

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis[4-(1H-imidazo[4,5-f]-[1,10]phenanthrolin-2-yl)phenol]cadmium(II)]-µ-fumarato]

Li-Ping Shi^a* and Edward R. T. Tiekink^b

^aDepartment of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China, and ^bUniversidade Federal de São Carlos, Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, 13565-905 São Carlos, SP, Brazil Correspondence e-mail: jlsshiliping@163.com

Received 13 June 2009; accepted 24 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.6.

In polymeric title compound, $[Cd(C_4H_2O_4)$ the $(C_{19}H_{12}N_4O)_2]_n$, the Cd^{II} centre is eight-coordinated within an N₄O₄ donor set derived from two chelating 4-(1H-imidazo-[4,5-f][1,10]phenanthrolin-2-yl)phenol ligands and two asymmetrically chelating carboxylate residues of bridging fumarate dianions. The linear chains are linked into a layer in the ac plane via O-H···O_{carboxylate} hydrogen bonds. Layers are connected into double layers via $N-H \cdots O_{carboxylate}$ hydrogen bonds and these stack along the *b* axis. $C-H \cdots \pi$ interactions are also present. Disorder in the ethylene portion of the fumarate was modelled over two positions, the major component having a site-occupancy factor of 0.677 (15).

Related literature

For general background and related structures see: Chen & Liu (2002); Yang *et al.* (2007*a*,*b*).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_4H_2O_4)(C_{19}H_{12}N_4O)_2 \end{bmatrix}$ $M_r = 851.11$ Triclinic, $P\overline{1}$ a = 9.5596 (3) Å b = 13.5628 (7) Å c = 15.8934 (16) Å $\alpha = 64.756$ (3)° $\beta = 77.142$ (1)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.654, T_{max} = 0.772$ (expected range = 0.739–0.873)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.057170 reflections 529 parameters V = 1770.4 (2) Å³ Z = 2Mo K α radiation $\mu = 0.68 \text{ mm}^{-1}$ T = 293 K $0.33 \times 0.25 \times 0.20 \text{ mm}$

 $\gamma = 72.929 \ (4)^{\circ}$

15185 measured reflections 7170 independent reflections 5600 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

2 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.67$ e Å⁻³ $\Delta \rho_{min} = -0.30$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1O\cdots O6^{i}$	0.84	1.86	2.659 (5)	161
O2−H2O···O4 ⁱⁱ	0.84	1.83	2.663 (5)	172
$N3-H3n\cdots O5^{iii}$	0.86	2.15	2.893 (6)	144
$N7 - H7n \cdot \cdot \cdot O3^{iv}$	0.86	2.06	2.785 (6)	141
C3−H3···O5 ⁱⁱⁱ	0.93	2.48	3.309 (5)	148
$C22 - H22 \cdots O3^{iv}$	0.93	2.57	3.360 (5)	143
$C28 - H28 \cdots O2^{v}$	0.93	2.55	3.390 (6)	150
$C2-H2\cdots Cg1^{iv}$	0.93	2.75	3.445 (5)	133
$C21 - H21 \cdots Cg2^{vi}$	0.93	2.79	3.554 (5)	140

Symmetry codes: (i) x - 1, y, z + 1; (ii) x, y, z - 1; (iii) -x + 2, -y, -z + 2; (iv) -x + 2, -y, -z + 1; (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y, -z + 2. Cg1 and Cg2 are the centroids of the C33–C38 and C14–C19 rings, respectively.

metal-organic compounds

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The authors thank Beihua University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2849).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (1997). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, J., Li, G.-D., Cao, J.-J., Yue, Q., Li, G.-H. & Chen, J.-S. (2007a). Chem. Eur. J. 13, 3248–3261.
- Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2007b). Inorg. Chem. 46, 6542–6555.

supporting information

Acta Cryst. (2009). E65, m885-m886 [doi:10.1107/S1600536809024246]

catena-Poly[[bis[4-(1*H*-imidazo[4,5-*f*][1,10]phenanthrolin-2yl)phenol]cadmium(II)]-μ-fumarato]

Li-Ping Shi and Edward R. T. Tiekink

S1. Comment

The chelating molecules 1,10-phenanthroline and 2,2'-bipyridyl have been widely used to build supramolecular architectures owing to their excellent coordinating ability and large conjugated system (Chen & Liu, 2002). However, far less attention has been given to their derivatives (Yang *et al.*, 2007*a*; Yang *et al.*, 2007*b*). For example, the rare phenanthroline derivative 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol (*L*) possesses varied aromatic systems, and is a good candidate for the construction of metal-organic supramolecular architectures. In this contribution, a cadmium coordination polymer containing *L* and fumarate has been synthesized, namely $[CdL_2(C_4H_2O_4)]_n$ (I), and its crystal structure determined.

The asymmetric unit of (I) comprises cadmium, two chelating *L* ligands and a bridging fumarate dianion, Fig. 1. The Cd–N bond distances lie in the narrow range 2.320 (3) to 2.351 (3) Å and, reflecting the asymmetric mode of coordination exhibited by the carboxylate residues, the Cd–O distances range from 2.496 (3) to 2.742 (3) Å. The cadmium centre is eight-coordinate within an N₄O₄ donor set. The polymeric chain is linear, Fig. 2, and these form a layer in the *ac* plane with adjacent chains being connected by O–H···O hydrogen bonds, Table 1. Centrosymmetrically related layers associate *via* N–H···O hydrogen bonds to form a double layer and these aggregates stack along the *b* axis, Fig. 3. Further consolidation to the crystal packing is afforded by C–H···O interactions that occur within layers and between double layers, and by C–H··· π contacts within double layers, Table 1.

S2. Experimental

A mixture of fumeric acid (0.5 mmol), [4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol] (0.5 mmol), NaOH (1 mmol) and CdCl₂·2H₂O (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 433 K for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water, and dried.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 Å, and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The O—H and N—H atoms were located from a difference map but included in their idealized positions with O—H = 0.84 Å and U(H) set to $1.5U_{eq}(O)$ and N—H = 0.86 Å and U(H) set to $1.2U_{eq}(N)$.

Disorder was noted in the positions of the ethylene atoms of the fumarate dianion. The atoms were modelled over two positions with the major component (anisotropic displacement parameters) having a site occupancy = 0.677 (15).

The maximum and minimum residual electron density peaks of 1.67 and 0.30 e Å⁻³, respectively, were located 1.37 Å and 1.53 Å from the H21 and N2 atoms, respectively.

Figure 1

The asymmetric unit in the polymeric structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 70% probability level. Only the major component of the disordered ethylene residue in the fumarate dianion is shown.

Figure 2

View of links mediated by O-H···O hydrogen bonding (dashed lines) between the polymeric chains in (I).

Figure 3

View of the double layers mediated by N—H···O hydrogen bonding (dashed lines) and the stacking of these in the crystal structure of (I).

catena-Poly[[bis[4-(1H-imidazo[4,5-f][1,10]phenanthrolin- 2-yl)phenol]cadmium(II)]-µ-fumarato]

Crystal de	ata
------------	-----

$[Cd(C_4H_2O_4)(C_{19}H_{12}N_4O)_2]$	Z = 2
$M_r = 851.11$	F(000) = 860
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.597 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.5596 (3) Å	Cell parameters from 7163 reflections
b = 13.5628 (7) Å	$\theta = 3.0-26.4^{\circ}$
c = 15.8934 (16) Å	$\mu = 0.68 \text{ mm}^{-1}$
$\alpha = 64.756 \ (3)^{\circ}$	T = 293 K
$\beta = 77.142 (1)^{\circ}$	Block, pale-yellow
$\gamma = 72.929 (4)^{\circ}$	$0.33 \times 0.25 \times 0.20 \text{ mm}$
V = 1770.4 (2) Å ³	
Data collection	
Bruker SMART APEX	15185 measured reflections
diffractometer	7170 independent reflections
Radiation source: fine-focus sealed tube	5600 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -16 \rightarrow 16$
$T_{\min} = 0.654, \ T_{\max} = 0.772$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.05	H-atom parameters constrained
7170 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0737P)^2 + 0.2724P]$
529 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.67 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.30 \ m e \ m \AA^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd	0.70820 (3)	0.16101 (2)	0.698014 (15)	0.03567 (11)	
01	0.3239 (4)	0.3694 (3)	1.4609 (2)	0.0702 (9)	
H1O	0.3520	0.3209	1.5122	0.105*	
O2	0.9918 (4)	0.3606 (3)	-0.19919 (18)	0.0599 (8)	
H2O	0.9745	0.3150	-0.2161	0.090*	
O3	0.9693 (3)	0.0674 (3)	0.72834 (19)	0.0504 (7)	
O4	0.9168 (3)	0.2304 (3)	0.73968 (19)	0.0488 (7)	
O5	1.4906 (4)	0.0739 (4)	0.7290 (2)	0.0762 (11)	
O6	1.4676 (3)	0.2372 (3)	0.6096 (2)	0.0619 (8)	
N1	0.6857 (3)	0.0720 (3)	0.85992 (19)	0.0357 (7)	
N2	0.5641 (3)	0.2916 (3)	0.7615 (2)	0.0412 (7)	
N3	0.5178 (4)	0.1543 (3)	1.1456 (2)	0.0439 (8)	
H3n	0.5437	0.0930	1.1924	0.053*	
N4	0.4233 (4)	0.3334 (3)	1.0646 (2)	0.0534 (9)	
N5	0.7763 (3)	0.0688 (3)	0.59460 (18)	0.0334 (6)	
N6	0.7974 (3)	0.2817 (3)	0.55281 (19)	0.0351 (7)	
N7	0.9021 (3)	0.1514 (3)	0.25644 (19)	0.0374 (7)	
H7n	0.9045	0.0920	0.2485	0.045*	
N8	0.9143 (4)	0.3264 (3)	0.2216 (2)	0.0436 (8)	
C1	0.7408 (4)	-0.0355 (4)	0.9060 (3)	0.0430 (9)	
H1	0.7878	-0.0793	0.8715	0.052*	
C2	0.7323 (4)	-0.0867 (4)	1.0031 (3)	0.0479 (10)	
H2	0.7702	-0.1630	1.0330	0.057*	
C3	0.6669 (4)	-0.0216 (4)	1.0534 (3)	0.0449 (9)	
Н3	0.6608	-0.0535	1.1184	0.054*	

