Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-1-Phenylethanone semicarbazone

Hoong-Kun Fun, ${ }^{\mathrm{a} *} \ddagger$ Chin Sing Yeap, ${ }^{\mathrm{a}}$ § Mahesh Padaki, ${ }^{\text {b }}$ Shridhar Malladi ${ }^{\text {b }}$ and Arun M Isloor ${ }^{\text {b }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.my

Received 26 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.056 ; w R$ factor $=0.181$; data-to-parameter ratio $=13.7$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, the benzene ring is disordered over two positions with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON [Spek (2009). Acta Cryst. D65, 148-155] recommends the solution in the space group $C 2 / m$ with $a=7.3050$ (3), $b=6.6745$ (2), $c=$ 18.3853 (6) \AA and $\beta=96.986$ (2) ${ }^{\circ}$. However, the large number of non-extinct reflections needed to be ignored if $C 2 / m$ is chosen suggested that the space group is incorrect, even though the R values are lower than that for $P 2_{1} / c$. The semicarbazone group is essentially planar, with a maximum deviation of 0.046 (1) \AA for one of the N atoms. The mean plane of the semicarbazone group forms dihedral angles of 33.61 (8) and 39.1 (9) ${ }^{\circ}$ with the benzene ring of the major and minor components, respectively. In the crystal structure, molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into extended chains along the c axis. The crystal structure is further stabilized by weak intermolucular C $\mathrm{H} \cdots \pi$ interactions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of semicarbazone derivatives, see: Chandra \& Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation of the title compound, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} & V=889.76(5) \AA^{3} \\
M_{r}=177.21 & Z=4 \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } K \alpha \text { radiation } \\
a=18.3853(6) \AA & \mu=0.09 \mathrm{~mm}^{-1} \\
b=6.6745(2) \AA & T=100 \mathrm{~K} \\
c=7.3050(3) \AA & 0.32 \times 0.13 \times 0.03 \mathrm{~mm}
\end{array}
$$

$\beta=96.986(2)^{\circ}$

Data collection

Bruker SMART APEXII CCD 9294 measured reflections area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005) 2034 independent reflections 1449 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$
$T_{\text {min }}=0.881, T_{\text {max }}=0.997$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.181 \quad$ independent and constrained
$S=1.08$ refinement
2034 reflections
$\Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3}$
148 parameters
$\Delta \rho_{\min }=-0.46$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(3)$	$2.02(3)$	$2.901(3)$	$177.2(19)$
$\mathrm{N} 3-\mathrm{H} 2 N 3 \cdots 1^{\mathrm{ii}}$	$0.86(3)$	$2.04(3)$	$2.894(3)$	$173(3)$
$\mathrm{C} 2 A-\mathrm{H} 2 A A \cdots C g^{\text {iii }}$	0.93	2.93	$3.707(2)$	142
$\mathrm{C} 5 A-\mathrm{H} 5 A A \cdots C g^{\text {iv }}$	0.93	2.90	$3.678(2)$	142

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y-\frac{1}{2}, z-\frac{3}{2}$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2} . C g$ is the centroid of the $\mathrm{C} 1 A, \mathrm{C} 2 A, \mathrm{C} 3, \mathrm{C} 4 A, \mathrm{C} 5 A, \mathrm{C} 6$,C6 benzene ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2857).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
Chandra, S. \& Gupta, L. K. (2005). Spectrochim. Acta A, 62, 1089-1094
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. \& Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.

Fun, H.-K., Quah, C. K., Padaki, M., Malladi, S. \& Isloor, A. M. (2009b). Acta Cryst. E65, o1634-o1635.
Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. \& Isloor, A. M. (2009c). Acta Cryst. E65, o1619-o1620.
Furniss, B. S., Hannaford, A. J., Roger, V., Smith, P. W. G. \& Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.
Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. \& Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101-110
Pilgram, K. H. G. (1978). US Patent No. 4108399.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Warren, J. D., Woodward, D. L. \& Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.
Yogeeswari, P., Sriram, D., Pandeya, S. N. \& Stables, J. P. (2004). Farmaco, 59, 609-613.

supporting information

Acta Cryst. (2009). E65, o1807-o1808 [doi:10.1107/S1600536809025847]

(E)-1-Phenylethanone semicarbazone

Hoong-Kun Fun, Chin Sing Yeap, Mahesh Padaki, Shridhar Malladi and Arun M Isloor

S1. Comment

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazone find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometalics (Chandra \& Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of a semicarbazone of potential commercial importance, (I).

