

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2a, 3a-Dihydroxyandrostan-16-one

#### Li Zhang,<sup>a</sup> Xin Fang,<sup>b</sup> Xiao-Jiang Hao<sup>b</sup> and Yang Lu<sup>a</sup>\*

<sup>a</sup>Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, 1 Xiannong Tan Street, Beijing 100050, People's Republic of China, and <sup>b</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People's Republic of China Correspondence e-mail: luy@imm.ac.cn

Received 24 June 2009; accepted 24 July 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 9.9.

The title compound, C<sub>19</sub>H<sub>28</sub>O<sub>4</sub>, is a new androstane steroid derivative. In the crystal, molecules are linked along the *a* axis by intermolecular  $O-H \cdots O$  hydrogen bonds.

#### **Related literature**

The title compound was obtained from the methanol extract of stems of Trichilia claussenii by column chromatograph, see: Pupo et al. (1997). It shows strong insecticidal activity, see: Champagne et al. (1992).



#### **Experimental**

Crvstal data C19H28O4

 $M_r = 320.41$ 

Monoclinic, P21 a = 10.8687 (2) Åb = 6.3379(1) Å c = 12.9038(2) Å  $\beta = 112.882 \ (1)^{\circ}$ V = 818.93 (2) Å<sup>3</sup>

Data collection

MAC DIP 2030K diffractometer Absorption correction: none 2065 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.105$ S = 1.142065 reflections 208 parameters

Z = 2Mo  $K\alpha$  radiation  $\mu = 0.09 \text{ mm}^-$ T = 295 K $0.20 \times 0.20 \times 0.20$  mm

2065 independent reflections 1929 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.015$ 

1 restraint H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$     | D-H                                    | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |  |
|----------------------|----------------------------------------|-------------------------|--------------|---------------------------|--|
| $O2-H2A\cdotsO1^{i}$ | 0.82                                   | 2.03                    | 2.8088 (19)  | 158                       |  |
| Symmetry code: (i) - | $x, y + \frac{1}{2}, -z + \frac{1}{2}$ | 1.                      |              |                           |  |

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

We acknowledge financial support from the International Centre for Diffraction Data, Pennsylvania, USA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2087).

#### References

- Champagne, D. E., Koul, O., Isman, M. B., Scudder, G. G. E. & Towers, G. H. N. (1992). Phytochemistry, 31, 377-394.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pupo, M. T., Vieira, P. C., Fernandes, J. B., da Silva, M. F. & Fo, R. E. (1997). Phytochemistry, 45, 1495–1500.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2009). E65, o2043 [doi:10.1107/S1600536809029493]

## 2a, 3a-Dihydroxyandrostan-16-one

### Li Zhang, Xin Fang, Xiao-Jiang Hao and Yang Lu

#### S1. Comment

The title compound,(I), was yielded from the methanol extract of stems of Trichilia claussenii by column chromatographies (Pupo *et al.*, 1997) and recrystallized from methanol-hexane(1:1). As it shows strong biological activities against insects (Champagne *et al.*, 1992) we have determined its crystal stucture, Fig. 1, Table 1.

In this structure, rings A,B and C adopt chair conformations, and both ring D,*E* adopt envelope conformations. The dihedral angle between the least-squares plane through the 6 atoms of rings A and B is 9.2 (1)°, and that between rings B and C and that between rings C and D are 175.0 (2)° and 2.5 (1)°, respectively.

Besides, the molecules of the title compound are linked into each other along *a* axis, by intermolecular hydrogen bonds O—H···O. Atom O2 acts as hydrogen-bond donor to atom O1 at (-*x*, y + 1/2, -*z* + 1). Molecules pack in ribbons along the *b* axis, Fig. 2.

#### S2. Experimental

The title compound was prepared according to the procedure of extracting Trichilia claussenii (Pupo *et al.*, 1997). At the temprature of 283 K and unventilated condition, single crystals of (I) were obtained from mixed solvent of methanol-hexane(1:1) within two weeks.

#### **S3. Refinement**

In the absence of significant anomalous dispersion effects, Freidel pairs were merged. The position of the hydroxy H atoms were refined freely along with an isotropic displacement parameter  $U_{iso}(H) = 1.2U_{eq}(C)$ . The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ , but each group was allowed to rotate freely about its C—C bond. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range of 0.92–0.98 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .



### Figure 1

View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.



#### Figure 2

The molecular packing of (I) viewed down the b axis.