C4	0.6091 (4)	0.0922 (3)	1.0077 (2)	0.0370 (8)
C5	0.6194 (4)	0.1374 (3)	0.9086 (2)	0.0352 (8)
C6	0.5558 (4)	0.2550 (3)	0.8563 (2)	0.0377 (8)
C7	0.5027 (5)	0.3966 (4)	0.7136 (3)	0.0533 (11)
H7	0.5064	0.4209	0.6490	0.064*
C8	0.4318 (5)	0.4735 (4)	0.7559 (3)	0.0594 (12)
H8	0.3912	0.5475	0.7199	0.071*
С9	0.4238 (5)	0.4376 (4)	0.8498 (3)	0.0589 (11)
H9	0.3777	0.4871	0.8791	0.071*
C10	0.4844 (4)	0.3266 (3)	0.9028 (3)	0.0452 (9)
C11	0.4802 (4)	0.2799 (4)	1.0036 (3)	0.0446(9)
C12	0.5385(4)	0.1685(3)	1 0519 (2)	0.0406 (9)
C13	0.5505(1) 0.4509(5)	0.2526(4)	1.0019(2) 1 1486(2)	0.0449(9)
C14	0.4123(5)	0.2320(1) 0.2773(4)	1.2344(3)	0.0459(9)
C15	0.4932(4)	0.2170(4)	1 3098 (3)	0.0470(9)
H15	0.1992 (1)	0.1533	1 3088	0.056*
C16	0.3677 0.4644 (4)	0.1335 0.2436 (4)	1.3000	0.030
H16	0.5187	0.2430 (4)	1.3376 (3)	0.0472 (10)
C17	0.3548 (5)	0.3359 (4)	1.4370	0.037
C18	0.3348(3)	0.3339(4) 0.3075(4)	1.3000(3)	0.0470(10)
U18	0.2717 (5)	0.3973 (4)	1.3140 (3)	0.0552 (11)
C10	0.1958 0.2014 (5)	0.4382 0.3601 (4)	1.3137	0.000°
U10	0.3014 (3)	0.3091 (4)	1.2375 (3)	0.0555 (11)
П19 С20	0.2403	0.4119	1.10/1	0.000°
C20	0.7710 (4)	-0.0302(3)	0.01/4(2)	0.0410 (9)
H20	0.7401	-0.0792	0.0799	0.030°
C21	0.8009 (5)	-0.0851 (3)	0.5527 (3)	0.0452 (9)
H21	0.7968	-0.1593	0.5/16	0.054*
C22	0.8361 (4)	-0.0228 (3)	0.4611 (3)	0.0401 (8)
H22	0.8560	-0.0541	0.4166	0.048*
C23	0.8426 (4)	0.0893 (3)	0.4337 (2)	0.0333 (8)
C24	0.8130 (3)	0.1325 (3)	0.5043 (2)	0.0297 (7)
C25	0.8232 (4)	0.2460 (3)	0.4814 (2)	0.0299 (7)
C26	0.8130 (5)	0.3828 (3)	0.5334 (3)	0.0455 (9)
H26	0.7959	0.4068	0.5823	0.055*
C27	0.8534 (5)	0.4553 (4)	0.4441 (3)	0.0530 (11)
H27	0.8649	0.5254	0.4341	0.064*
C28	0.8762 (5)	0.4227 (3)	0.3711 (3)	0.0466 (10)
H28	0.9010	0.4709	0.3104	0.056*
C29	0.8617 (4)	0.3158 (3)	0.3888 (2)	0.0357 (8)
C30	0.8838 (4)	0.2720 (3)	0.3175 (2)	0.0363 (8)
C31	0.8756 (4)	0.1642 (3)	0.3405 (2)	0.0327 (7)
C32	0.9234 (4)	0.2507 (3)	0.1887 (2)	0.0392 (8)
C33	0.9472 (4)	0.2732 (3)	0.0876 (2)	0.0404 (8)
C34	1.0177 (5)	0.3571 (3)	0.0255 (3)	0.0502 (10)
H34	1.0558	0.3953	0.0484	0.060*
C35	1.0324 (5)	0.3849 (3)	-0.0700 (3)	0.0504 (10)
H35	1.0810	0.4408	-0.1108	0.060*
C36	0.9748 (5)	0.3292 (3)	-0.1050 (2)	0.0426 (9)

C37	0.9070 (5)	0.2434 (4)	-0.0443 (3)	0.0491 (10)	
H37	0.8707	0.2045	-0.0675	0.059*	
C38	0.8935 (5)	0.2154 (4)	0.0518 (3)	0.0488 (10)	
H38	0.8481	0.1575	0.0926	0.059*	
C39	1.0066 (4)	0.1455 (4)	0.7328 (2)	0.0430 (9)	0.677 (15)
C40	1.1717 (6)	0.1176 (6)	0.7339 (4)	0.0345 (18)	0.677 (15)
H40	1.2180	0.0488	0.7754	0.041*	0.677 (15)
C41	1.2483 (6)	0.1893 (7)	0.6774 (4)	0.046 (2)	0.677 (15)
H41	1.2001	0.2602	0.6400	0.055*	0.677 (15)
C42	1.4171 (4)	0.1601 (5)	0.6706 (3)	0.0618 (14)	0.677 (15)
C39′	1.0066 (4)	0.1455 (4)	0.7328 (2)	0.0430 (9)	0.323 (15)
C40′	1.1567 (17)	0.1868 (16)	0.7021 (10)	0.039 (4)*	0.323 (15)
H40′	1.1611	0.2589	0.6913	0.047*	0.323 (15)
C41′	1.2730 (13)	0.1107 (13)	0.6934 (8)	0.032 (4)*	0.323 (15)
H41'	1.2727	0.0395	0.6994	0.038*	0.323 (15)
C42′	1.4171 (4)	0.1601 (5)	0.6706 (3)	0.0618 (14)	0.323 (15)