The bond lengths and angles of the title compound (I), (Fig. 1) are comparable to related structures (Fun et al., 2009a, b, c). A maximum deviation of -0.046 (1) \AA for atom N 2 from atoms $\mathrm{O} 1, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{~N} 3, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8$ and C 9 indicates that the semicarbazone group is essentially coplanar. This mean plane makes dihedral angle of 33.61 (8) and 39.1 (9) ${ }^{\circ}$ with benzene ring of the major and minor component (C1A-C2A-C3-C4A-C5A-C6 and C1B-C2B-C3-C4B-C5B-C6), respectively. The molecules are linked together into infinite one-dimensional chains by the intermolecular N 2 $\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$ and $\mathrm{N} 3-\mathrm{H} 2 \mathrm{~N} 3 \cdots \mathrm{O} 1^{\text {ii }}$ (see Table 1 for symmetry codes) hydrogen bonds along the c axis (Fig. 2) and these hydrogen bonds generate $R_{2}{ }^{2}(8)$ ring motifs (Bernstein et al., 1995). The crystal structure is stabilized by the weak intermolucular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1).

S2. Experimental

Semicarbazide hydrochloride $(1.0 \mathrm{~g}, 8.9 \mathrm{mmol})$ and freshly recrystallized sodium acetate $(0.9 \mathrm{~g}, 10.9 \mathrm{mmol})$ were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, $(1.0 \mathrm{~g}, 8.32 \mathrm{mmol})$ acetophenone was added and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallizes on standing for 6 h . The separated crystals were filtered, washed with cold water and recrystallized from alcohol. Yield: 1.37 g (93\%). M.p. 473-478 K.

S3. Refinement

All hydrogen atoms were located in a difference Fourier map and refined freely. The benzene ring is disordered over 2 position with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON recommends the solution in $C 2 / m$ space group with $\mathrm{a}=7.3050(3), \mathrm{b}=6.6745$ (2), $\mathrm{c}=18.3853$ (6) \AA and $\beta=96.986$ (2) ${ }^{\circ}$. However the large number of non-extinct (i.e. observed) reflections needed to be ignored for the $C 2 / m$ case suggested that the space group is incorrect even though the R-values are lower than that for $P 2_{1} / c$.

Figure 1

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. All disorder components are shown. The minor disorder component is shown with open bonds.

Figure 2
Part of the crystal structure of (I), viewed along the b axis. Intermolecular hydrogen bonds are shown in as dashed lines. Only the major disorder component is shown.

(E)-1-Phenylethanone semicarbazone

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=177.21$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc

$$
\begin{aligned}
a & =18.3853(6) \AA \\
b & =6.6745(2) \AA \\
c & =7.3050(3) \AA \\
\beta & =96.986(2)^{\circ}
\end{aligned}
$$

$V=889.76(5) \AA^{3}$
$Z=4$
$F(000)=376$
$D_{\mathrm{x}}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2113 reflections

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.881, T_{\text {max }}=0.997$

$$
\begin{aligned}
& \theta=3.4-29.6^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.32 \times 0.13 \times 0.03 \mathrm{~mm} \\
& \\
& \\
& 9294 \text { measured reflections } \\
& 2034 \text { independent reflections } \\
& 1449 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.043 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=1.1^{\circ} \\
& h=-23 \rightarrow 23 \\
& k=-8 \rightarrow 8 \\
& l=-5 \rightarrow 9
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.181$
$S=1.08$
2034 reflections
148 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0993 P)^{2}+0.2822 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.46 \mathrm{e}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	$0.51345(7)$	$0.4963(2)$	$0.7657(2)$	$0.0165(4)$	
N1	$0.32789(9)$	$0.4925(2)$	$0.8239(3)$	$0.0130(4)$	
N2	$0.40259(9)$	$0.4938(2)$	$0.8715(3)$	$0.0142(4)$	
N3	$0.41052(10)$	$0.4917(3)$	$0.5585(3)$	$0.0174(5)$	
C3	$0.05611(11)$	$0.5011(3)$	$0.7581(3)$	$0.0169(5)$	
H3A	0.0064	0.5007	0.7151	0.020^{*}	
C6	$0.20605(10)$	$0.5016(3)$	$0.8879(3)$	$0.0114(4)$	
C7	$0.28592(11)$	$0.5045(3)$	$0.9528(3)$	$0.0119(5)$	

