

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]cobalt(II) dipicrate acetonitrile trisolvate

Huilu Wu,^a* Ruirui Yun,^b Xingcai Huang,^a Qingyu Sun^a and Baoliang Qi^a

^aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and ^bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: wuhuilu@163.com

Received 11 June 2009; accepted 24 June 2009

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.087; data-to-parameter ratio = 15.5.

In the title compound, $[Co(C_{16}H_{14}N_4O)_2](C_6H_2N_3O_7)_{2}$ ·-3CH₃CN, the Co^{II} ion is located on a crystallographic twofold rotation axis and is coordinated in a slightly distorted tetrahedral environment by four N atoms from the two bidentate *N*-heterocycles. The crystal structure is stabilized by intermolecular N-H···O and N-H···N hydrogen bonds. One of the acetonitrile solvent molecules also lies on a twofold rotation axis.

Related literature

For the crystal structures of related dipicrate metal complexes with 1,3-bis(1-benzyl-1H-benzimidazol-2-yl)-2-oxapropane ligands, see: Wu, Yun, Li, Wang & Huang (2009); Wu, Yun, Li, Tao & Wang (2009).

25278 measured reflections

 $R_{\rm int} = 0.021$

refinement $\Delta \rho_{\text{max}} = 0.45 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

6093 independent reflections

5418 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

$$\begin{split} & [\mathrm{Co}(\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O})_2](\mathrm{C}_6\mathrm{H}_2\mathrm{N}_3\mathrm{O}_7)_2\cdots & \beta = 111.164~(1)^\circ \\ & 3\mathrm{C}_2\mathrm{H}_3\mathrm{N} & V = 2657.12~(11)~\mathrm{\AA}^3 \\ & M_r = 1194.93 & Z = 2 \\ & \mathrm{Monoclinic}, P2/c & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation} \\ & a = 11.4114~(3)~\mathrm{\AA} & \mu = 0.41~\mathrm{mm}^{-1} \\ & b = 9.9303~(2)~\mathrm{\AA} & T = 153~\mathrm{K} \\ & c = 25.1442~(6)~\mathrm{\AA} & 0.28 \times 0.25 \times 0.17~\mathrm{mm} \end{split}$$

Data collection

Rigaku R-AXIS Spider diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.894, T_{\rm max} = 0.933$

Refinement

Table 1

H	yd	lrogen-	bond	geometry	1	4 , °).
---	----	---------	------	----------	---	--------------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots O6^{i}$	0.858 (9)	1.893 (12)	2.6746 (14)	150.7 (17)
$N2-H2N\cdots O5^{i}$	0.858 (9)	2.381 (15)	3.0166 (15)	131.3 (15)
$N4 - H4N \cdot \cdot \cdot N8$	0.858 (9)	2.052 (10)	2.9040 (18)	171.8 (18)

Symmetry code: (i) x, y - 1, z.

Data collection: *RAPID-AUTO* (Rigaku/MSC, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support and a grant from the 'Qing Lan' Talent Engineering Funds and the Students' Science and Technology Innovation Funds (grant No. DXS2008–040,041) of Lanzhou Jiaotong University. A grant from 'Long Yuan Qing Nian' of Gansu Province is also acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2846).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas,
- USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wu, H., Yun, R., Li, K., Tao, S. & Wang, K. (2009). Acta Cryst. E65, m786.

Wu, H., Yun, R., Li, K., Wang, K. & Huang, X. (2009). Acta Cryst. E65, m751– m752.

supporting information

Acta Cryst. (2009). E65, m851 [doi:10.1107/S1600536809024234]

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]cobalt(II) dipicrate acetonitrile trisolvate

Huilu Wu, Ruirui Yun, Xingcai Huang, Qingyu Sun and Baoliang Qi

S1. Comment

The asymmetric unit of the title compound consists of half a discrete di[1,3-bis(benzimidazol-2-yl)-2-oxopropane] cobalt(II) cation, one picrate anion and 1.5 molecules of acetonitrile; the formula unit is generated by a twofold rotation axis. The cation is shown in Fig. 1. The Co^{II} ion is four-coordinate with a N₄ ligand set. The (1,3-bis(benzimidazol-2-yl)-2-oxopropane) ligand acts as a bidentate donor. The coordination geometry of the Co^{II} may be best described as slightly distorted tetrahedral. This geometry is assumed by the Co^{II} to relieve the steric crowding. The crystal structure is stabilized by intermolecular N—H…O and N—H…N hydrogen bonds. Additional stabilization is provided by weak intermolecular C-H…O hydrogen bonds (Fig. 2).