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd	0.03240 (15)	0.0554 (2)	0.02243 (14)	-0.01454 (12)	0.00236 (9)	-0.01769 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1	0.094 (3)	0.069 (2)	0.0517 (18)	0.0083 (19)	-0.0146 (17)	-0.0412 (17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2	0.104 (3)	0.0573 (19)	0.0251 (13)	-0.0357 (18)	-0.0051 (14)	-0.0116 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	0.0423 (15)	0.0675 (19)	0.0559 (17)	-0.0073 (14)	-0.0044 (12)	-0.0412 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O4	0.0499 (16)	0.0595 (18)	0.0457 (15)	-0.0180 (15)	-0.0034 (12)	-0.0257 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	0.0559 (19)	0.134 (3)	0.0345 (15)	-0.045 (2)	0.0013 (14)	-0.0170 (18)
N1 $0.0287 (14)$ $0.051 (2)$ $0.0278 (14)$ $-0.0112 (14)$ $0.0026 (11)$ $-0.0169 (14)$ N2 $0.0344 (16)$ $0.055 (2)$ $0.0274 (14)$ $-0.0065 (15)$ $-0.0044 (12)$ $-0.0113 (14)$ N3 $0.0433 (18)$ $0.056 (2)$ $0.0266 (15)$ $-0.0088 (16)$ $-0.0011 (13)$ $-0.0139 (15)$ N4 $0.062 (2)$ $0.059 (2)$ $0.0395 (18)$ $-0.0094 (18)$ $-0.0001 (16)$ $-0.0244 (17)$ N5 $0.0328 (15)$ $0.0449 (18)$ $0.0254 (13)$ $-0.0170 (14)$ $0.0011 (11)$ $-0.0129 (13)$ N6 $0.0369 (16)$ $0.0431 (18)$ $0.0276 (14)$ $-0.0150 (15)$ $0.0007 (12)$ $-0.0170 (13)$ N7 $0.0479 (18)$ $0.0415 (18)$ $0.0276 (15)$ $-0.0128 (16)$ $-0.0039 (14)$ $-0.0150 (14)$ C1 $0.038 (2)$ $0.0420 (18)$ $0.0276 (15)$ $-0.0128 (16)$ $-0.0047 (17)$ $-0.0150 (14)$ C2 $0.042 (2)$ $0.048 (2)$ $0.043 (2)$ $-0.0046 (18)$ $-0.0047 (17)$ $-0.0121 (19)$ C3 $0.040 (2)$ $0.060 (3)$ $0.0297 (18)$ $-0.0102 (19)$ $-0.0070 (15)$ $-0.0112 (18)$ C4 $0.0298 (17)$ $0.055 (2)$ $0.028 (17)$ $-0.0135 (17)$ $0.0011 (14)$ $-0.0170 (17)$ C5 $0.0271 (16)$ $0.052 (2)$ $0.028 (17)$ $-0.0102 (19)$ $-0.0034 (17)$ $-0.0147 (16)$ C6 $0.0301 (17)$ $0.056 (2)$ $0.028 (17)$ $-0.010 (2)$ $-0.0034 (17)$ $-0.011 (2)$ C6 $0.0301 (17)$ $0.055 (3)$	O6	0.0412 (16)	0.097 (3)	0.0581 (19)	-0.0181 (17)	-0.0007 (14)	-0.0404 (19)
N2 $0.0344(16)$ $0.055(2)$ $0.0274(14)$ $-0.0065(15)$ $-0.0044(12)$ $-0.0113(14)$ N3 $0.0433(18)$ $0.056(2)$ $0.0266(15)$ $-0.0088(16)$ $-0.0011(13)$ $-0.0139(15)$ N4 $0.062(2)$ $0.059(2)$ $0.0395(18)$ $-0.0094(18)$ $-0.0001(16)$ $-0.0244(17)$ N5 $0.0328(15)$ $0.0449(18)$ $0.0254(13)$ $-0.0170(14)$ $0.0011(11)$ $-0.0129(13)$ N6 $0.0369(16)$ $0.0431(18)$ $0.0276(14)$ $-0.0194(14)$ $0.0013(12)$ $-0.0214(13)$ N7 $0.0479(18)$ $0.0415(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0039(14)$ $-0.0150(14)$ C1 $0.038(2)$ $0.0420(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0047(17)$ $-0.0121(18)$ C2 $0.042(2)$ $0.048(2)$ $0.043(2)$ $-0.0046(18)$ $-0.0047(17)$ $-0.0121(19)$ C3 $0.040(2)$ $0.060(3)$ $0.297(18)$ $-0.0102(19)$ $-0.0070(15)$ $-0.0112(18)$ C4 $0.0298(17)$ $0.054(2)$ $0.0286(17)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C5 $0.0271(16)$ $0.052(2)$ $0.0286(17)$ $-0.0101(17)$ $0.0010(14)$ $-0.0192(17)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.0114(2)$ C8 $0.058(3)$ $0.052(3)$ $0.034(2)$ $-0.005(2)$ $-0.0006(2)$ $-0.006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $-0.0005(16)$ $-0.0153(18)$	N1	0.0287 (14)	0.051 (2)	0.0278 (14)	-0.0112 (14)	0.0026 (11)	-0.0169 (14)
N3 $0.0433(18)$ $0.056(2)$ $0.0266(15)$ $-0.0088(16)$ $-0.0011(13)$ $-0.0139(15)$ N4 $0.062(2)$ $0.059(2)$ $0.0395(18)$ $-0.0094(18)$ $-0.0001(16)$ $-0.0244(17)$ N5 $0.0328(15)$ $0.0449(18)$ $0.0254(13)$ $-0.0170(14)$ $0.0011(11)$ $-0.0129(13)$ N6 $0.0369(16)$ $0.0431(18)$ $0.0276(14)$ $-0.0094(14)$ $0.0013(12)$ $-0.0214(13)$ N7 $0.0479(18)$ $0.0415(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0039(14)$ $-0.0150(14)$ C1 $0.038(2)$ $0.0420(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0047(17)$ $-0.0121(18)$ C2 $0.042(2)$ $0.048(2)$ $0.043(2)$ $-0.0046(18)$ $-0.0047(17)$ $-0.0121(18)$ C2 $0.042(2)$ $0.060(3)$ $0.0297(18)$ $-0.0102(19)$ $-0.0070(15)$ $-0.0112(18)$ C4 $0.0298(17)$ $0.054(2)$ $0.0289(17)$ $-0.0135(17)$ $0.0011(14)$ $-0.0170(17)$ C5 $0.0271(16)$ $0.052(2)$ $0.0261(16)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0100(2)$ $-0.006(2)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.0112(2)$ C8 $0.058(3)$ $0.052(3)$ $0.032(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$	N2	0.0344 (16)	0.055 (2)	0.0274 (14)	-0.0065 (15)	-0.0044 (12)	-0.0113 (14)
N4 $0.062 (2)$ $0.059 (2)$ $0.0395 (18)$ $-0.0094 (18)$ $-0.0001 (16)$ $-0.0244 (17)$ N5 $0.0328 (15)$ $0.0449 (18)$ $0.0254 (13)$ $-0.0170 (14)$ $0.0011 (11)$ $-0.0129 (13)$ N6 $0.0369 (16)$ $0.0431 (18)$ $0.0307 (14)$ $-0.0094 (14)$ $0.0013 (12)$ $-0.0214 (13)$ N7 $0.0479 (18)$ $0.0415 (18)$ $0.0276 (14)$ $-0.0150 (15)$ $0.0007 (12)$ $-0.0170 (13)$ N8 $0.063 (2)$ $0.0420 (18)$ $0.0276 (15)$ $-0.0128 (16)$ $-0.0039 (14)$ $-0.0150 (14)$ C1 $0.038 (2)$ $0.053 (3)$ $0.0369 (19)$ $-0.0070 (18)$ $0.0016 (16)$ $-0.0211 (18)$ C2 $0.042 (2)$ $0.048 (2)$ $0.043 (2)$ $-0.0046 (18)$ $-0.0047 (17)$ $-0.0121 (19)$ C3 $0.040 (2)$ $0.060 (3)$ $0.0297 (18)$ $-0.0102 (19)$ $-0.0070 (15)$ $-0.0112 (18)$ C4 $0.0298 (17)$ $0.054 (2)$ $0.0289 (17)$ $-0.0135 (17)$ $0.0011 (14)$ $-0.0170 (17)$ C5 $0.0271 (16)$ $0.052 (2)$ $0.0261 (16)$ $-0.0117 (16)$ $0.0003 (13)$ $-0.0147 (16)$ C6 $0.0301 (17)$ $0.056 (2)$ $0.0286 (17)$ $-0.0016 (2)$ $-0.0034 (17)$ $-0.011 (2)$ C7 $0.046 (2)$ $0.055 (3)$ $0.034 (2)$ $-0.005 (2)$ $-0.0034 (17)$ $-0.011 (2)$ C8 $0.058 (3)$ $0.052 (3)$ $0.034 (2)$ $-0.005 (2)$ $-0.0005 (16)$ $-0.0153 (18)$ C1 $0.045 (2)$ $0.055 (3)$ $0.0274 (17)$ <td>N3</td> <td>0.0433 (18)</td> <td>0.056 (2)</td> <td>0.0266 (15)</td> <td>-0.0088 (16)</td> <td>-0.0011 (13)</td> <td>-0.0139 (15)</td>	N3	0.0433 (18)	0.056 (2)	0.0266 (15)	-0.0088 (16)	-0.0011 (13)	-0.0139 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N4	0.062 (2)	0.059 (2)	0.0395 (18)	-0.0094 (18)	-0.0001 (16)	-0.0244 (17)
N6 $0.0369(16)$ $0.0431(18)$ $0.0307(14)$ $-0.0094(14)$ $0.0013(12)$ $-0.0214(13)$ N7 $0.0479(18)$ $0.0415(18)$ $0.0276(14)$ $-0.0150(15)$ $0.0007(12)$ $-0.0170(13)$ N8 $0.063(2)$ $0.0420(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0039(14)$ $-0.0150(14)$ C1 $0.038(2)$ $0.053(3)$ $0.0369(19)$ $-0.0070(18)$ $0.0016(16)$ $-0.0211(18)$ C2 $0.042(2)$ $0.048(2)$ $0.043(2)$ $-0.0046(18)$ $-0.0047(17)$ $-0.0121(19)$ C3 $0.040(2)$ $0.060(3)$ $0.0297(18)$ $-0.0102(19)$ $-0.0070(15)$ $-0.0112(18)$ C4 $0.0298(17)$ $0.054(2)$ $0.0289(17)$ $-0.0135(17)$ $0.0011(14)$ $-0.0170(17)$ C5 $0.0271(16)$ $0.052(2)$ $0.0261(16)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0010(17)$ $-0.0034(17)$ $-0.0112(2)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.052(3)$ $0.0361(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0343(19)$ $-0.0095(19)$ $0.0024(16)$ $-0.0259(19)$ C12 $0.0386(19)$ $0.055(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0267(18)$ </td <td>N5</td> <td>0.0328 (15)</td> <td>0.0449 (18)</td> <td>0.0254 (13)</td> <td>-0.0170 (14)</td> <td>0.0011 (11)</td> <td>-0.0129 (13)</td>	N5	0.0328 (15)	0.0449 (18)	0.0254 (13)	-0.0170 (14)	0.0011 (11)	-0.0129 (13)
N7 $0.0479(18)$ $0.0415(18)$ $0.0276(14)$ $-0.0150(15)$ $0.0007(12)$ $-0.0170(13)$ N8 $0.063(2)$ $0.0420(18)$ $0.0276(15)$ $-0.0128(16)$ $-0.0039(14)$ $-0.0150(14)$ C1 $0.038(2)$ $0.053(3)$ $0.0369(19)$ $-0.0070(18)$ $0.0016(16)$ $-0.0211(18)$ C2 $0.042(2)$ $0.048(2)$ $0.043(2)$ $-0.0046(18)$ $-0.0047(17)$ $-0.0121(19)$ C3 $0.040(2)$ $0.060(3)$ $0.0297(18)$ $-0.0102(19)$ $-0.0070(15)$ $-0.0112(18)$ C4 $0.0298(17)$ $0.054(2)$ $0.0289(17)$ $-0.0135(17)$ $0.0011(14)$ $-0.0170(17)$ C5 $0.0271(16)$ $0.052(2)$ $0.0261(16)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0010(17)$ $-0.0102(19)$ $-0.0010(14)$ $-0.0192(17)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.001(2)$ $-0.0006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.0000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.058(3)$ $0.0343(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0259(19)$ C12 $0.0386(19)$ $0.055(3)$ $0.0274(17)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	N6	0.0369 (16)	0.0431 (18)	0.0307 (14)	-0.0094 (14)	0.0013 (12)	-0.0214 (13)
N8 $0.063 (2)$ $0.0420 (18)$ $0.0276 (15)$ $-0.0128 (16)$ $-0.0039 (14)$ $-0.0150 (14)$ C1 $0.038 (2)$ $0.053 (3)$ $0.0369 (19)$ $-0.0070 (18)$ $0.0016 (16)$ $-0.0211 (18)$ C2 $0.042 (2)$ $0.048 (2)$ $0.043 (2)$ $-0.0046 (18)$ $-0.0047 (17)$ $-0.0121 (19)$ C3 $0.040 (2)$ $0.060 (3)$ $0.0297 (18)$ $-0.0102 (19)$ $-0.0070 (15)$ $-0.0112 (18)$ C4 $0.0298 (17)$ $0.054 (2)$ $0.0289 (17)$ $-0.0135 (17)$ $0.0011 (14)$ $-0.0170 (17)$ C5 $0.0271 (16)$ $0.052 (2)$ $0.0261 (16)$ $-0.0117 (16)$ $0.0003 (13)$ $-0.0147 (16)$ C6 $0.0301 (17)$ $0.056 (2)$ $0.0286 (17)$ $-0.0101 (17)$ $0.0010 (14)$ $-0.0192 (17)$ C7 $0.046 (2)$ $0.065 (3)$ $0.034 (2)$ $-0.006 (2)$ $-0.0034 (17)$ $-0.011 (2)$ C8 $0.058 (3)$ $0.052 (3)$ $0.048 (2)$ $-0.001 (2)$ $-0.0005 (2)$ $-0.0025 (2)$ C9 $0.060 (3)$ $0.059 (3)$ $0.052 (2)$ $-0.005 (2)$ $0.000 (2)$ $-0.025 (2)$ C10 $0.042 (2)$ $0.052 (3)$ $0.0361 (19)$ $-0.0095 (19)$ $0.0024 (16)$ $-0.0259 (19)$ C11 $0.045 (2)$ $0.058 (3)$ $0.0274 (17)$ $-0.0103 (18)$ $-0.0016 (14)$ $-0.0160 (17)$ C12 $0.0386 (19)$ $0.055 (3)$ $0.0274 (17)$ $-0.018 (2)$ $0.0058 (16)$ $-0.0267 (18)$	N7	0.0479 (18)	0.0415 (18)	0.0276 (14)	-0.0150 (15)	0.0007 (12)	-0.0170 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8	0.063 (2)	0.0420 (18)	0.0276 (15)	-0.0128 (16)	-0.0039 (14)	-0.0150 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.038 (2)	0.053 (3)	0.0369 (19)	-0.0070 (18)	0.0016 (16)	-0.0211 (18)
C3 $0.040(2)$ $0.060(3)$ $0.0297(18)$ $-0.0102(19)$ $-0.0070(15)$ $-0.0112(18)$ C4 $0.0298(17)$ $0.054(2)$ $0.0289(17)$ $-0.0135(17)$ $0.0011(14)$ $-0.0170(17)$ C5 $0.0271(16)$ $0.052(2)$ $0.0261(16)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0101(17)$ $0.0010(14)$ $-0.0192(17)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.001(2)$ $-0.010(2)$ $-0.006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.058(3)$ $0.0343(19)$ $-0.0093(19)$ $-0.0024(16)$ $-0.0259(19)$ C11 $0.045(2)$ $0.058(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0160(17)$ C13 $0.051(2)$ $0.063(3)$ $0.0290(18)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	C2	0.042 (2)	0.048 (2)	0.043 (2)	-0.0046 (18)	-0.0047 (17)	-0.0121 (19)
C4 $0.0298(17)$ $0.054(2)$ $0.0289(17)$ $-0.0135(17)$ $0.0011(14)$ $-0.0170(17)$ C5 $0.0271(16)$ $0.052(2)$ $0.0261(16)$ $-0.0117(16)$ $0.0003(13)$ $-0.0147(16)$ C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0101(17)$ $0.0010(14)$ $-0.0192(17)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.001(2)$ $-0.010(2)$ $-0.006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.058(3)$ $0.0341(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0160(17)$ C13 $0.051(2)$ $0.063(3)$ $0.0290(18)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	C3	0.040 (2)	0.060 (3)	0.0297 (18)	-0.0102 (19)	-0.0070 (15)	-0.0112 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0298 (17)	0.054 (2)	0.0289 (17)	-0.0135 (17)	0.0011 (14)	-0.0170 (17)
C6 $0.0301(17)$ $0.056(2)$ $0.0286(17)$ $-0.0101(17)$ $0.0010(14)$ $-0.0192(17)$ C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.001(2)$ $-0.010(2)$ $-0.006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.052(3)$ $0.0341(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0160(17)$ C13 $0.051(2)$ $0.063(3)$ $0.0290(18)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	C5	0.0271 (16)	0.052 (2)	0.0261 (16)	-0.0117 (16)	0.0003 (13)	-0.0147 (16)
C7 $0.046(2)$ $0.065(3)$ $0.034(2)$ $-0.006(2)$ $-0.0034(17)$ $-0.011(2)$ C8 $0.058(3)$ $0.052(3)$ $0.048(2)$ $-0.001(2)$ $-0.010(2)$ $-0.006(2)$ C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.052(3)$ $0.0361(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0160(17)$ C12 $0.0386(19)$ $0.055(3)$ $0.0290(18)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	C6	0.0301 (17)	0.056 (2)	0.0286 (17)	-0.0101 (17)	0.0010 (14)	-0.0192 (17)
C8 0.058 (3) 0.052 (3) 0.048 (2) -0.001 (2) -0.010 (2) -0.006 (2)C9 0.060 (3) 0.059 (3) 0.052 (2) -0.005 (2) 0.000 (2) -0.025 (2)C10 0.042 (2) 0.052 (3) 0.0361 (19) -0.0093 (19) -0.0005 (16) -0.0153 (18)C11 0.045 (2) 0.058 (3) 0.0343 (19) -0.0095 (19) 0.0024 (16) -0.0259 (19)C12 0.0386 (19) 0.055 (3) 0.0274 (17) -0.0103 (18) -0.0016 (14) -0.0160 (17)C13 0.051 (2) 0.063 (3) 0.0290 (18) -0.018 (2) 0.0058 (16) -0.0267 (18)	C7	0.046 (2)	0.065 (3)	0.034 (2)	-0.006 (2)	-0.0034 (17)	-0.011 (2)
C9 $0.060(3)$ $0.059(3)$ $0.052(2)$ $-0.005(2)$ $0.000(2)$ $-0.025(2)$ C10 $0.042(2)$ $0.052(3)$ $0.0361(19)$ $-0.0093(19)$ $-0.0005(16)$ $-0.0153(18)$ C11 $0.045(2)$ $0.058(3)$ $0.0343(19)$ $-0.0095(19)$ $0.0024(16)$ $-0.0259(19)$ C12 $0.0386(19)$ $0.055(3)$ $0.0274(17)$ $-0.0103(18)$ $-0.0016(14)$ $-0.0160(17)$ C13 $0.051(2)$ $0.063(3)$ $0.0290(18)$ $-0.018(2)$ $0.0058(16)$ $-0.0267(18)$	C8	0.058 (3)	0.052 (3)	0.048 (2)	-0.001 (2)	-0.010 (2)	-0.006(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.060 (3)	0.059 (3)	0.052 (2)	-0.005 (2)	0.000 (2)	-0.025 (2)
C110.045 (2)0.058 (3)0.0343 (19)-0.0095 (19)0.0024 (16)-0.0259 (19)C120.0386 (19)0.055 (3)0.0274 (17)-0.0103 (18)-0.0016 (14)-0.0160 (17)C130.051 (2)0.063 (3)0.0290 (18)-0.018 (2)0.0058 (16)-0.0267 (18)	C10	0.042 (2)	0.052 (3)	0.0361 (19)	-0.0093 (19)	-0.0005 (16)	-0.0153 (18)
C12 0.0386 (19) 0.055 (3) 0.0274 (17) -0.0103 (18) -0.0016 (14) -0.0160 (17) C13 0.051 (2) 0.063 (3) 0.0290 (18) -0.018 (2) 0.0058 (16) -0.0267 (18)	C11	0.045 (2)	0.058 (3)	0.0343 (19)	-0.0095 (19)	0.0024 (16)	-0.0259 (19)
C13 0.051 (2) 0.063 (3) 0.0290 (18) -0.018 (2) 0.0058 (16) -0.0267 (18)	C12	0.0386 (19)	0.055 (3)	0.0274 (17)	-0.0103 (18)	-0.0016 (14)	-0.0160 (17)
	C13	0.051 (2)	0.063 (3)	0.0290 (18)	-0.018 (2)	0.0058 (16)	-0.0267 (18)