C8	$0.44581(11)$	$0.4942(3)$	$0.7296(3)$	$0.0135(5)$	
C9	$0.31370(11)$	$0.5196(3)$	$1.1541(3)$	$0.0149(5)$	
H9A	0.3444	0.6357	1.1750	0.022^{*}	
H9B	0.3415	0.4018	1.1920	0.022^{*}	
H9C	0.2730	0.5311	1.2242	0.022^{*}	$0.922(5)$
C1A	$0.17941(11)$	$0.3969(3)$	$0.7290(3)$	$0.0144(5)$	$0.922(5)$
H1AA	0.2120	0.3267	0.6649	0.017^{*}	$0.922(5)$
C2A	$0.10550(12)$	$0.3954(3)$	$0.6644(3)$	$0.0176(5)$	$0.922(5)$
H2AA	0.0888	0.3238	0.5584	0.021^{*}	$0.922(5)$
C4A	$0.08190(11)$	$0.6070(3)$	$0.9162(3)$	$0.0164(5)$	$0.922(5)$
H4AA	0.0492	0.6784	0.9789	0.020^{*}	$0.922(5)$
C5A	$0.15600(11)$	$0.6073(3)$	$0.9816(3)$	$0.0142(5)$	$0.922(5)$
H5AA	0.1726	0.6781	1.0883	0.017^{*}	$0.078(5)$
C1B	$0.1548(15)$	$0.395(4)$	$0.979(4)$	$0.022(7)^{*}$	$0.078(5)$
H1BA	0.1725	0.3268	1.0861	0.026^{*}	$0.078(5)$
C2B	$0.0822(18)$	$0.385(5)$	$0.923(5)$	$0.032(8)^{*}$	$0.078(5)$
H2BA	0.0506	0.3096	0.9861	0.039^{*}	$0.078(5)$
C4B	$0.1048(17)$	$0.607(5)$	$0.664(5)$	$0.032(8)^{*}$	$0.078(5)$
H4BA	0.0876	0.6756	0.5570	0.038^{*}	$0.078(5)$
C5B	$0.1785(16)$	$0.612(5)$	$0.728(4)$	$0.025(7)^{*}$	$0.078(5)$
H5BA	0.2103	0.6871	0.6662	0.030^{*}	
H1N2	$0.4271(15)$	$0.500(3)$	$0.983(4)$	$0.025(7)^{*}$	
H1N3	$0.3627(14)$	$0.495(3)$	$0.543(4)$	$0.019(6)^{*}$	
H2N3	$0.4366(14)$	$0.496(3)$	$0.469(4)$	$0.020(6)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0110(7)$	$0.0241(8)$	$0.0143(8)$	$-0.0017(6)$	$0.0015(6)$	$-0.0005(6)$
N1	$0.0088(8)$	$0.0142(8)$	$0.0159(9)$	$0.0007(6)$	$0.0010(6)$	$-0.0003(7)$
N2	$0.0094(8)$	$0.0207(9)$	$0.0121(9)$	$-0.0008(7)$	$-0.0002(7)$	$0.0002(8)$
N3	$0.0102(9)$	$0.0303(11)$	$0.0118(9)$	$-0.0010(8)$	$0.0020(7)$	$0.0001(8)$
C3	$0.0101(9)$	$0.0172(10)$	$0.0227(12)$	$0.0015(8)$	$-0.0007(8)$	$0.0033(9)$
C6	$0.0110(9)$	$0.0101(9)$	$0.0131(10)$	$0.0001(7)$	$0.0008(7)$	$0.0028(8)$
C7	$0.0131(9)$	$0.0088(9)$	$0.0135(10)$	$0.0005(7)$	$0.0006(8)$	$0.0005(8)$
C8	$0.0121(9)$	$0.0133(9)$	$0.0152(10)$	$0.0000(7)$	$0.0024(7)$	$-0.0005(8)$
C9	$0.0118(9)$	$0.0243(11)$	$0.0086(10)$	$-0.0009(8)$	$0.0016(7)$	$-0.0015(8)$
C1A	$0.0135(10)$	$0.0140(11)$	$0.0155(12)$	$0.0018(8)$	$0.0015(9)$	$-0.0016(9)$
C2A	$0.0158(11)$	$0.0169(11)$	$0.0189(12)$	$-0.0007(9)$	$-0.0028(9)$	$-0.0009(9)$
C4A	$0.0127(11)$	$0.0186(12)$	$0.0185(12)$	$0.0018(9)$	$0.0045(9)$	$-0.0008(9)$
C5A	$0.0160(11)$	$0.0143(11)$	$0.0120(11)$	$0.0012(9)$	$0.0011(8)$	$-0.0008(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 8$	$1.240(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.487(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.290(3)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.500(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.375(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{~N} 2-\mathrm{C} 8$	$1.380(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600