S2. Experimental

To a stirred solution of 1,3-bis(benzimidazol-2-yl)-2-oxopropane (0.139 g, 0.5 mmol) in hot MeOH (15 ml) was added $Co(C_6H_2N_3O_7)_2$ (0.129 g, 0.25 mmol) in MeOH (5 ml). A red crystalline product formed rapidly. The precipitate was filtered off, washed with MeOH and absolute Et₂O, and dried *in vacuo*. The dried precipitate was dissolved in acetonitrile to form a red solution that was allowed to evaporate at room temperature. Red crystals suitable for X-ray diffraction studies were obtained after three days at room temperature. Yield, 0.106 g (66%). (found: C, 50.20; H, 3.51; N,19.94. Calcd. for C50H41N17O16Co: C, 50.26; H, 3.46; N, 19.93)

S3. Refinement

All H atoms were found in difference electron maps and were subsequently included in a riding-model approximation with C—H distances ranging from 0.95 to 0.99 Å and $U_{iso}(H) = 1.2 U_{eq}$ of the carrier atom. The H atoms bonded to N atoms were refined independently with the distance constraint of N—H 0.858 (9) Å.

Figure 1

Molecular structure and atom numbering for the cation of the title compound. Hydrogen atoms have been omitted for clarity and the displacement ellipsoids are shown at the 30% probability level [symmetry code: (A) -x+1, y, -z+3/2].

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]cobalt(II) dipicrate acetonitrile trisolvate

Crystal data	
$[Co(C_{16}H_{14}N_4O)_2](C_6H_2N_3O_7)_2 \cdot 3C_2H_3N$	F(000) = 1230
$M_r = 1194.93$	$D_{\rm x} = 1.494 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yc	Cell parameters from 7749 reflections
a = 11.4114 (3) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 9.9303 (2) Å	$\mu=0.41~\mathrm{mm^{-1}}$
c = 25.1442 (6) Å	T = 153 K
$\beta = 111.164 \ (1)^{\circ}$	Block, red
V = 2657.12 (11) Å ³	$0.28 \times 0.25 \times 0.17 \text{ mm}$
Z = 2	

Data collection

Rigaku R-AXIS Spider	25278 measured reflections
diffractometer	6093 independent reflections
Radiation source: fine-focus sealed tube	5418 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.021$
φ and ω scans	$\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>ABSCOR</i> ; Higashi, 1995)	$k = -12 \rightarrow 12$
$T_{\min} = 0.894, T_{\max} = 0.933$	$l = -32 \rightarrow 32$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent
$wR(F^2) = 0.087$	and constrained refinement
S = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0487P)^{2} + 0.9118P]$
6093 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
392 parameters	$(\Delta/\sigma)_{max} = 0.001$
2 restraints	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.50 \text{ e A}^{-1}$
Secondary atom site location: difference Fourier	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.0036 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Со	0.5000	0.36301 (2)	0.7500	0.01700 (8)	
01	0.67337 (8)	0.24981 (9)	0.71220 (4)	0.02259 (19)	
O2	0.74591 (13)	0.49084 (15)	0.46620 (6)	0.0583 (4)	
O3	0.54824 (12)	0.47322 (11)	0.41556 (5)	0.0409 (3)	
O4	0.25535 (11)	0.76959 (16)	0.44436 (6)	0.0567 (4)	
05	0.29928 (11)	0.88294 (12)	0.52194 (5)	0.0428 (3)	
O6	0.54003 (9)	0.96666 (10)	0.56756 (4)	0.0292 (2)	
O7	0.78254 (12)	0.91568 (16)	0.63960 (5)	0.0522 (3)	
08	0.88585 (11)	0.89860 (13)	0.58266 (5)	0.0420 (3)	
N1	0.41234 (10)	0.25020 (10)	0.67914 (4)	0.0200 (2)	
N2	0.39034 (10)	0.10735 (11)	0.60795 (4)	0.0202 (2)	
N3	0.62918 (10)	0.49981 (11)	0.74562 (4)	0.0195 (2)	
N4	0.77113 (11)	0.58828 (12)	0.71442 (5)	0.0260 (2)	
N5	0.63674 (13)	0.52737 (13)	0.45326 (5)	0.0342 (3)	
N6	0.33090 (11)	0.81256 (13)	0.48951 (5)	0.0309 (3)	