C14	0.050 (2)	0.058 (3)	0.0347 (19)	-0.015 (2)	0.0026 (16)	-0.0234 (18)
C15	0.043 (2)	0.057 (3)	0.045 (2)	-0.0060 (19)	0.0002 (17)	-0.029 (2)
C16	0.042 (2)	0.066 (3)	0.038 (2)	-0.010 (2)	-0.0048 (16)	-0.026 (2)
C17	0.052 (2)	0.058 (3)	0.041 (2)	-0.013 (2)	-0.0018 (17)	-0.0294 (19)
C18	0.061 (3)	0.057 (3)	0.050 (2)	0.001 (2)	-0.006 (2)	-0.032 (2)
C19	0.060 (3)	0.061 (3)	0.040 (2)	-0.002 (2)	-0.0129 (19)	-0.018 (2)
C20	0.047 (2)	0.049 (2)	0.0297 (17)	-0.0233 (19)	0.0057 (15)	-0.0120 (17)
C21	0.052 (2)	0.041 (2)	0.048 (2)	-0.0234 (19)	0.0017 (18)	-0.0165 (18)
C22	0.044 (2)	0.045 (2)	0.0398 (19)	-0.0158 (18)	0.0015 (16)	-0.0243 (17)
C23	0.0296 (17)	0.043 (2)	0.0311 (17)	-0.0100 (16)	-0.0006 (13)	-0.0185 (16)
C24	0.0243 (15)	0.041 (2)	0.0270 (15)	-0.0100 (15)	-0.0012 (12)	-0.0150 (15)
C25	0.0292 (16)	0.0350 (19)	0.0271 (16)	-0.0054 (15)	-0.0002 (13)	-0.0161 (14)
C26	0.060 (3)	0.047 (2)	0.0369 (19)	-0.016 (2)	0.0046 (17)	-0.0255 (18)
C27	0.081 (3)	0.039 (2)	0.043 (2)	-0.022 (2)	0.006 (2)	-0.0197 (18)
C28	0.066 (3)	0.039 (2)	0.0327 (19)	-0.016 (2)	0.0041 (17)	-0.0131 (17)
C29	0.041 (2)	0.038 (2)	0.0288 (17)	-0.0103 (16)	0.0004 (14)	-0.0150 (15)
C30	0.0419 (19)	0.041 (2)	0.0252 (16)	-0.0100 (17)	0.0003 (14)	-0.0143 (15)
C31	0.0366 (18)	0.039 (2)	0.0256 (16)	-0.0080 (16)	-0.0022 (13)	-0.0168 (15)
C32	0.045 (2)	0.046 (2)	0.0265 (17)	-0.0101 (18)	-0.0001 (14)	-0.0161 (16)
C33	0.048 (2)	0.045 (2)	0.0270 (17)	-0.0095 (18)	-0.0016 (15)	-0.0146 (16)
C34	0.079 (3)	0.047 (2)	0.0354 (19)	-0.026 (2)	-0.0023 (19)	-0.0202 (18)
C35	0.080 (3)	0.044 (2)	0.0317 (19)	-0.027 (2)	0.0051 (19)	-0.0153 (17)
C36	0.059 (2)	0.042 (2)	0.0254 (17)	-0.0114 (19)	0.0003 (16)	-0.0141 (16)
C37	0.057 (2)	0.066 (3)	0.0352 (19)	-0.023 (2)	-0.0017 (17)	-0.024 (2)
C38	0.058 (2)	0.061 (3)	0.0301 (18)	-0.031 (2)	0.0017 (17)	-0.0122 (18)
C39	0.0338 (19)	0.074 (3)	0.0337 (19)	-0.016 (2)	0.0024 (15)	-0.0331 (19)
C40	0.034 (3)	0.040 (4)	0.029 (3)	-0.009 (3)	-0.008 (2)	-0.011 (3)
C41	0.026 (3)	0.062 (6)	0.045 (3)	-0.017 (3)	-0.001 (2)	-0.014 (3)
C42	0.032 (2)	0.132 (5)	0.037 (2)	-0.028 (3)	0.0003 (17)	-0.043 (3)
C39′	0.0338 (19)	0.074 (3)	0.0337 (19)	-0.016 (2)	0.0024 (15)	-0.0331 (19)
C42′	0.032 (2)	0.132 (5)	0.037 (2)	-0.028 (3)	0.0003 (17)	-0.043 (3)

