Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido(2,9-diethoxy-1,10-phenanthroline- $\kappa^2 N$, N')zinc(II)

Cao-Yuan Niu,* Yu-Li Dang, Xin-Sheng Wan and **Chun-Hong Kou**

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu_cy2000@yahoo.com.cn

Received 13 June 2009; accepted 25 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.008 Å; R factor = 0.048; wR factor = 0.089; data-to-parameter ratio = 12.8.

All non-H atoms except for the Cl atoms lie on a mirror plane in the title complex, $[ZnCl_2(C_{16}H_{16}N_2O_2)]$. The Zn^{II} ion is coordinated by two N atoms from a bis-chelating 2,9-diethoxy-1,10-phenanthroline ligand and two symmetry-related Cl atoms in a distorted tetrahedral environment. The two Zn-N bond lengths are significantly different from each other and the N-Zn-N angle is acute. In the crystal structure, there are weak but significant π - π stacking interactions between phenanthroline rings, with a centroid-centroid distance of 3.764 (1) Å.

Related literature

For background information, see: Majumder et al. (2006); Bie et al. (2006). For synthetic details, see: Pijper et al. (1984).

Experimental

Crystal data

$[ZnCl_2(C_{16}H_{16}N_2O_2)]$	V = 1762.7 (6) Å ³
$M_r = 404.58$	Z = 4
Orthorhombic, Pnma	Mo $K\alpha$ radiation
a = 13.255 (3) Å	$\mu = 1.71 \text{ mm}^{-1}$
b = 7.4403 (15) Å	T = 291 K
c = 17.874 (4) Å	0.20 \times 0.18 \times 0.17 mm

Data collection

Bruker APEX-II CCD	5148 measured reflections
diffractometer	1741 independent reflections
Absorption correction: multi-scan	1303 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.052$
$T_{\min} = 0.727, \ T_{\max} = 0.760$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	136 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
1741 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.065 (3)	Zn1-Cl1	2.2022 (10)
Zn1–N2	2.118 (4)	Zn1-Cl1 ⁱ	2.2022 (10)
N1-Zn1-N2	79.43 (13)	N1-Zn1-Cl1 ⁱ	112.53 (5)
N1-Zn1-Cl1	112.53 (5)	N2-Zn1-Cl1 ⁱ	112.90 (4)
N2-Zn1-Cl1	112.90 (4)	Cl1-Zn1-Cl1 ⁱ	119.74 (6)

Symmetry code: (i) $x, -y + \frac{1}{2}, z$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2850).

References

Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60 2475-2479

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Majumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841-3846.

Pijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.

Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m860 [doi:10.1107/S1600536809024490]

Dichlorido(2,9-diethoxy-1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II)

Cao-Yuan Niu, Yu-Li Dang, Xin-Sheng Wan and Chun-Hong Kou

S1. Comment

The compound 1,10-phenanthroline has been reported as used to synthesize some potential strong luminescent materials with d^{10} metals. It was predicted that the title compound which is composed of a derivative of 1,10-phenanthroline and a d^{10} metal would possess strong ligand to ligand or metal perturbed ligand to ligand emissions (Majumder *et al.*, 2006; Bie, *et al.*, 2006). The ligand 2,9-Diethoxy-1,10-phenanthroline as a derivative of 1,10-phenanthroline was synthesized at an earlier time and possesses antimycoplasmal activity in the presence of copper (Pijper, *et al.*, 1984).

The title mononuclear zinc(II) complex is shown in Fig. 1. All non-hydrogen atoms, except for the Cl atoms, lie on a mirror plane. The Zn^{II} ion is four coordinated by two nitrogen atoms from the 1,10-phenanthroline ring system (N1 and N2) and two chlorine atoms [Cl1, Cl1ⁱ. Symmetry code: (i) x, -y + 1/2, z], defining a disotorted tetrahedral coordination environment. In the crystal structure there are weak but significant π - π stacking interactions between phenanthroline rings (Fig. 2) with a centroid-to-centroid distance of 3.764 (1) Å.

