.0143(13)$ | $0.0130(14)$ |
| O6 | $0.041(2)$ | $0.0318(19)$ | $0.124(4)$ | $0.0026(15)$ | $0.014(2)$ | $-0.010(2)$ |
| N1 | $0.0136(15)$ | $0.0210(15)$ | $0.0344(17)$ | $0.0010(12)$ | $0.0041(12)$ | $-0.0024(12)$ |
| N2 | $0.0159(15)$ | $0.0154(14)$ | $0.0379(17)$ | $-0.0022(12)$ | $0.0059(13)$ | $-0.0025(13)$ |
| C1 | $0.0170(17)$ | $0.0197(18)$ | $0.0327(19)$ | $-0.0005(14)$ | $0.0047(15)$ | $-0.0014(14)$ |
| C2 | $0.0167(17)$ | $0.0185(17)$ | $0.0329(19)$ | $-0.0012(14)$ | $0.0056(15)$ | $-0.0014(14)$ |
| C3 | $0.0171(17)$ | $0.0183(18)$ | $0.039(2)$ | $0.0018(13)$ | $0.0066(15)$ | $-0.0005(15)$ |
| C4 | $0.0154(17)$ | $0.0236(18)$ | $0.0336(19)$ | $0.0010(14)$ | $0.0064(14)$ | $0.0008(15)$ |
| C5 | $0.0205(19)$ | $0.0238(19)$ | $0.033(2)$ | $-0.0021(14)$ | $0.0065(16)$ | $0.0010(15)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| Col-O5 ${ }^{\text {i }}$ | 2.065 (3) | O5-H2W | 0.8277 |
| :---: | :---: | :---: | :---: |
| Co1-O5 | 2.065 (3) | O6-H3W | 0.8380 |
| Co1-N1 | 2.108 (3) | O6-H4W | 0.85 (11) |
| Col-N1 ${ }^{\text {i }}$ | 2.108 (3) | $\mathrm{N} 1-\mathrm{N} 2$ | 1.336 (4) |
| Col-O1 ${ }^{\text {i }}$ | 2.120 (3) | N1-C2 | 1.349 (5) |
| Co1-O1 | 2.120 (3) | N2-C4 | 1.358 (5) |
| $\mathrm{O} 1-\mathrm{C} 1$ | 1.262 (5) | N2-H2 | 0.8600 |
| $\mathrm{O} 2-\mathrm{C} 1$ | 1.256 (5) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.495 (5) |
| O3-C5 | 1.209 (5) | C2-C3 | 1.400 (5) |
| O4-C5 | 1.306 (5) | C3-C4 | 1.386 (5) |
| O4-H4 | 0.8200 | C3-H3 | 0.9300 |
| O5-H1W | 0.8288 | C4-C5 | 1.481 (5) |
| $\mathrm{O5}-\mathrm{Col}-\mathrm{O} 5$ | 180 | N2-N1-C2 | 106.3 (3) |
| O5 $5^{\text {i }}$ - $\mathrm{Co1}-\mathrm{N} 1$ | 89.16 (12) | N2-N1-Col | 138.6 (3) |
| O5-Co1-N1 | 90.84 (12) | C2-N1-Col | 114.8 (2) |
| $\mathrm{O} 5-\mathrm{Col}-\mathrm{N} 1^{\mathrm{i}}$ | 90.84 (12) | N1-N2-C4 | 110.9 (3) |
| O5-Col-N1 ${ }^{\text {i }}$ | 89.16 (12) | N1-N2-H2 | 124.6 |
| N1-Co1-N1 ${ }^{\text {i }}$ | 180 | C4-N2-H2 | 124.6 |
| $\mathrm{O} 5^{\mathrm{i}}-\mathrm{Col}-\mathrm{Ol}^{\mathrm{i}}$ | 88.82 (12) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | 124.1 (3) |
| O5-Col-O1 ${ }^{\text {i }}$ | 91.18 (12) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | 119.7 (3) |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1^{\text {i }}$ | 103.22 (11) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 116.2 (3) |
| $\mathrm{N} 1^{\mathrm{i}}-\mathrm{Col}-\mathrm{Ol}^{\mathrm{i}}$ | 76.78 (11) | N1-C2-C3 | 110.7 (3) |
| $\mathrm{O5}-\mathrm{Col}-\mathrm{O} 1$ | 91.18 (12) | N1-C2-C1 | 114.8 (3) |
| O5-Co1-O1 | 88.82 (12) | C3-C2-C1 | 134.5 (3) |
| N1-Co1-O1 | 76.78 (11) | C4-C3-C2 | 104.3 (3) |
| N1-Col-O1 | 103.22 (11) | C4-C3-H3 | 127.9 |
| O1--Col-O1 | 180 | C2-C3-H3 | 127.9 |