Geometric parameters (Å, °)

Cd—N1	2.320 (3)	С9—Н9	0.9300
Cd—N6	2.335 (3)	C10—C11	1.446 (5)
Cd—N5	2.343 (3)	C11—C12	1.374 (6)
Cd—N2	2.351 (3)	C13—C14	1.483 (5)
Cd—O3	2.496 (3)	C14—C15	1.384 (6)
$Cd-O5^i$	2.541 (3)	C14—C19	1.390 (6)
Cd—O6 ⁱ	2.671 (3)	C15—C16	1.388 (5)
Cd—O4	2.742 (3)	C15—H15	0.9300
O1—C17	1.353 (5)	C16—C17	1.382 (6)
01—H10	0.8400	C16—H16	0.9300
O2—C36	1.355 (4)	C17—C18	1.385 (6)
O2—H2O	0.8401	C18—C19	1.376 (6)
O3—C39′	1.246 (5)	C18—H18	0.9300
O3—C39	1.246 (5)	C19—H19	0.9300

O4—C39′	1.249 (5)	C20—C21	1.385 (5)
O4—C39	1.249 (5)	C20—H20	0.9300
O5—C42′	1.267 (6)	C21—C22	1.358 (5)
O5—C42	1.267 (6)	C21—H21	0.9300
O5—Cd ⁱⁱ	2.541 (3)	C22—C23	1.408 (5)
O6—C42′	1.220 (6)	C22—H22	0.9300
O6—C42	1.220 (6)	C23—C24	1.416 (5)
N1-C1	1.323 (5)	C23—C31	1.422 (5)
N1—C5	1.320(5)	C^{24}	1452(5)
N2	1.317(5)	C^{25}	1.102(5)
N2-C6	1 361 (4)	$C^{26} - C^{27}$	1 385 (6)
N3-C13	1.301(1) 1.315(5)	C26—H26	0.9300
N3-C12	1.313(3)	$C_{20} = 1120$ $C_{27} = C_{28}$	1 364 (5)
N3—H3n	0.8600	C27—H27	0.9300
N4—C13	1 339 (5)	C_{28} C_{29}	1 398 (5)
N4-C11	1.376 (5)	C28—H28	0.9300
N5 C20	1.370(5) 1.325(5)	$C_{20} = C_{120}$	1 / 30 (5)
N5-C24	1.325(5) 1.351(4)	C_{2}^{30} C_{31}^{31}	1.439(5)
N6 C26	1.331(4) 1.318(5)	C_{32} C_{33}	1.370(5)
N6_C25	1.318(3) 1.363(4)	$C_{32} = C_{33}$	1.475 (5)
N7_C32	1.303 (4)	C33_C38	1.385 (0)
N7-C31	1.357(5) 1.379(4)	C_{34} C35	1.390(5)
N7_H7n	0.8600	C34—H34	0.9300
N8_C32	1 312 (5)	C_{35} C_{36}	1 385 (5)
N8-C30	1.312(3) 1 386(4)	C35—H35	0.9300
$C1 - C^2$	1.300 (4)	$C_{36} - C_{37}$	1 383 (6)
C1H1	0.9300	C_{37} C_{38}	1.303 (0)
$C^2 - C^3$	1 365 (6)	C37_H37	0.9300
С2—Н2	0.9300	C38—H38	0.9300
$C_2 = C_4$	1 392 (6)	$C_{39} - C_{40}$	1 513 (6)
С3—Н3	0.9300	C40-C41	1.313(0) 1.292(12)
C4-C5	1 418 (5)	C40—H40	0.9300
C4-C12	1.110(5) 1 421(5)	C41-C42	1.535(7)
C5-C6	1.421(5) 1 460(5)	C41—H41	0.9300
C6-C10	1.398 (5)	$C_{39'} - C_{40'}$	1 593 (15)
C7-C8	1.396(3) 1 406(7)	C40'-C41'	1.395(15)
С7—Н7	0.9300	C40' - H40'	0.9300
C^{8}	1 350 (6)	C41' - C42'	1 611 (12)
C8—H8	0.9300	C41' - H41'	0.9300
C9-C10	1 390 (6)		0.9500
	1.590 (0)		
N1—Cd—N6	155.24 (10)	C15—C14—C19	118 7 (4)
N1—Cd—N5	124.62 (11)	C15-C14-C13	120.8 (4)
N6—Cd—N5	71.47 (10)	C19-C14-C13	120.0 (1)
N1—Cd—N2	71.63 (11)	C14-C15-C16	120.7 (4)
N6-Cd-N2	100.10(10)	C14—C15—H15	119.6
N5-Cd-N2	156.65 (10)	C16—C15—H15	119.6
N1—Cd—O3	78.07 (10)	C17—C16—C15	119.9 (4)