S2. Experimental

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, *et al.*, 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol) and zinc dichloride (0.014 g, 0.1 mmol) in 30 ml me thanol afforded suitable colourless block crystals in about 7 days (yield 60%).

S3. Refinement

Carbon-bound H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$ for aromatic H atoms; C—H = 0.97 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$ for methylene H atoms; C—H = 0.96 Å and $U_{iso}(H) = 1.5$ $U_{eq}(C)$ for methyl H atoms;]. The final difference Fourier map had a highest peak at 1.17 Å from atom Zn1 and a deepest hole at 1.04 Å from atom Zn1.

Figure 1

The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, -y + 1/2, z.]

Figure 2

Part of the crystal structure showing a π - π interaction (purple dotted line). All H atoms have been omitted for clarity.

Dichlorido(2,9-diethoxy-1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II)

Crystal data

 $[ZnCl_2(C_{16}H_{16}N_2O_2)]$ $M_r = 404.58$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 13.255 (3) Å b = 7.4403 (15) Å c = 17.874 (4) Å V = 1762.7 (6) Å³ Z = 4

Data collection

Bruker APEX-II CCD detector	5148 measured reflections
diffractometer	1741 independent reflections
Radiation source: fine-focus sealed tube	1303 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.052$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Oscillation frames scans	$h = -16 \rightarrow 0$
Absorption correction: multi-scan	$k = -8 \longrightarrow 8$
(SADABS; Sheldrick, 1996)	$l = -21 \rightarrow 21$
$T_{\min} = 0.727, \ T_{\max} = 0.760$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.089$	neighbouring sites
S = 1.08	H-atom parameters constrained
1741 reflections	$w = 1/[\sigma^2(F_o^2) + (0.042P)^2]$
136 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 824

 $\theta = 2 - 25.1^{\circ}$

 $\mu = 1.71 \text{ mm}^{-1}$ T = 291 K

 $D_{\rm x} = 1.524 {\rm Mg} {\rm m}^{-3}$

Prismatic, colorless

 $0.20 \times 0.18 \times 0.17 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 398 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	-0.76441 (4)	0.2500	0.40645 (3)	0.03224 (18)	
C11	-0.72431 (7)	-0.00599 (12)	0.35222 (5)	0.0513 (3)	
01	-0.9753 (2)	0.2500	0.33493 (19)	0.0549 (10)	
O2	-0.5679 (2)	0.2500	0.51182 (18)	0.0441 (9)	