#### 2a,3a-Dihydroxyandrostan-16-one

Crystal data C<sub>19</sub>H<sub>28</sub>O<sub>4</sub>  $M_r = 320.41$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 10.8687 (2) Å b = 6.3379 (1) Å c = 12.9038 (2) Å  $\beta = 112.882 (1)^{\circ}$   $V = 818.93 (2) \text{ Å}^{3}$ Z = 2

F(000) = 348  $D_x = 1.299 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 2065 reflections  $\theta = 1.7-27.6^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 295 KBlock, colourless  $0.20 \times 0.20 \times 0.20 \text{ mm}$  Data collection

| MAC DIP 2030K                                   | 2065 independent reflections                                |
|-------------------------------------------------|-------------------------------------------------------------|
| diffractometer                                  | 1929 reflections with $I > 2\sigma(I)$                      |
| Radiation source: rotate anode                  | $R_{int} = 0.015$                                           |
| Graphite monochromator                          | $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 1.7^{\circ}$ |
| Detector resolution: 0 pixels mm <sup>-1</sup>  | $h = -14 \rightarrow 13$                                    |
| $\omega$ scans                                  | $k = 0 \rightarrow 8$                                       |
| 2065 measured reflections                       | $l = 0 \rightarrow 16$                                      |
| Refinement                                      |                                                             |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full                      | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                       |
| $wR(F^2) = 0.105$                               | neighbouring sites                                          |
| S = 1.14                                        | H-atom parameters constrained                               |
| 2065 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.0933P]$           |
| 208 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 1 restraint                                     | $(\Delta/\sigma)_{max} < 0.001$                             |
| Primary atom site location: structure-invariant | $\Delta\rho_{max} = 0.26$ e Å <sup>-3</sup>                 |
| direct methods                                  | $\Delta\rho_{min} = -0.15$ e Å <sup>-3</sup>                |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| $\frac{z}{0.44798 (11)} \frac{U_{iso}^*/U_{eq}}{0.0387 (3)}$ |
|--------------------------------------------------------------|
| 0.44798 (11) 0.0387 (3)                                      |
|                                                              |
| 0.48050 (15) 0.0530 (5)                                      |
| 0.4882 0.080*                                                |
| 0.25157 (18) 0.0597 (5)                                      |
| 0.2083 0.089*                                                |
| 0.09632 (16) 0.0657 (5)                                      |
| 0.34250 (16) 0.0321 (4)                                      |
| 0.3976 0.038*                                                |
| 0.2846 0.038*                                                |
| 0.39679 (18) 0.0371 (4)                                      |
| 0.3084 (2) 0.0423 (5)                                        |
| 0.3457 0.051*                                                |
| 0.22815 (18) 0.0419 (5)                                      |
| 0.1618 0.050*                                                |
| 0.2642 0.050*                                                |
| 0.19065 (15) 0.0337 (4)                                      |
| 0.1379 0.040*                                                |
|                                                              |