N6 Cd O3	87.88 (10)	C17 C16 H16	120.0
N5 Cd O3	70.62(0)	$C_{17} = C_{10} = H_{10}$	120.0
$N_2 C_1 O_2$	122.50(0)	C13 - C10 - H10	120.0
N2-Cd-05	122.39(9)	01 - 017 - 018	122.0(4)
NI-Ca-OS	/8.38 (10)	OI = CI / = CI8	117.7 (4)
N6-Cd-O5	125.81 (10)		119.7 (4)
N5—Cd—O5 ¹	77.89 (11)	C19—C18—C17	120.1 (4)
N2—Cd—O5 ¹	90.86 (12)	С19—С18—Н18	119.9
$O3-Cd-O5^{i}$	129.15 (12)	C17—C18—H18	119.9
$N1-Cd-O6^{i}$	119.07 (10)	C18—C19—C14	120.9 (4)
N6—Cd—O6 ⁱ	80.39 (10)	C18—C19—H19	119.6
N5—Cd—O6 ⁱ	78.73 (10)	C14—C19—H19	119.6
$N2-Cd-O6^{i}$	78.37 (10)	N5-C20-C21	123.2 (3)
$O3-Cd-O6^{i}$	157.74 (9)	N5—C20—H20	118.4
$O5^{i}$ —Cd— $O6^{i}$	50.03 (11)	С21—С20—Н20	118.4
N1—Cd—O4	79.34 (9)	C22—C21—C20	118.9 (3)
N6—Cd—O4	76.05 (9)	C22—C21—H21	120.5
N5—Cd—O4	119.50 (9)	C20—C21—H21	120.5
N2—Cd—O4	77.52 (10)	C21—C22—C23	119.8 (3)
03—Cd—O4	49.28 (9)	C21—C22—H22	120.1
$O5^{i}$ Cd $O4$	157 20 (9)	C23—C22—H22	120.1
$O6^{i}$ Cd $O4$	147.26(9)	$C_{22} = C_{23} = C_{24}$	120.1 117.8(3)
$C_{17} - 0_{1} - H_{10}$	116.3	$C_{22} = C_{23} = C_{21}$	125.7(3)
C_{36} C_{2} H_{20}	113.5	$C_{22} C_{23} C_{31}$	125.7(3)
$C_{30} = 02 = 1120$	113.3	$C_{24} = C_{23} = C_{31}$	110.3(3)
$C_{39} = 0_{3} = 0_{39}$	0.0(3)	NJ	120.9(3)
$C_{39} = 0_{3} = C_{4}$	98.9 (2)	$N_{3} = C_{24} = C_{23}$	118.4 (3)
	98.9 (2)	$C_{23} = C_{24} = C_{25}$	120.6 (3)
C39'-04-C39	0.0 (3)	N6-C25-C29	121.2 (3)
C39'—O4—Cd	87.2 (2)	N6—C25—C24	117.9 (3)
C39—O4—Cd	87.2 (2)	C29—C25—C24	120.9 (3)
C42'—O5—C42	0.0 (5)	N6—C26—C27	123.6 (3)
$C42' - O5 - Cd^{ii}$	93.9 (3)	N6—C26—H26	118.2
C42—O5—Cd ⁱⁱ	93.9 (3)	С27—С26—Н26	118.2
C42′—O6—C42	0.0 (8)	C28—C27—C26	119.2 (4)
C1—N1—C5	119.1 (3)	С28—С27—Н27	120.4
C1—N1—Cd	124.2 (2)	С26—С27—Н27	120.4
C5—N1—Cd	116.6 (2)	C27—C28—C29	119.0 (3)
C7—N2—C6	118.8 (3)	С27—С28—Н28	120.5
C7—N2—Cd	126.0 (3)	C29—C28—H28	120.5
C6—N2—Cd	115.0 (2)	C28—C29—C25	118.6 (3)
C13—N3—C12	106.8 (3)	C28—C29—C30	124.0 (3)
C13—N3—H3n	126.6	C25—C29—C30	117.4 (3)
C12—N3—H3n	126.6	$C_{31} - C_{30} - N_8$	1111(3)
C13 - N4 - C11	103.9(3)	$C_{31} - C_{30} - C_{29}$	120.8(3)
$C_{20} - N_{5} - C_{24}$	1193(3)	N8-C30-C29	1281(3)
C_{20} N5 C_{21}	124 9 (2)	C_{30} C_{31} N7	105 1 (3)
C_{24} N5 C_{4}	1156(2)	C_{30} C_{31} C_{23}	103.1(3) 173.6(2)
$C_{24} = 10 = C_{4}$	113.0(2) 118.4(3)	N7_C31_C23	123.0(3) 1313(3)
$C_{20} = N_0 = C_{20}$	1257(3)	$N_{11} = C_{21} = C_{23}$	1122(2)
$U_2 U_1 U_1 U_1 U_1 U_1 U_1 U_1 U_1 U_1 U_1$	123.1 (2)	1NO-UJ2-1N/	113.3(3)

C25—N6—Cd	115.6 (2)	N8—C32—C33	123.2 (3)
C32—N7—C31	106.6 (3)	N7—C32—C33	123.4 (3)
C32—N7—H7n	126.7	C34—C33—C38	118.5 (3)
C31—N7—H7n	126.7	C34—C33—C32	120.0 (3)
$C_{32} = N_{8} = C_{30}$	103.9(3)	$C_{38} - C_{33} - C_{32}$	121.5(3)
N1-C1-C2	103.5(3)	$C_{35} - C_{34} - C_{33}$	121.0(3) 121.1(4)
N1-C1-H1	118.2	C35 - C34 - H34	119.5
$C_2 - C_1 - H_1$	118.2	C_{33} C_{34} H_{34}	119.5
$C_{2} = C_{1}$	118.1 (4)	C_{34} C_{35} C_{36}	120.0(4)
C_{3} C_{2} H_{2}	121.0	C_{34} C_{35} C_{30}	120.0 (4)
C_1 C_2 H_2	121.0	$C_{34} = C_{35} = H_{35}$	120.0
$C_1 - C_2 - H_2$	121.0 120.2(3)	$02 C_{36} C_{37}$	120.0 122.7(3)
$C_2 = C_3 = C_4$	120.2 (3)	02 - C36 - C35	122.7(3) 117.3(3)
$C_2 - C_3 - H_3$	119.9	02 - 030 - 035	117.3(3) 120.0(2)
$C_4 - C_5 - H_5$	119.9	$C_{3} = C_{3} = C_{3}$	120.0(3)
C_{3} C_{4} C_{12}	118.2(3)	$C_{30} - C_{37} - C_{38}$	119.7 (4)
C_{3} C_{4} C_{12}	125.0 (3)	$C_{30} = C_{37} = H_{37}$	120.2
$C_{5} - C_{4} - C_{12}$	116.2 (3)	$C_{38} - C_{37} - H_{37}$	120.2
NI-C5-C4	120.8 (3)	$C_{3}/-C_{38}-C_{33}$	120.7 (4)
NI-C5-C6	118.0 (3)	C37—C38—H38	119.6
C4—C5—C6	121.1 (3)	C33—C38—H38	119.6
N2—C6—C10	121.3 (3)	03	123.3 (3)
N2—C6—C5	118.0 (3)	O3—C39—C40	109.8 (4)
C10—C6—C5	120.7 (3)	O4—C39—C40	126.9 (4)
N2—C7—C8	122.8 (4)	C41—C40—C39	120.1 (7)
N2—C7—H7	118.6	C41—C40—H40	119.9
С8—С7—Н7	118.6	C39—C40—H40	119.9
C9—C8—C7	118.5 (4)	C40—C41—C42	121.5 (7)
С9—С8—Н8	120.7	C40—C41—H41	119.2
С7—С8—Н8	120.7	C42—C41—H41	119.2
C8—C9—C10	120.2 (4)	O6—C42—O5	125.1 (4)
С8—С9—Н9	119.9	O6—C42—C41	110.8 (5)
С10—С9—Н9	119.9	O5—C42—C41	123.5 (5)
C9—C10—C6	118.4 (4)	O3—C39′—O4	123.3 (3)
C9-C10-C11	124.4 (4)	O3—C39′—C40′	133.1 (7)
C6-C10-C11	117.2 (4)	O4—C39′—C40′	101.1 (7)
C12—C11—N4	110.3 (3)	C41'—C40'—C39'	114.1 (14)
C12—C11—C10	121.3 (3)	C41'—C40'—H40'	123.0
N4—C11—C10	128.4 (4)	C39′—C40′—H40′	123.0
C11—C12—N3	105.4 (3)	C40′—C41′—C42′	108.8 (14)
C11—C12—C4	123.4 (3)	C40′—C41′—H41′	125.6
N3—C12—C4	131.1 (4)	C42'—C41'—H41'	125.6
N3—C13—N4	113.6 (3)	O6—C42′—O5	125.1 (4)
N3—C13—C14	125.3 (4)	O6—C42′—C41′	138.0 (6)
N4-C13-C14	121.1 (4)	05-C42'-C41'	953(6)
N1-Cd-03-C39'	-92.7(2)	C13—N3—C12—C4	177 4 (4)
N6-Cd-03-C39'	66 8 (2)	C_{3} C_{4} C_{12} C_{11}	-1784(4)
N5-Cd-O3-C39'	138 3 (2)	C_{5} C_{4} C_{12} C_{11}	10(5)
	120.2 (2)	00 01 012 011	