N1	-0.9098 (2)	0.2500	0.4479 (2)	0.0326 (9)	
N2	-0.7355 (2)	0.2500	0.5230 (2)	0.0330 (9)	
C1	-0.9938 (3)	0.2500	0.4084 (3)	0.0409 (12)	
C2	-1.0897 (3)	0.2500	0.4426 (3)	0.0464 (14)	
H2A	-1.1480	0.2500	0.4136	0.056*	
C3	-1.0957 (4)	0.2500	0.5183 (3)	0.0512 (15)	
H3A	-1.1585	0.2500	0.5415	0.061*	
C4	-1.0068 (4)	0.2500	0.5625 (3)	0.0425 (13)	
C5	-0.9155 (3)	0.2500	0.5242 (3)	0.0325 (11)	
C6	-0.8217 (3)	0.2500	0.5640 (3)	0.0327 (11)	
C7	-0.8228 (4)	0.2500	0.6423 (3)	0.0411 (12)	
C8	-0.7279 (4)	0.2500	0.6775 (3)	0.0530 (14)	
H8A	-0.7244	0.2500	0.7295	0.064*	
С9	-0.6412 (4)	0.2500	0.6367 (3)	0.0489 (15)	
H9A	-0.5787	0.2500	0.6604	0.059*	
C10	-0.6474 (3)	0.2500	0.5576 (3)	0.0382 (13)	
C11	-1.0056 (4)	0.2500	0.6427 (3)	0.0576 (16)	
H11A	-1.0663	0.2500	0.6689	0.069*	
C12	-0.9174 (4)	0.2500	0.6808 (3)	0.0537 (15)	
H12A	-0.9183	0.2500	0.7329	0.064*	
C13	-1.0535 (4)	0.2500	0.2795 (3)	0.0527 (15)	
H13A	-1.0956	0.3561	0.2843	0.063*	0.50
H13B	-1.0956	0.1439	0.2843	0.063*	0.50
C14	-0.9988 (4)	0.2500	0.2065 (3)	0.081 (2)	
H14A	-1.0468	0.2500	0.1663	0.122*	
H14B	-0.9572	0.1446	0.2032	0.122*	0.50
H14C	-0.9572	0.3554	0.2032	0.122*	0.50
C15	-0.4675 (3)	0.2500	0.5431 (3)	0.0578 (17)	
H15A	-0.4576	0.1442	0.5740	0.069*	0.50
H15B	-0.4576	0.3558	0.5740	0.069*	0.50
C16	-0.3943 (4)	0.2500	0.4794 (3)	0.0608 (17)	
H16A	-0.3266	0.2500	0.4987	0.091*	
H16B	-0.4046	0.3554	0.4494	0.091*	0.50
H16C	-0.4046	0.1446	0.4494	0.091*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.0278 (3)	0.0404 (3)	0.0285 (3)	0.000	0.0007 (2)	0.000
Cl1	0.0576 (6)	0.0440 (6)	0.0523 (6)	0.0023 (5)	0.0032 (5)	-0.0099 (5)
01	0.0288 (18)	0.102 (3)	0.034 (2)	0.000	-0.0083 (16)	0.000
O2	0.0246 (17)	0.070 (3)	0.038 (2)	0.000	-0.0068 (15)	0.000
N1	0.024 (2)	0.042 (3)	0.031 (2)	0.000	-0.0012 (17)	0.000
N2	0.030 (2)	0.040 (2)	0.029 (2)	0.000	-0.0015 (19)	0.000
C1	0.030(2)	0.045 (3)	0.048 (3)	0.000	0.000 (3)	0.000
C2	0.023 (2)	0.064 (4)	0.052 (4)	0.000	-0.006 (2)	0.000
C3	0.030 (3)	0.058 (4)	0.065 (4)	0.000	0.013 (3)	0.000
C4	0.036 (3)	0.047 (3)	0.044 (3)	0.000	0.009(2)	0.000

supporting information

C5	0.030 (2)	0.030 (3)	0.037 (3)	0.000	0.008 (2)	0.000	
C6	0.034 (3)	0.035 (3)	0.029 (3)	0.000	0.005 (2)	0.000	
C7	0.052 (3)	0.044 (3)	0.027 (3)	0.000	0.002 (2)	0.000	
C8	0.062 (4)	0.072 (4)	0.025 (3)	0.000	-0.009 (3)	0.000	
C9	0.040 (3)	0.072 (4)	0.034 (3)	0.000	-0.009 (3)	0.000	
C10	0.033 (3)	0.049 (4)	0.033 (3)	0.000	-0.006(2)	0.000	
C11	0.048 (3)	0.076 (5)	0.048 (4)	0.000	0.025 (3)	0.000	
C12	0.054 (3)	0.077 (5)	0.029 (3)	0.000	0.008 (3)	0.000	
C13	0.038 (3)	0.069 (4)	0.050 (4)	0.000	-0.017 (3)	0.000	
C14	0.051 (4)	0.149 (7)	0.044 (4)	0.000	-0.013 (3)	0.000	
C15	0.030 (3)	0.096 (5)	0.047 (4)	0.000	-0.011 (3)	0.000	
C16	0.034 (3)	0.093 (5)	0.056 (4)	0.000	-0.003 (3)	0.000	

Geometric parameters (Å, °)