| C6   | 0.02645 (19) | 0.4533 (4) | 0.12841 (17) | 0.0418 (5) |
|------|--------------|------------|--------------|------------|
| H6A  | 0.0208       | 0.3383     | 0.1760       | 0.050*     |
| H6B  | -0.0550      | 0.4533     | 0.0611       | 0.050*     |
| C7   | 0.14492 (19) | 0.4159 (4) | 0.09552 (16) | 0.0425 (5) |
| H7A  | 0.1436       | 0.5195     | 0.0398       | 0.051*     |
| H7B  | 0.1371       | 0.2771     | 0.0618       | 0.051*     |
| C8   | 0.27756 (17) | 0.4311 (3) | 0.19700 (14) | 0.0294 (4) |
| H8A  | 0.2807       | 0.3202     | 0.2509       | 0.035*     |
| C9   | 0.28860 (17) | 0.6477 (3) | 0.25428 (14) | 0.0278 (4) |
| H9   | 0.2777       | 0.7530     | 0.1958       | 0.033*     |
| C10  | 0.17217 (16) | 0.6848 (3) | 0.29237 (14) | 0.0273 (4) |
| C11  | 0.42783 (17) | 0.6878 (4) | 0.34704 (16) | 0.0357 (4) |
| H11A | 0.4325       | 0.8331     | 0.3720       | 0.043*     |
| H11B | 0.4390       | 0.5978     | 0.4109       | 0.043*     |
| C12  | 0.54289 (19) | 0.6468 (3) | 0.30905 (19) | 0.0383 (5) |
| H12A | 0.5399       | 0.7492     | 0.2523       | 0.046*     |
| H12B | 0.6275       | 0.6625     | 0.3725       | 0.046*     |
| C13  | 0.53218 (18) | 0.4254 (3) | 0.26115 (15) | 0.0314 (4) |
| C14  | 0.39575 (18) | 0.4035 (3) | 0.16258 (15) | 0.0311 (4) |
| H14  | 0.3903       | 0.5191     | 0.1105       | 0.037*     |
| C15  | 0.4097 (2)   | 0.2001 (4) | 0.10396 (17) | 0.0429 (5) |
| H15A | 0.3818       | 0.0783     | 0.1349       | 0.051*     |
| H15B | 0.3572       | 0.2069     | 0.0237       | 0.051*     |
| C16  | 0.5576 (2)   | 0.1902 (5) | 0.12818 (18) | 0.0455 (5) |
| C17  | 0.6267 (2)   | 0.3747 (4) | 0.2021 (2)   | 0.0451 (5) |
| H17A | 0.6348       | 0.4934     | 0.1577       | 0.054*     |
| H17B | 0.7147       | 0.3357     | 0.2558       | 0.054*     |
| C18  | 0.5558 (2)   | 0.2595 (4) | 0.35272 (18) | 0.0428 (5) |
| H18A | 0.4971       | 0.2857     | 0.3910       | 0.064*     |
| H18B | 0.6468       | 0.2667     | 0.4056       | 0.064*     |
| H18C | 0.5382       | 0.1217     | 0.3192       | 0.064*     |
| C19  | 0.17183 (18) | 0.5448 (3) | 0.39026 (15) | 0.0314 (4) |
| H19A | 0.1239       | 0.4144     | 0.3617       | 0.038*     |
| H19B | 0.2624       | 0.5108     | 0.4406       | 0.038*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|   | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|---|-------------|-----------------|-------------|-------------|-------------|--------------|
|   | 0.0390 (7)  | 0.0436 (8)      | 0.0434 (7)  | 0.0018 (7)  | 0.0270 (6)  | 0.0048 (7)   |
| 2 | 0.0462 (9)  | 0.0557 (11)     | 0.0714 (10) | -0.0022 (8) | 0.0384 (8)  | -0.0216 (9)  |
|   | 0.0445 (9)  | 0.0469 (10)     | 0.0889 (13) | 0.0149 (8)  | 0.0274 (9)  | 0.0156 (10)  |
| ŀ | 0.0664 (11) | 0.0689 (13)     | 0.0684 (11) | 0.0217 (10) | 0.0334 (9)  | -0.0171 (10) |
|   | 0.0285 (8)  | 0.0285 (10)     | 0.0453 (10) | -0.0002 (7) | 0.0209 (8)  | 0.0004 (8)   |
|   | 0.0349 (10) | 0.0361 (11)     | 0.0491 (11) | 0.0015 (8)  | 0.0260 (9)  | -0.0001 (9)  |
|   | 0.0313 (10) | 0.0423 (12)     | 0.0615 (13) | 0.0066 (9)  | 0.0271 (10) | 0.0073 (11)  |
|   | 0.0241 (9)  | 0.0481 (12)     | 0.0516 (11) | -0.0003 (9) | 0.0128 (8)  | 0.0063 (11)  |
|   | 0.0270 (8)  | 0.0364 (10)     | 0.0349 (8)  | 0.0024 (8)  | 0.0088 (7)  | 0.0054 (9)   |
|   | 0.0275 (9)  | 0.0485 (13)     | 0.0389 (10) | -0.0027 (9) | 0.0015 (8)  | -0.0040 (9)  |
| - | 0.0275 (9)  | 0.0485 (13)     | 0.0389 (10) | -0.0027(9)  | )           | ) 0.0015 (8) |