| C1-O1-Col | 116.9 (2) | N2-C4-C3 | 107.9 (3) |
| :---: | :---: | :---: | :---: |
| C5-O4-H4 | 109.5 | N2-C4-C5 | 121.6 (3) |
| Co1-O5-H1W | 121.4 | C3-C4-C5 | 130.6 (3) |
| Co1-O5-H2W | 119.8 | O3-C5-O4 | 125.8 (4) |
| H1W-O5-H2W | 111.9 | O3-C5-C4 | 122.5 (3) |
| H3W-O6-H4W | 95.7 | O4-C5-C4 | 111.7 (3) |
| $\mathrm{O} 5-\mathrm{Col}-\mathrm{O} 1-\mathrm{C} 1$ | 92.3 (3) | Co1-N1-C2-C3 | 174.1 (3) |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{Cl}$ | -87.7 (3) | N2-N1-C2-C1 | -179.5 (3) |
| N1-Co1-O1-C1 | 3.4 (3) | Co1-N1-C2-C1 | -5.3 (4) |
| N1-Col-O1-C1 | -176.6 (3) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | -171.3 (4) |
| O 5 - $\mathrm{Col} 1-\mathrm{N} 1-\mathrm{N} 2$ | 81.6 (4) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | 8.3 (5) |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{N} 2$ | -98.4 (4) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 9.5 (7) |
| $\mathrm{O} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{N} 2$ | -6.9 (4) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | -170.8 (4) |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{N} 2$ | 173.1 (4) | N1-C2-C3-C4 | 0.1 (4) |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 2$ | -90.0 (3) | C1-C2-C3-C4 | 179.3 (4) |
| $\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 2$ | 90.0 (3) | N1-N2-C4-C3 | -0.1 (4) |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 2$ | -178.6 (3) | N1-N2-C4-C5 | 179.8 (3) |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 2$ | 1.4 (3) | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$ | 0.0 (4) |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 4$ | 0.2 (4) | C2-C3-C4-C5 | -179.9 (4) |
| $\mathrm{Co1-N1-N2-C4}$ | -171.9 (3) | N2-C4-C5-O3 | -178.0 (4) |
| $\mathrm{Co1-O1-C1-O2}$ | 172.5 (3) | C3-C4-C5-O3 | 1.9 (7) |
| $\mathrm{Co1-O1-C1-C2}$ | -7.2 (4) | N2-C4-C5-O4 | 2.7 (5) |
| $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ | -0.2 (4) | C3-C4-C5-O4 | -177.4 (4) |

Symmetry code: (i) $-x+1,-y+2,-z$.

Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D-\mathrm{H} \cdots \mathrm{A}$ | $D$ - H | $\mathrm{H} \cdots \mathrm{A}$ | $D^{\cdots} A$ | $D-\mathrm{H} \cdots \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2{ }^{\text {ii }}$ | 0.82 | 1.73 | 2.535 (4) | 169 |
| $\mathrm{O} 5-\mathrm{H} 1 W^{\cdots} \cdots{ }^{\text {O }}{ }^{\text {iii }}$ | 0.83 | 2.07 | 2.887 (4) | 171 |
| $\mathrm{O} 5-\mathrm{H} 2 W \cdots{ }^{\text {a }}{ }^{\text {iv }}$ | 0.83 | 1.91 | 2.726 (4) | 171 |
| $\mathrm{O} 6-\mathrm{H} 4 W \cdots{ }^{\text {a }}{ }^{v}$ | 0.85 (11) | 2.06 (11) | 2.828 (5) | 149 (10) |
| $\mathrm{O} 6-\mathrm{H} 3 W^{\cdots} \mathrm{O}^{\text {vi }}$ | 0.84 | 2.30 | 2.932 (5) | 132 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {vii }}$ | 0.86 | 1.91 | 2.714 (5) | 155 |

Symmetry codes: (ii) $-x+2, y+1 / 2,-z+1 / 2$; (iii) $x-1, y, z$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $-x+1,-y+1,-z$; (vi) $-x+2, y-1 / 2,-z+1 / 2$; (vii) $x, y+1, z$.


[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2869).