Zn1—N1	2.065 (3)	C7—C8	1.406 (7)	
Zn1—N2	2.118 (4)	C7—C12	1.431 (7)	
Zn1—Cl1	2.2022 (10)	C8—C9	1.362 (7)	
Zn1—Cl1 ⁱ	2.2022 (10)	C8—H8A	0.9300	
01—C1	1.336 (6)	C9—C10	1.415 (6)	
O1—C13	1.434 (5)	С9—Н9А	0.9300	
O2—C10	1.335 (5)	C11—C12	1.353 (7)	
O2—C15	1.443 (5)	C11—H11A	0.9300	
N1—C1	1.318 (5)	C12—H12A	0.9300	
N1-C5	1.366 (6)	C13—C14	1.493 (7)	
N2-C10	1.322 (5)	C13—H13A	0.9700	
N2C6	1.358 (5)	C13—H13B	0.9700	
C1—C2	1.410 (6)	C14—H14A	0.9600	
C2—C3	1.356 (7)	C14—H14B	0.9600	
C2—H2A	0.9300	C14—H14C	0.9600	
C3—C4	1.418 (7)	C15—C16	1.496 (7)	
С3—НЗА	0.9300	C15—H15A	0.9700	
C4—C5	1.390 (6)	C15—H15B	0.9700	
C4—C11	1.434 (7)	C16—H16A	0.9600	
C5—C6	1.433 (6)	C16—H16B	0.9600	
C6—C7	1.400 (6)	C16—H16C	0.9600	
N1— $Zn1$ — $N2$	79.43 (13)	С7—С8—Н8А	119.5	
N1-Zn1-C11	112.53 (5)	C8—C9—C10	119.1 (5)	
N2—Zn1—Cl1	112.90 (4)	С8—С9—Н9А	120.5	
N1—Zn1—Cl1 ⁱ	112.53 (5)	С10—С9—Н9А	120.5	
N2—Zn1—Cl1 ⁱ	112.90 (4)	N2-C10-O2	114.2 (4)	
Cl1—Zn1—Cl1 ⁱ	119.74 (6)	N2—C10—C9	121.3 (4)	
C1	123.1 (4)	O2—C10—C9	124.5 (4)	
C10—O2—C15	119.3 (4)	C12—C11—C4	120.8 (5)	
C1—N1—C5	119.2 (4)	C12—C11—H11A	119.6	
C1—N1—Zn1	126.6 (3)	C4—C11—H11A	119.6	
C5—N1—Zn1	114.2 (3)	C11—C12—C7	121.0 (5)	
			× /	