N2-H1N2	0.88 (3)
N3-C8	1.336 (3)
N3-H1N3	0.87 (3)
N3-H2N3	0.85 (3)
C3-C4B	1.39 (3)
C3-C4A	1.387 (3)
C3-C2A	1.394 (3)
C3-C2B	1.46 (3)
C3-H3A	0.9300
C6-C1A	1.392 (3)
C6-C5A	1.402 (3)
C6-C1B	1.41 (3)
C6-C5B	1.42 (3)
C7-N1-N2	118.86 (18)
N1-N2-C8	117.31 (18)
N1-N2-H1N2	128.1 (18)
C8-N2-H1N2	114.6 (18)
C8-N3-H1N3	119.0 (17)
C8-N3-H2N3	117.3 (18)
H1N3-N3-H2N3	124 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~A}$	88.6 (14)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~A}$	61.1 (13)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~A}$	119.32 (19)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}$	120.7 (19)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}$	62.5 (13)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}$	88.3 (13)
C4B-C3-H3A	120.2
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.1
C1A-C6-C5A	118.32 (18)
C1A-C6-C1B	87.4 (12)
C5A-C6-C1B	60.4 (11)
C1A-C6-C5B	61.3 (12)
C5A-C6-C5B	87.2 (12)
C1B-C6-C5B	117.2 (17)
C1A-C6-C7	120.39 (17)
C5A-C6-C7	121.27 (19)
C1B-C6-C7	123.1 (12)
C5B-C6-C7	119.7 (12)
N1-C7-C6	114.93 (18)
N1-C7-C9	123.85 (18)
C6-C7- 9	121.22 (17)
O1-C8-N3	124.04 (19)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	119.63 (19)
C7-N1-N2-C8	-175.79 (18)

$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.383(3)$
C1A-H1AA	0.9300
C2A-H2AA	0.9300
C4A-C5A	$1.388(3)$
C4A-H4AA	0.9300
C5A-H5AA	0.9300
C1B-C2B	$1.35(4)$
C1B-H1BA	0.9300
C2B-H2BA	0.9300
C4B-C5B	$1.38(4)$
C4B-H4BA	0.9300
C5B-H5BA	0.9300

116.34 (18)
109.5
109.5
109.5
109.5
109.5
109.5
121.3 (2)
119.4
119.4
120.0 (2)
120.0
120.0
120.6 (2)
119.7
119.7
120.4 (2)
119.8
119.8

125 (3)
117.4
117.4

116 (3)
122.1
122.1

121 (3)
119.6
119.6

120 (3)
119.9
119.9
70.3 (14)

$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$-179.91(16)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 9$	$-0.2(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$30.7(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-147.66(19)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$139.4(14)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-41.4(14)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$-149.0(2)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$32.6(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$-40.4(14)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$138.9(14)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 1$	$179.65(17)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$-0.5(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-0.3(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$53.8(12)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-69.3(13)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-178.78(19)$
$\mathrm{C} 6-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3$	$0.4(3)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$69.9(17)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-0.1(3)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-57.0(13)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-55.7(14)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-0.4(3)$

$\mathrm{C} 3-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6$	$0.5(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-0.1(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-68.7(14)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$54.9(12)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$178.31(19)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-54(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$71(3)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$2(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-179(2)$
$\mathrm{C} 6-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3$	$-2(4)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$2(4)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-68(2)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$57(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$54(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-71(3)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-2(4)$
$\mathrm{C} 3-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6$	$2(4)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$68(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-57(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-2(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$179(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.88(3)$	$2.02(3)$	$2.901(3)$	$177.2(19)$
$\mathrm{N} 3 — \mathrm{H} 2 N 3 \cdots 1^{\mathrm{ii}}$	$0.86(3)$	$2.04(3)$	$2.894(3)$	$173(3)$
$\mathrm{C} 2 A-\mathrm{H} 2 A A \cdots C g^{\mathrm{iii}}$	0.93	2.93	$3.707(2)$	142
$\mathrm{C} 5 A — \mathrm{H} 5 A A \cdots C g^{\mathrm{iv}}$	0.93	2.90	$3.678(2)$	142

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y-1 / 2, z-3 / 2$; (iv) $x,-y+1 / 2, z-1 / 2$.