N7	0.79113 (12)	0.88240 (13)	0.59422 (5)	0.0332 (3)
N8	0.93174 (15)	0.59702 (16)	0.64743 (6)	0.0452 (4)
N9	1.0000	0.3626 (2)	0.7500	0.0471 (5)
C1	0.28403 (12)	0.23999 (12)	0.64561 (5)	0.0196 (2)
C2	0.17845 (12)	0.29913 (14)	0.65151 (5)	0.0252 (3)
H2	0.1860	0.3604	0.6816	0.030*
C3	0.06220(13)	0.26482 (15)	0.61173 (6)	0.0282 (3)
Н3	-0.0113	0.3029	0.6150	0.034*
C4	0 04975 (13)	0 17528 (15)	0 56674 (6)	0.0278(3)
H4	-0.0317	0.1546	0.5402	0.033*
C5	0.0317 0.15352(13)	0.11673 (14)	0.56030 (6)	0.0249(3)
U5	0.13532 (15)	0.0568	0.50050 (0)	0.0249 (3)
	0.1430	0.0308	0.3296	0.030°
C6 C7	0.26998 (12)	0.14996 (12)	0.00080 (5)	0.0194(2)
C/	0.4/004 (12)	0.16/61 (12)	0.65481 (5)	0.0197 (2)
C8	0.60830 (12)	0.138/2 (13)	0.67854 (6)	0.0252 (3)
H8A	0.6244	0.0564	0.7023	0.030*
H8B	0.6391	0.1231	0.6469	0.030*
C9	0.68619 (12)	0.35957 (13)	0.67806 (5)	0.0222 (3)
H9A	0.6121	0.3650	0.6422	0.027*
H9B	0.7624	0.3481	0.6684	0.027*
C10	0.69630 (11)	0.48306 (13)	0.71274 (5)	0.0201 (2)
C11	0.75372 (13)	0.68185 (14)	0.75169 (6)	0.0267 (3)
C12	0.80865 (17)	0.80687 (16)	0.77019 (7)	0.0396 (4)
H12	0.8685	0.8446	0.7562	0.047*
C13	0.77203 (19)	0.87304 (16)	0.80967 (8)	0.0450 (4)
H13	0.8071	0.9588	0.8232	0.054*
C14	0.68394(17)	0.81668 (16)	0.83043(7)	0.0393(4)
H14	0.6612	0.8653	0.8578	0.047*
C15	0.6012 0.62941 (14)	0.60269 (15)	0.81217 (6)	0.047 0.0293(3)
H15	0.5702	0.6549	0.8265	0.0255 (5)
C16	0.5702	0.0349 0.62542(12)	0.0205	0.033
C10 C17	0.00344(13)	0.02342(13)	0.77109(3)	0.0221(3)
C17	0.01070(14)	0.03884(13)	0.48431 (0)	0.0202 (3)
C18	0.48//2(13)	0.6/268 (13)	0.4/49/(5)	0.0238 (3)
HI8	0.4208	0.6222	0.4489	0.029*
C19	0.46257 (13)	0.78010 (13)	0.50371 (5)	0.0233 (3)
C20	0.55850 (13)	0.86220 (13)	0.54417 (5)	0.0228 (3)
C21	0.68386 (13)	0.81456 (14)	0.55233 (6)	0.0260 (3)
C22	0.70968 (14)	0.71058 (15)	0.52261 (6)	0.0288 (3)
H22	0.7941	0.6878	0.5281	0.035*
C23	1.05744 (17)	0.6226 (2)	0.58074 (8)	0.0495 (5)
H23A	1.0127	0.5755	0.5449	0.059*
H23B	1.1415	0.5837	0.5987	0.059*
H23C	1.0648	0.7183	0.5730	0.059*
C24	0.98832 (15)	0.60810 (18)	0.61876 (7)	0.0371 (4)
C25	1.0000	0.1051 (3)	0.7500	0.0971 (16)
H25A	1.0691	0.0722	0.7836	0.116*
H25B	1 0110	0.0722	0 7154	0.116*
H250	0.0100	0.0722	0.7511	0.116*
11230	0.2122	0.0722	0./311	0.110