| C7  | 0.0374 (10) | 0.0499 (13) | 0.0332 (9)  | 0.0025 (10) | 0.0062 (8)  | -0.0093 (10) |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C8  | 0.0299 (8)  | 0.0310 (9)  | 0.0274 (8)  | -0.0005 (7) | 0.0113 (7)  | -0.0021 (7)  |
| C9  | 0.0274 (8)  | 0.0281 (9)  | 0.0321 (8)  | 0.0000 (7)  | 0.0160 (7)  | 0.0019 (7)   |
| C10 | 0.0249 (8)  | 0.0268 (8)  | 0.0326 (8)  | 0.0000 (7)  | 0.0138 (6)  | 0.0033 (7)   |
| C11 | 0.0277 (8)  | 0.0367 (10) | 0.0460 (10) | -0.0052 (8) | 0.0177 (8)  | -0.0122 (9)  |
| C12 | 0.0307 (9)  | 0.0337 (11) | 0.0563 (12) | -0.0050 (8) | 0.0235 (9)  | -0.0087 (9)  |
| C13 | 0.0309 (9)  | 0.0295 (9)  | 0.0386 (9)  | -0.0002 (8) | 0.0187 (8)  | -0.0001 (8)  |
| C14 | 0.0377 (9)  | 0.0296 (10) | 0.0289 (8)  | 0.0043 (8)  | 0.0162 (7)  | 0.0018 (8)   |
| C15 | 0.0490 (11) | 0.0444 (12) | 0.0359 (9)  | 0.0057 (11) | 0.0173 (9)  | -0.0081 (9)  |
| C16 | 0.0533 (12) | 0.0482 (13) | 0.0422 (10) | 0.0127 (11) | 0.0264 (9)  | 0.0016 (11)  |
| C17 | 0.0426 (11) | 0.0412 (12) | 0.0630 (13) | 0.0060 (10) | 0.0331 (10) | -0.0001 (11) |
| C18 | 0.0453 (12) | 0.0409 (11) | 0.0363 (10) | 0.0043 (9)  | 0.0093 (9)  | 0.0064 (9)   |
| C19 | 0.0308 (8)  | 0.0320 (10) | 0.0352 (9)  | 0.0006 (8)  | 0.0171 (7)  | 0.0054 (8)   |
|     |             |             |             |             |             |              |

Geometric parameters (Å, °)

| 01—C19    | 1.440 (2)   | C8—H8A     | 0.9800      |
|-----------|-------------|------------|-------------|
| O1—C2     | 1.458 (3)   | C9—C11     | 1.542 (2)   |
| O2—C2     | 1.384 (3)   | C9—C10     | 1.543 (2)   |
| O2—H2A    | 0.8200      | С9—Н9      | 0.9800      |
| O3—C3     | 1.429 (3)   | C10—C19    | 1.545 (2)   |
| O3—H3A    | 0.8200      | C11—C12    | 1.533 (2)   |
| O4—C16    | 1.214 (3)   | C11—H11A   | 0.9700      |
| C1—C2     | 1.512 (2)   | C11—H11B   | 0.9700      |
| C1-C10    | 1.528 (3)   | C12—C13    | 1.519 (3)   |
| C1—H1A    | 0.9700      | C12—H12A   | 0.9700      |
| C1—H1B    | 0.9700      | C12—H12B   | 0.9700      |
| C2—C3     | 1.529 (3)   | C13—C18    | 1.527 (3)   |
| C3—C4     | 1.521 (4)   | C13—C17    | 1.532 (3)   |
| С3—Н3В    | 0.9800      | C13—C14    | 1.539 (3)   |
| C4—C5     | 1.537 (3)   | C14—C15    | 1.532 (3)   |
| C4—H4B    | 0.9700      | C14—H14    | 0.9800      |
| C4—H4C    | 0.9700      | C15—C16    | 1.515 (3)   |
| C5—C6     | 1.525 (3)   | C15—H15A   | 0.9700      |
| C5—C10    | 1.551 (2)   | C15—H15B   | 0.9700      |
| C5—H5A    | 0.9800      | C16—C17    | 1.512 (4)   |
| C6—C7     | 1.523 (3)   | C17—H17A   | 0.9700      |
| C6—H6A    | 0.9700      | C17—H17B   | 0.9700      |
| C6—H6B    | 0.9700      | C18—H18A   | 0.9600      |
| С7—С8     | 1.528 (2)   | C18—H18B   | 0.9600      |
| C7—H7A    | 0.9700      | C18—H18C   | 0.9600      |
| C7—H7B    | 0.9700      | C19—H19A   | 0.9700      |
| C8—C14    | 1.524 (2)   | C19—H19B   | 0.9700      |
| C8—C9     | 1.542 (3)   |            |             |
| C19—O1—C2 | 109.44 (13) | С1—С10—С9  | 113.66 (15) |
| C2—O2—H2A | 109.5       | C1C10C19   | 100.18 (14) |
| С3—О3—НЗА | 109.5       | C9—C10—C19 | 115.84 (14) |