C10—N2—C6	119.4 (4)	C11—C12—H12A	119.5
C10—N2—Zn1	128.4 (3)	C7—C12—H12A	119.5
C6—N2—Zn1	112.3 (3)	O1—C13—C14	104.6 (4)
N1-C1-O1	111.8 (4)	O1—C13—H13A	110.8
N1—C1—C2	122.0 (5)	C14—C13—H13A	110.8
O1—C1—C2	126.3 (4)	O1—C13—H13B	110.8
C3—C2—C1	119.0 (5)	C14—C13—H13B	110.8
C3—C2—H2A	120.5	H13A—C13—H13B	108.9
C1—C2—H2A	120.5	C13—C14—H14A	109.5
C2—C3—C4	120.5 (5)	C13—C14—H14B	109.5
С2—С3—Н3А	119.7	H14A—C14—H14B	109.5
С4—С3—Н3А	119.7	C13—C14—H14C	109.5
C5-C4-C3	116.6 (5)	H14A—C14—H14C	109.5
C5-C4-C11	118.9 (5)	H14B— $C14$ — $H14C$	109.5
C3-C4-C11	124 5 (5)	02-C15-C16	107.6 (4)
N1-C5-C4	127.7(4)	Ω^2 — $C15$ —H15A	110.2
N1-C5-C6	122.7(1) 1166(4)	C_{16} C_{15} H_{15A}	110.2
C4-C5-C6	120.7(5)	Ω^2 — $C15$ —H15B	110.2
N_{2} C6 C7	120.7(5) 123.3(4)	C16_C15_H15B	110.2
$N_2 = C_0 = C_7$	125.5(4)	H15A C15 H15B	108.5
112 - 00 - 03	117.3(4) 110.2(4)	C15 C16 H16A	108.5
$C_{1} = C_{2} = C_{3}$	119.2 (4) 116.0 (4)	C15 C16 H16B	109.5
$C_{0} = C_{1} = C_{0}$	110.0 (4)		109.5
$C_{0} = C_{1} = C_{12}$	119.5(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{0} C_{0} C_{12}	124.0(3) 121.0(4)		109.5
C_{9}	121.0 (4)	H16A - C16 - H16C	109.5
С9—С8—П8А	119.5	птов—сто—птос	109.5
N2—Zn1—N1—C1	180.0	C10—N2—C6—C7	0.000(1)
Cl1—Zn1—N1—C1	-69.44 (5)	Zn1—N2—C6—C7	180.0
Cl1 ⁱ —Zn1—N1—C1	69.44 (5)	C10—N2—C6—C5	180.0
N2—Zn1—N1—C5	0.0	Zn1—N2—C6—C5	0.0
Cl1—Zn1—N1—C5	110.56 (5)	N1-C5-C6-N2	0.0
Cl1 ⁱ —Zn1—N1—C5	-110.56 (5)	C4—C5—C6—N2	180.0
N1—Zn1—N2—C10	180.0	N1—C5—C6—C7	180.000(1)
Cl1—Zn1—N2—C10	69.87 (5)	C4—C5—C6—C7	0.000(1)
Cl1 ⁱ —Zn1—N2—C10	-69.87 (5)	N2—C6—C7—C8	0.000(1)
N1—Zn1—N2—C6	0.0	C5—C6—C7—C8	180.000(1)
Cl1—Zn1—N2—C6	-110.13(5)	N2—C6—C7—C12	180.000 (1)
$C11^{i}$ — $Zn1$ — $N2$ — $C6$	110.13 (5)	C5—C6—C7—C12	0.000(1)
C5—N1—C1—O1	180.0	C6—C7—C8—C9	0.000(1)
Zn1—N1—C1—O1	0.0	C12—C7—C8—C9	180.000 (1)
C5—N1—C1—C2	0.0	C7—C8—C9—C10	0.000(1)
Zn1—N1—C1—C2	180.0	C6—N2—C10—O2	180.0
C13—O1—C1—N1	180.0	Zn1 - N2 - C10 - O2	0.0
C13—O1—C1—C2	0.0	C6—N2—C10—C9	0.000(1)
N1—C1—C2—C3	0.000(1)	Zn1—N2—C10—C9	180.0
01-C1-C2-C3	180.0	C15—O2—C10—N2	180.0
C1 - C2 - C3 - C4	0.000 (1)	$C_{15} - C_{2} - C_{10} - C_{9}$	0.000 (1)

C2—C3—C4—C5	0.000(1)	C8—C9—C10—N2	0.000(1)
C2—C3—C4—C11	180.000 (1)	C8—C9—C10—O2	180.000 (1)
C1—N1—C5—C4	0.000(1)	C5-C4-C11-C12	0.000(1)
Zn1—N1—C5—C4	180.0	C3—C4—C11—C12	180.000 (1)
C1—N1—C5—C6	180.0	C4—C11—C12—C7	0.000 (2)
Zn1—N1—C5—C6	0.0	C6—C7—C12—C11	0.000 (2)
C3—C4—C5—N1	0.0	C8—C7—C12—C11	180.000 (1)
C11—C4—C5—N1	180.0	C1	180.0
C3—C4—C5—C6	180.0	C10—O2—C15—C16	180.0
C11—C4—C5—C6	0.000(1)		

Symmetry code: (i) x, -y+1/2, z.