0.50 0.50 0.50

supporting information

C26	1.0000	0.2497 (2)	0.7500	0.0355 (5)
H2N	0.4130 (16)	0.0525 (15)	0.5871 (7)	0.037 (5)*
H4N	0.8242 (14)	0.5947 (19)	0.6975 (7)	0.041 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Со	0.01758 (12)	0.01751 (13)	0.01522 (12)	0.000	0.00511 (9)	0.000
O1	0.0227 (5)	0.0215 (4)	0.0208 (4)	-0.0016 (3)	0.0046 (4)	-0.0025 (3)
O2	0.0533 (8)	0.0616 (9)	0.0637 (8)	0.0260 (7)	0.0257 (7)	-0.0152 (7)
O3	0.0612 (8)	0.0328 (6)	0.0310 (5)	0.0086 (5)	0.0194 (5)	-0.0069 (5)
O4	0.0274 (6)	0.0785 (10)	0.0554 (8)	-0.0016 (6)	0.0044 (6)	-0.0380 (7)
O5	0.0291 (6)	0.0489 (7)	0.0506 (7)	0.0037 (5)	0.0147 (5)	-0.0249 (6)
O6	0.0275 (5)	0.0275 (5)	0.0321 (5)	0.0021 (4)	0.0102 (4)	-0.0101 (4)
O7	0.0354 (6)	0.0790 (10)	0.0353 (6)	0.0055 (6)	0.0046 (5)	-0.0223 (6)
08	0.0292 (6)	0.0469 (7)	0.0486 (7)	-0.0026 (5)	0.0126 (5)	0.0015 (5)
N1	0.0186 (5)	0.0204 (5)	0.0200 (5)	0.0016 (4)	0.0058 (4)	-0.0023 (4)
N2	0.0214 (5)	0.0189 (5)	0.0203 (5)	0.0001 (4)	0.0075 (4)	-0.0037 (4)
N3	0.0211 (5)	0.0207 (5)	0.0178 (5)	-0.0001 (4)	0.0082 (4)	-0.0005 (4)
N4	0.0287 (6)	0.0261 (6)	0.0286 (6)	-0.0045 (5)	0.0170 (5)	-0.0010 (5)
N5	0.0495 (8)	0.0292 (6)	0.0304 (6)	0.0138 (6)	0.0222 (6)	0.0023 (5)
N6	0.0251 (6)	0.0324 (6)	0.0345 (6)	0.0000 (5)	0.0100 (5)	-0.0109 (5)
N7	0.0271 (6)	0.0361 (7)	0.0327 (6)	0.0065 (5)	0.0061 (5)	-0.0024 (5)
N8	0.0477 (9)	0.0524 (9)	0.0459 (8)	0.0125 (7)	0.0295 (7)	0.0123 (7)
N9	0.0421 (12)	0.0387 (12)	0.0568 (13)	0.000	0.0132 (10)	0.000
C1	0.0192 (6)	0.0204 (6)	0.0178 (5)	-0.0006(5)	0.0052 (5)	-0.0001 (4)