N2—Cd—O3—C39′	-33.9 (3)	C3—C4—C12—N3	4.9 (6)
O5 ⁱ —Cd—O3—C39′	-156.8 (2)	C5-C4-C12-N3	-175.7 (4)
O6 ⁱ —Cd—O3—C39′	124.7 (3)	C12—N3—C13—N4	0.3 (5)
O4—Cd—O3—C39′	-6.6 (2)	C12—N3—C13—C14	-177.5 (4)
N1—Cd—O3—C39	-92.7 (2)	C11—N4—C13—N3	-0.7 (5)
N6—Cd—O3—C39	66.8 (2)	C11—N4—C13—C14	177.2 (4)
N5—Cd—O3—C39	138.3 (2)	N3—C13—C14—C15	27.2 (6)
N2—Cd—O3—C39	-33.9 (3)	N4—C13—C14—C15	-150.5(4)
O5 ⁱ —Cd—O3—C39	-156.8(2)	N3—C13—C14—C19	-158.0(4)
$O6^{i}$ —Cd—O3—C39	124.7 (3)	N4—C13—C14—C19	24.4 (6)
04-Cd-03-C39	-6.6(2)	C19 - C14 - C15 - C16	-0.1(6)
N1—Cd—O4—C39′	89.9 (2)	C_{13} C_{14} C_{15} C_{16}	174.9 (4)
N6-Cd-04-C39'	-92.9(2)	C_{14} C_{15} C_{16} C_{17}	-0.6(6)
N5-Cd-Q4-C39'	-340(2)	$C_{15} - C_{16} - C_{17} - O_{1}$	-1784(4)
N_{2} Cd Q_{4} Q_{3}	163.2(2)	C_{15} C_{16} C_{17} C_{18}	17(6)
Ω_{3} Cd Ω_{4} C39'	65(2)	01-C17-C18-C19	1.7(0) 178 1 (4)
05^{i} Cd 04^{-} C39'	1023(4)	C_{16} C_{17} C_{18} C_{19}	-21(7)
$O_{1}^{i} - C_{1}^{i} - O_{1}^{i} - O_{2}^{i} - O_{3}^{i}$	-145.6(2)	$C_{10} - C_{11} - C_{10} - C_{12}$	2.1(7)
N1 Cd O4 C39	143.0(2)	$C_{17} = C_{18} = C_{17} = C_{14}$	-0.3(7)
NG Cd $O4$ C39	-020(2)	$C_{13} = C_{14} = C_{19} = C_{18}$	-175.3(4)
N_{5} Cd O_{4} C39	-340(2)	$C_{13} = C_{14} = C_{13} = C_{13}$	-0.3(5)
$N_2 Cd O4 C39$	163.2(2)	$C_{24} = 103 - C_{20} - C_{21}$	174.6(3)
$n_2 - c_4 - c_4 - c_{39}$	105.2(2)	$N_{2} = N_{2} = C_{2} = C_{2}$	-0.6(6)
$03 - C_{4} - C_{39}$	0.3(2)	$N_{3} = C_{20} = C_{21} = C_{22}$	-0.0(0)
03 - 04 - 039	102.5(4) 145.6(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	0.5(0)
00 - 04 - 039	-143.0(2)	$C_{21} = C_{22} = C_{23} = C_{24}$	0.7(3)
No-Cd-NI-CI	-108.9(3)	$C_{21} = C_{22} = C_{23} = C_{31}$	-1/8.9(4)
N3-Cd-N1-C1	10.1(3)	C_{20} N5 C_{24} C_{23}	1.3(3)
$N_2 - C_d - N_1 - C_1$	1/7.3(3)	$C_{0} = N_{0} = C_{24} = C_{23}$	-1/4.0(2)
O3-Cd-NI-CI	-52.2(5)	C_{20} N5 C_{24} C_{25}	-1//.9(3)
OS-Cd-NI-CI	82.4 (3)	Cd - N5 - C24 - C25	6.8 (4)
$O_{0} - C_{0} - O_{1} - O_{1}$	112.6 (3)	C22 - C23 - C24 - N5	-1.5(5)
04—Cd—NI—CI	-102.5(3)	$C_{31} = C_{23} = C_{24} = N_{5}$	1/8.1 (3)
N6—Cd—N1—C5	67.0 (4)	C22—C23—C24—C25	177.7 (3)
N5—Cd—N1—C5	-168.0(2)	C31—C23—C24—C25	-2.7 (5)
N2—Cd—N1—C5	-6.8 (2)	C26—N6—C25—C29	-1.6 (5)
O3—Cd—N1—C5	123.7 (2)	Cd—N6—C25—C29	173.1 (3)
O5 ¹ —Cd—N1—C5	-101.7 (2)	C26—N6—C25—C24	176.9 (3)
$O6^{1}$ —Cd—N1—C5	-71.5 (3)	Cd—N6—C25—C24	-8.4 (4)
04—Cd—N1—C5	73.4 (2)	N5—C24—C25—N6	1.0 (4)
N1—Cd—N2—C7	-178.2 (3)	C23—C24—C25—N6	-178.2 (3)
N6—Cd—N2—C7	26.0 (3)	N5—C24—C25—C29	179.6 (3)
N5—Cd—N2—C7	-40.3 (5)	C23—C24—C25—C29	0.4 (5)
O3—Cd—N2—C7	119.9 (3)	C25—N6—C26—C27	0.3 (6)
O5 ¹ —Cd—N2—C7	-100.7 (3)	Cd—N6—C26—C27	-173.8 (3)
$O6^{1}$ —Cd—N2—C7	-51.9 (3)	N6—C26—C27—C28	1.3 (7)
O4—Cd—N2—C7	99.1 (3)	C26—C27—C28—C29	-1.6 (7)
N1—Cd—N2—C6	7.5 (2)	C27—C28—C29—C25	0.4 (6)
N6CdN2C6	-148.4 (2)	C27—C28—C29—C30	-179.6 (4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.3 (3) -178.7 (3) 2.7 (5) 0.2 (4) -179.7 (4) 176.4 (4) -3.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.7 (3) 2.7 (5) 0.2 (4) -179.7 (4) 176.4 (4) -3.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7 (5) 0.2 (4) -179.7 (4) 176.4 (4) -3.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 (4) -179.7 (4) 176.4 (4) -3.6 (5)
N1—Cd—N5—C20 $18.2 (3)$ C32—N8—C30—C29N6—Cd—N5—C20177.0 (3)C28—C29—C30—C31N2—Cd—N5—C20-111.1 (3)C25—C29—C30—C31O3—Cd—N5—C2085.7 (3)C28—C29—C30—N8O5 ⁱ —Cd—N5—C20-48.3 (3)C25—C29—C30—N8O6 ⁱ —Cd—N5—C20-99.5 (3)N8—C30—C31—N7	-179.7 (4) 176.4 (4) -3.6 (5)
N6—Cd—N5—C20 $177.0 (3)$ C28—C29—C30—C31N2—Cd—N5—C20 $-111.1 (3)$ C25—C29—C30—C31O3—Cd—N5—C20 $85.7 (3)$ C28—C29—C30—N8O5 ⁱ —Cd—N5—C20 $-48.3 (3)$ C25—C29—C30—N8O6 ⁱ —Cd—N5—C20 $-99.5 (3)$ N8—C30—C31—N7	176.4 (4) -3.6 (5)
N2CdN5C20 -111.1 (3)C25C29C30C31O3CdN5C2085.7 (3)C28C29C30N8O5 ⁱ CdN5C20 -48.3 (3)C25C29C30N8O6 ⁱ CdN5C20 -99.5 (3)N8C30C31N7	-3.6 (5)
O3-Cd-N5-C20 85.7 (3) C28-C29-C30-N8 O5 ⁱ -Cd-N5-C20 -48.3 (3) C25-C29-C30-N8 O6 ⁱ -Cd-N5-C20 -99.5 (3) N8-C30-C31-N7	
O5 ⁱ -Cd-N5-C20 -48.3 (3) C25-C29-C30-N8 O6 ⁱ -Cd-N5-C20 -99.5 (3) N8-C30-C31-N7	-3.7(6)
O6 ⁱ —Cd—N5—C20 –99.5 (3) N8—C30—C31—N7	176.3 (4)
	0.1 (4)
O4—Cd—N5—C20 115.8 (3) C29—C30—C31—N7	180.0 (3)
N1—Cd—N5—C24 –166.8 (2) N8—C30—C31—C23	-178.6(3)
N6—Cd—N5—C24 -8.0 (2) C29—C30—C31—C23	1.3 (6)
N2—Cd—N5—C24 64.0 (4) C32—N7—C31—C30	-0.3 (4)
O3—Cd—N5—C24 –99.2 (2) C32—N7—C31—C23	178.2 (4)
O5 ⁱ —Cd—N5—C24 126.7 (2) C22—C23—C31—C30	-178.5 (3)
O6 ⁱ —Cd—N5—C24 75.5 (2) C24—C23—C31—C30	1.9 (5)
O4—Cd—N5—C24 -69.2 (2) C22—C23—C31—N7	3.2 (6)
N1—Cd—N6—C26 -42.5 (5) C24—C23—C31—N7	-176.4 (3)
N5—Cd—N6—C26 –177.2 (3) C30—N8—C32—N7	-0.4 (4)
N2—Cd—N6—C26 25.3 (3) C30—N8—C32—C33	176.7 (3)
O3—Cd—N6—C26 –97.5 (3) C31—N7—C32—N8	0.5 (4)
O5 ⁱ —Cd—N6—C26 123.7 (3) C31—N7—C32—C33	-176.6(3)
O6 ⁱ —Cd—N6—C26 101.5 (3) N8—C32—C33—C34	25.9 (6)
O4—Cd—N6—C26 -49.0 (3) N7—C32—C33—C34	-157.3 (4)
N1—Cd—N6—C25 143.2 (3) N8—C32—C33—C38	-150.9 (4)
N5—Cd—N6—C25 8.5 (2) N7—C32—C33—C38	25.9 (6)
N2—Cd—N6—C25 –149.0 (2) C38—C33—C34—C35	1.3 (7)
O3—Cd—N6—C25 88.3 (2) C32—C33—C34—C35	-175.6 (4)
O5 ⁱ —Cd—N6—C25 –50.5 (3) C33—C34—C35—C36	0.7 (7)
O6 ⁱ —Cd—N6—C25 –72.7 (2) C34—C35—C36—O2	179.6 (4)
O4—Cd—N6—C25 136.7 (3) C34—C35—C36—C37	-2.2 (7)
C5—N1—C1—C2 1.1 (5) O2—C36—C37—C38	179.9 (4)
Cd—N1—C1—C2 176.9 (3) C35—C36—C37—C38	1.8 (7)
N1—C1—C2—C3 –1.7 (6) C36—C37—C38—C33	0.2 (7)
C1—C2—C3—C4 0.8 (6) C34—C33—C38—C37	-1.7 (7)
C2—C3—C4—C5 0.5 (5) C32—C33—C38—C37	175.1 (4)
C2—C3—C4—C12 180.0 (4) C39′—O3—C39—O4	0 (46)
C1—N1—C5—C4 0.3 (5) Cd—O3—C39—O4	13.2 (4)
Cd—N1—C5—C4 –175.8 (2) C39′—O3—C39—C40	0 (100)
	-170.0 (3)
C1—N1—C5—C6 –178.3 (3) Cd—O3—C39—C40	0(35)
C1—N1—C5—C6 -178.3 (3) Cd—O3—C39—C40 Cd—N1—C5—C6 5.6 (4) C39'—O4—C39—O3	0 (33)
C1—N1—C5—C6 -178.3 (3) Cd—O3—C39—C40 Cd—N1—C5—C6 5.6 (4) C39'—O4—C39—O3 C3—C4—C5—N1 -1.1 (5) Cd—O4—C39—O3	-11.9(4)
C1-N1-C5-C6 -178.3 (3) Cd-O3-C39-C40 Cd-N1-C5-C6 5.6 (4) C39'-O4-C39-O3 C3-C4-C5-N1 -1.1 (5) Cd-O4-C39-O3 C12-C4-C5-N1 179.4 (3) C39'-O4-C39-C40	-11.9 (4) 0 (100)
C1—N1—C5—C6 -178.3 (3) Cd—O3—C39—C40 Cd—N1—C5—C6 5.6 (4) C39'—O4—C39—O3 C3—C4—C5—N1 -1.1 (5) Cd—O4—C39—O3 C12—C4—C5—N1 179.4 (3) C39'—O4—C39—C40 C3—C4—C5—C6 177.4 (3) Cd—O4—C39—C40	-11.9 (4) 0 (100) 171.8 (4)
C1-N1-C5-C6 $-178.3 (3)$ Cd-O3-C39-C40Cd-N1-C5-C6 $5.6 (4)$ $C39'-O4-C39-O3$ C3-C4-C5-N1 $-1.1 (5)$ Cd-O4-C39-O3C12-C4-C5-N1 $179.4 (3)$ $C39'-O4-C39-C40$ C3-C4-C5-C6 $177.4 (3)$ Cd-O4-C39-C40C12-C4-C5-C6 $-2.1 (5)$ O3-C39-C40-C41	-11.9 (4) 0 (100) 171.8 (4) 130.4 (6)