C2	0.0217 (6)	0.0300 (7)	0.0234 (6)	0.0023 (5)	0.0074 (5)	-0.0052 (5)
C3	0.0199 (6)	0.0351 (7)	0.0289 (7)	0.0021 (5)	0.0080 (5)	-0.0046 (6)
C4	0.0203 (6)	0.0330 (7)	0.0259 (6)	-0.0026 (5)	0.0035 (5)	-0.0040 (6)
C5	0.0247 (7)	0.0264 (6)	0.0215 (6)	-0.0022 (5)	0.0059 (5)	-0.0051 (5)
C6	0.0204 (6)	0.0191 (6)	0.0196 (5)	-0.0003 (4)	0.0082 (5)	0.0008 (4)
C7	0.0212 (6)	0.0167 (5)	0.0209 (6)	-0.0001 (5)	0.0073 (5)	-0.0009 (4)
C8	0.0206 (6)	0.0220 (6)	0.0294 (6)	0.0019 (5)	0.0049 (5)	-0.0078 (5)
C9	0.0217 (6)	0.0264 (7)	0.0198 (6)	0.0004 (5)	0.0091 (5)	-0.0015 (5)
C10	0.0189 (6)	0.0239 (6)	0.0179 (5)	0.0011 (5)	0.0073 (5)	0.0026 (5)
C11	0.0299 (7)	0.0246 (7)	0.0280 (6)	-0.0030 (5)	0.0133 (6)	-0.0004 (5)
C12	0.0469 (9)	0.0293 (8)	0.0490 (9)	-0.0132 (7)	0.0251 (8)	-0.0049 (7)
C13	0.0582 (11)	0.0270 (8)	0.0540 (10)	-0.0149 (7)	0.0254 (9)	-0.0139 (7)
C14	0.0509 (10)	0.0305 (8)	0.0415 (8)	-0.0047 (7)	0.0228 (8)	-0.0134 (7)
C15	0.0347 (8)	0.0284 (7)	0.0283 (6)	-0.0023 (6)	0.0156 (6)	-0.0056 (6)
C16	0.0240 (6)	0.0213 (6)	0.0211 (6)	-0.0010 (5)	0.0080 (5)	-0.0001 (5)
C17	0.0380 (8)	0.0225 (6)	0.0229 (6)	0.0085 (5)	0.0168 (6)	0.0030 (5)
C18	0.0335 (7)	0.0202 (6)	0.0203 (6)	0.0012 (5)	0.0130 (5)	0.0008 (5)
C19	0.0259 (7)	0.0229 (6)	0.0229 (6)	0.0037 (5)	0.0111 (5)	-0.0006 (5)
C20	0.0256 (7)	0.0230 (6)	0.0216 (6)	0.0032 (5)	0.0106 (5)	0.0002 (5)
C21	0.0252 (7)	0.0282 (7)	0.0238 (6)	0.0038 (5)	0.0081 (5)	0.0003 (5)
C22	0.0287 (7)	0.0332 (7)	0.0269 (6)	0.0109 (6)	0.0129 (6)	0.0036 (6)
C23	0.0350 (9)	0.0802 (14)	0.0412 (9)	0.0146 (9)	0.0233 (8)	0.0109 (9)

supporting information

C24	0.0319 (8)	0.0471 (9)	0.0344 (8)	0.0142 (7)	0.0146 (7)	0.0100 (7)
C25	0.109 (3)	0.0309 (15)	0.110 (3)	0.000	-0.011 (3)	0.000
C26	0.0263 (10)	0.0338 (12)	0.0407 (11)	0.000	0.0052 (9)	0.000

Geometric parameters (Å, °)

Co-N1	2.0355 (10)	C4—H4	0.9500
Co-N1 ⁱ	2.0355 (10)	C5—C6	1.3910 (18)
Co—N3	2.0367 (11)	С5—Н5	0.9500
Co-N3 ⁱ	2.0367 (11)	C7—C8	1.4993 (18)
O1—C8	1.4250 (15)	C8—H8A	0.9900
O1—C9	1.4272 (16)	C8—H8B	0.9900
O2—N5	1.2234 (19)	C9—C10	1.4849 (18)
O3—N5	1.2315 (18)	С9—Н9А	0.9900
O4—N6	1.2278 (17)	С9—Н9В	0.9900
O5—N6	1.2233 (16)	C11—C12	1.393 (2)
O6—C20	1.2475 (16)	C11—C16	1.3956 (19)
O7—N7	1.2255 (17)	C12—C13	1.375 (2)
O8—N7	1.2270 (17)	C12—H12	0.9500
N1—C7	1.3308 (16)	C13—C14	1.405 (3)
N1—C1	1.4048 (16)	C13—H13	0.9500
N2—C7	1.3416 (16)	C14—C15	1.381 (2)
N2—C6	1.3855 (16)	C14—H14	0.9500
N2—H2N	0.858 (9)	C15—C16	1.3977 (19)
N3—C10	1.3247 (15)	C15—H15	0.9500
N3—C16	1.4004 (16)	C17—C18	1.378 (2)
N4	1.3404 (17)	C17—C22	1.388 (2)
N4—C11	1.3840 (18)	C18—C19	1.3756 (18)
N4—H4N	0.858 (9)	C18—H18	0.9500
N5-C17	1.4459 (17)	C19—C20	1.4469 (19)
N6—C19	1.4497 (18)	C20—C21	1.4492 (19)
N7-C21	1.4597 (19)	C21—C22	1.368 (2)
N8—C24	1.133 (2)	C22—H22	0.9500
N9—C26	1.121 (3)	C23—C24	1.450 (2)
C1—C2	1.3956 (18)	C23—H23A	0.9800
C1—C6	1.4013 (17)	C23—H23B	0.9800
C2—C3	1.3850 (19)	C23—H23C	0.9800
С2—Н2	0.9500	C25—C26	1.436 (4)
C3—C4	1.405 (2)	C25—H25A	0.9800
С3—Н3	0.9500	C25—H25B	0.9800
C4—C5	1.380 (2)	С25—Н25С	0.9800
N1—Co—N1 ⁱ	113.22 (6)	С10—С9—Н9А	110.5
N1—Co—N3	117.15 (4)	O1—C9—H9B	110.5
N1 ⁱ —Co—N3	106.14 (4)	С10—С9—Н9В	110.5
N1—Co—N3 ⁱ	106.13 (4)	Н9А—С9—Н9В	108.7
N1 ⁱ —Co—N3 ⁱ	117.15 (4)	N3-C10-N4	112.81 (11)
N3—Co—N3 ⁱ	96.33 (6)	N3-C10-C9	122.03 (11)