Cd—N2—C6—C10	174.5 (3)	C39—C40—C41—C42	-174.6 (4)
C7—N2—C6—C5	177.7 (3)	C42′—O6—C42—O5	0 (100)
Cd—N2—C6—C5	-7.5 (4)	C42′—O6—C42—C41	0 (27)
N1-C5-C6-N2	1.4 (5)	C42′—O5—C42—O6	0 (100)
C4—C5—C6—N2	-177.2 (3)	Cd ⁱⁱ —O5—C42—O6	16.1 (5)
N1-C5-C6-C10	179.4 (3)	C42′—O5—C42—C41	0 (19)
C4—C5—C6—C10	0.8 (5)	Cd ⁱⁱ —O5—C42—C41	-154.0 (5)
C6—N2—C7—C8	1.5 (6)	C40—C41—C42—O6	176.2 (6)
Cd—N2—C7—C8	-172.6 (3)	C40—C41—C42—O5	-12.4 (9)
N2-C7-C8-C9	-1.3 (7)	C39—O3—C39′—O4	0 (46)
C7—C8—C9—C10	-0.2 (7)	Cd—O3—C39′—O4	13.2 (4)
C8—C9—C10—C6	1.4 (7)	C39—O3—C39′—C40′	0 (100)
C8—C9—C10—C11	-179.3 (4)	Cd—O3—C39'—C40'	-145.2 (8)
N2-C6-C10-C9	-1.1 (6)	C39—O4—C39′—O3	0 (35)
C5—C6—C10—C9	-179.0 (4)	Cd—O4—C39′—O3	-11.9 (4)
N2-C6-C10-C11	179.5 (3)	C39—O4—C39′—C40′	0 (100)
C5-C6-C10-C11	1.6 (5)	Cd—O4—C39'—C40'	152.2 (5)
C13—N4—C11—C12	0.9 (5)	O3—C39′—C40′—C41′	-21.0 (16)
C13—N4—C11—C10	-178.6 (4)	O4—C39′—C40′—C41′	177.3 (10)
C9-C10-C11-C12	178.0 (4)	C39'—C40'—C41'—C42'	-175.4 (7)
C6-C10-C11-C12	-2.6 (6)	C42—O6—C42′—O5	0 (100)
C9—C10—C11—N4	-2.6 (7)	C42—O6—C42′—C41′	0 (20)
C6-C10-C11-N4	176.8 (4)	C42—O5—C42′—O6	0 (100)
N4—C11—C12—N3	-0.7 (4)	Cd ⁱⁱ —O5—C42′—O6	16.1 (5)
C10-C11-C12-N3	178.8 (3)	C42—O5—C42′—C41′	0 (24)
N4—C11—C12—C4	-178.1 (3)	Cd ⁱⁱ —O5—C42′—C41′	-176.4 (5)
C10-C11-C12-C4	1.4 (6)	C40'—C41'—C42'—O6	-61.2 (13)
C13—N3—C12—C11	0.3 (4)	C40'—C41'—C42'—O5	134.2 (10)

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

		TT 4		
D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
01—H1 <i>O</i> ····O6 ⁱⁱⁱ	0.84	1.86	2.659 (5)	161
O2—H2 <i>O</i> ····O4 ^{iv}	0.84	1.83	2.663 (5)	172
N3—H3 n ···O5 ^v	0.86	2.15	2.893 (6)	144
N7—H7 n ···O3 ^{vi}	0.86	2.06	2.785 (6)	141
С3—Н3…О5 ^v	0.93	2.48	3.309 (5)	148
C22—H22···O3 ^{vi}	0.93	2.57	3.360 (5)	143
C28—H28····O2 ^{vii}	0.93	2.55	3.390 (6)	150
C2—H2···Cg1 ^{vi}	0.93	2.75	3.445 (5)	133
C21—H21···Cg2 ^{viii}	0.93	2.79	3.554 (5)	140

Symmetry codes: (iii) x-1, y, z+1; (iv) x, y, z-1; (v) -x+2, -y, -z+2; (vi) -x+2, -y, -z+1; (vii) -x+2, -y+1, -z; (viii) -x+1, -y, -z+2.