C8—O1—C9	112.25 (10)	N4—C10—C9	125.15 (11)
C7—N1—C1	105.13 (10)	N4—C11—C12	131.85 (13)
C7—N1—Co	124.97 (9)	N4—C11—C16	105.85 (12)
C1—N1—Co	129.90 (8)	C12—C11—C16	122.27 (13)
C7—N2—C6	107.67 (10)	C13—C12—C11	116.71 (15)
C7—N2—H2N	124.2 (12)	C13—C12—H12	121.6
C6—N2—H2N	128.2 (12)	C11—C12—H12	121.6
C10—N3—C16	105.33 (10)	C12—C13—C14	121.49 (14)
C10—N3—Co	122.88 (9)	C12—C13—H13	119.3
C16—N3—Co	131.77 (8)	C14—C13—H13	119.3
C10—N4—C11	107.41 (11)	C15—C14—C13	121.90 (14)
C10—N4—H4N	126.7 (13)	C15—C14—H14	119.0
C11—N4—H4N	125.8 (13)	C13—C14—H14	119.0
02-N5-03	123.27 (13)	C14-C15-C16	116.89 (14)
02 - N5 - C17	118.13 (14)	C14—C15—H15	121.6
03 - N5 - C17	118 60 (13)	C16—C15—H15	121.6
05—N6—04	12250(13)	$C_{11} - C_{16} - C_{15}$	120.73(13)
05 - N6 - C19	119 46 (12)	$C_{11} - C_{16} - N_3$	10858(11)
04 - N6 - C19	118.03 (12)	C15-C16-N3	130.67(12)
07—N7—08	123 97 (14)	C18 - C17 - C22	121.11(12)
07 - N7 - C21	117 91 (13)	C18 - C17 - N5	11933(13)
08 - N7 - C21	118.07 (12)	C^{22} C^{17} N5	119.55 (13)
C_{2} C_{1} C_{6}	120.09(12)	C19 - C18 - C17	119.49 (13)
$C_2 - C_1 - N_1$	120.09(12) 131.19(11)	C19 - C18 - H18	120.3
C6-C1-N1	108 69 (11)	C17—C18—H18	120.3
$C_3 - C_2 - C_1$	117 27 (12)	C18 - C19 - C20	123.90(12)
$C_3 - C_2 - H_2$	121.4	C18 - C19 - N6	115.93(12)
C1 - C2 - H2	121.1	$C_{20} - C_{19} - N_{6}$	120.12(11)
$C^2 - C^3 - C^4$	121.1	06-C20-C19	125.12(11) 125.89(12)
C2—C3—H3	119.0	06-C20-C21	122.06 (12)
C4—C3—H3	119.0	C19 - C20 - C21	111 92 (11)
$C_{5}-C_{4}-C_{3}$	121.29 (12)	C_{22} C_{21} C_{20} C_{21} C_{20}	124.43 (13)
C5-C4-H4	119.4	C^{22} C^{21} N^{7}	116.92 (13)
C3—C4—H4	119.4	$C_{20} = C_{21} = N_{7}$	118.64(12)
C4-C5-C6	116 58 (12)	C_{21} C_{22} C_{17}	110.01(12) 119.00(13)
C4—C5—H5	121.7	$C_{21} = C_{22} = H_{22}$	120.5
C6—C5—H5	121.7	C17—C22—H22	120.5
N2-C6-C5	131.51(12)	C24—C23—H23A	109 5
$N_2 - C_6 - C_1$	105 68 (11)	C24—C23—H23B	109.5
C_{5} — C_{6} — C_{1}	122.80 (12)	H23A—C23—H23B	109.5
N1	112.80 (11)	C_{24} C_{23} $H_{23}C$	109.5
N1-C7-C8	124.00 (11)	$H_{23}A = C_{23} = H_{23}C$	109.5
N2-C7-C8	123.12 (11)	H_{23B} C_{23} H_{23C}	109.5
01	109.64 (10)	N8—C24—C23	178.40 (18)
01—C8—H8A	109.7	C26—C25—H25A	109.5
С7—С8—Н8А	109.7	C26—C25—H25B	109.5
O1—C8—H8B	109.7	H25A—C25—H25B	109.5
С7—С8—Н8В	109.7	C26—C25—H25C	109.5

H8A—C8—H8B	108.2	H25A—C25—H25C	109.5
O1—C9—C10	106.29 (10)	H25B—C25—H25C	109.5
O1—C9—H9A	110.5	N9—C26—C25	180.000 (3)
N1 ⁱ —Co—N1—C7	-63.92 (10)	O1-C9-C10-N4	141.87 (12)
N3—Co—N1—C7	60.12 (11)	C10—N4—C11—C12	178.52 (17)
N3 ⁱ —Co—N1—C7	166.22 (10)	C10—N4—C11—C16	0.22 (15)
N1 ⁱ —Co—N1—C1	116.01 (11)	N4—C11—C12—C13	-177.85 (17)
N3—Co—N1—C1	-119.95 (10)	C16—C11—C12—C13	0.2 (3)
N3 ⁱ —Co—N1—C1	-13.86 (11)	C11—C12—C13—C14	0.3 (3)
N1—Co—N3—C10	-29.43 (11)	C12—C13—C14—C15	-0.3(3)
N1 ⁱ —Co—N3—C10	98.12 (10)	C13—C14—C15—C16	-0.3(3)
N3 ⁱ —Co—N3—C10	-141.21 (11)	N4—C11—C16—C15	177.74 (13)
N1—Co—N3—C16	148.33 (10)	C12—C11—C16—C15	-0.8(2)
N1 ⁱ —Co—N3—C16	-84.11 (11)	N4—C11—C16—N3	-0.97 (15)
N3 ⁱ —Co—N3—C16	36.55 (10)	C12—C11—C16—N3	-179.47 (14)
C7—N1—C1—C2	177.34 (14)	C14—C15—C16—C11	0.8 (2)
Co-N1-C1-C2	-2.6(2)	C14—C15—C16—N3	179.14 (14)
C7—N1—C1—C6	-0.67(13)	C10—N3—C16—C11	1.34 (14)
$C_0 - N_1 - C_1 - C_6$	179.40 (8)	Co-N3-C16-C11	-176.71(9)
C6-C1-C2-C3	0.0 (2)	C10 - N3 - C16 - C15	-177.19(14)
N1-C1-C2-C3	-177.80(13)	Co—N3—C16—C15	4.8 (2)
C1—C2—C3—C4	-0.6 (2)	O2—N5—C17—C18	-172.99 (14)
$C_{2}-C_{3}-C_{4}-C_{5}$	0.3 (2)	O3—N5—C17—C18	6.38 (19)
C3—C4—C5—C6	0.6 (2)	02—N5—C17—C22	7.5 (2)
C7—N2—C6—C5	-178.36 (14)	O3—N5—C17—C22	-173.11 (13)
C7—N2—C6—C1	0.86 (14)	C22—C17—C18—C19	0.6 (2)
C4—C5—C6—N2	177.88 (13)	N5—C17—C18—C19	-178.90(12)
C4—C5—C6—C1	-1.2 (2)	C17—C18—C19—C20	-0.1 (2)
C2-C1-C6-N2	-178.38(12)	C17—C18—C19—N6	177.32 (12)
N1—C1—C6—N2	-0.12 (13)	O5—N6—C19—C18	162.30 (14)
C2—C1—C6—C5	0.92 (19)	O4—N6—C19—C18	-19.0 (2)
N1—C1—C6—C5	179.19 (12)	O5—N6—C19—C20	-20.2(2)
C1—N1—C7—N2	1.27 (14)	O4—N6—C19—C20	158.52 (15)
Co—N1—C7—N2	-178.79(8)	C18—C19—C20—O6	173.77 (13)
C1—N1—C7—C8	-175.73 (12)	N6—C19—C20—O6	-3.5 (2)
Co—N1—C7—C8	4.21 (18)	C18—C19—C20—C21	-2.18(18)
C6—N2—C7—N1	-1.38 (15)	N6—C19—C20—C21	-179.48 (12)
C6—N2—C7—C8	175.65 (12)	O6—C20—C21—C22	-171.77 (14)
C9—O1—C8—C7	-77.34 (13)	C19—C20—C21—C22	4.36 (19)
N1—C7—C8—O1	-26.34 (18)	O6—C20—C21—N7	7.1 (2)
N2—C7—C8—O1	156.97 (11)	C19—C20—C21—N7	-176.76 (12)
C8—O1—C9—C10	153.52 (10)	07—N7—C21—C22	-140.26 (15)
C16—N3—C10—N4	-1.25 (14)	08—N7—C21—C22	37.34 (19)
Co—N3—C10—N4	177.02 (8)	O7—N7—C21—C20	40.78 (19)
C16—N3—C10—C9	179.16 (11)	08—N7—C21—C20	-141.62 (13)
Co-N3-C10-C9	-2.57 (16)	C20—C21—C22—C17	-4.2 (2)
C11—N4—C10—N3	0.67 (15)	N7—C21—C22—C17	176.93 (12)
	× /		× /

C11—N4—C10—C9	-179.76 (12)	C18—C17—C22—C21	1.5 (2)
O1—C9—C10—N3	-38.59 (16)	N5—C17—C22—C21	-179.07 (12)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N2—H2 <i>N</i> ···O6 ⁱⁱ	0.86(1)	1.89 (1)	2.6746 (14)	151 (2)
N2—H2N···O5 ⁱⁱ	0.86(1)	2.38 (2)	3.0166 (15)	131 (2)
N4—H4 <i>N</i> …N8	0.86 (1)	2.05 (1)	2.9040 (18)	172 (2)

Symmetry code: (ii) x, y-1, z.