| C2-C1-C10                | 101.51 (15)              | C1—C10—C5                                            | 107.06 (15)         |
|--------------------------|--------------------------|------------------------------------------------------|---------------------|
| C2—C1—H1A                | 111.5                    | C9—C10—C5                                            | 109.94 (13)         |
| C10—C1—H1A               | 111.5                    | C19—C10—C5                                           | 109.50 (15)         |
| C2—C1—H1B                | 111.5                    | C12—C11—C9                                           | 113.59 (15)         |
| C10—C1—H1B               | 111.5                    | C12—C11—H11A                                         | 108.8               |
| H1A—C1—H1B               | 109 3                    | C9-C11-H11A                                          | 108.8               |
| 02                       | 108 94 (16)              | C12—C11—H11B                                         | 108.8               |
| 02 - 02 - 01             | 111 31 (17)              | C9-C11-H11B                                          | 108.8               |
| 01 - C2 - C1             | 103 11 (15)              |                                                      | 107.7               |
| 01 - 02 - 01             | 105.11(15)<br>114.50(17) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.7<br>110.12(16) |
| 02 - 02 - 03             | 114.30(17)<br>107.02(17) | $C_{12} = C_{12} = C_{11}$                           | 100.6               |
| 01 - 02 - 03             | 107.03(17)               | C13 - C12 - H12A                                     | 109.0               |
| C1 = C2 = C3             | 111.22 (16)              | C12 - C12 - H12A                                     | 109.6               |
| 03-03-04                 | 111.86 (18)              | С13—С12—Н12В                                         | 109.6               |
| 03-C3-C2                 | 106.94 (18)              | С11—С12—Н12В                                         | 109.6               |
| C4—C3—C2                 | 109.48 (16)              | H12A—C12—H12B                                        | 108.2               |
| O3—C3—H3B                | 109.5                    | C12—C13—C18                                          | 110.98 (17)         |
| С4—С3—Н3В                | 109.5                    | C12—C13—C17                                          | 115.81 (17)         |
| С2—С3—Н3В                | 109.5                    | C18—C13—C17                                          | 107.28 (17)         |
| C3—C4—C5                 | 114.94 (17)              | C12—C13—C14                                          | 108.43 (16)         |
| C3—C4—H4B                | 108.5                    | C18—C13—C14                                          | 113.29 (16)         |
| C5—C4—H4B                | 108.5                    | C17—C13—C14                                          | 100.79 (15)         |
| C3—C4—H4C                | 108.5                    | C8—C14—C15                                           | 119.80 (17)         |
| C5—C4—H4C                | 108.5                    | C8—C14—C13                                           | 113.53 (13)         |
| H4B—C4—H4C               | 107.5                    | C15—C14—C13                                          | 103.60 (15)         |
| C6-C5-C4                 | 109.85 (17)              | C8-C14-H14                                           | 106.3               |
| C6-C5-C10                | 112 35 (16)              | C15—C14—H14                                          | 106.3               |
| C4-C5-C10                | 110.84 (14)              | C13 - C14 - H14                                      | 106.3               |
| $C_{4} = C_{5} = C_{10}$ | 107.0                    | $C_{15} = C_{14} = 1114$                             | 100.5<br>102.52(10) |
| $C_{0}$ $C_{5}$ $U_{5}$  | 107.9                    | C16 - C15 - C14                                      | 105.55 (19)         |
| $C_4 = C_5 = H_5 A$      | 107.9                    | С14 С15 Н15А                                         | 111.1               |
| CIO-CS-HSA               | 107.9                    | CI4—CI5—HI5A                                         | 111.1               |
| C/C6C5                   | 112.59 (18)              | С16—С15—Н15В                                         | 111.1               |
| С/—С6—Н6А                | 109.1                    | С14—С15—Н15В                                         | 111.1               |
| С5—С6—Н6А                | 109.1                    | H15A—C15—H15B                                        | 109.0               |
| С7—С6—Н6В                | 109.1                    | O4—C16—C17                                           | 125.6 (2)           |
| С5—С6—Н6В                | 109.1                    | O4—C16—C15                                           | 125.4 (3)           |
| H6A—C6—H6B               | 107.8                    | C17—C16—C15                                          | 108.98 (18)         |
| C6—C7—C8                 | 111.69 (15)              | C16—C17—C13                                          | 102.17 (17)         |
| С6—С7—Н7А                | 109.3                    | C16—C17—H17A                                         | 111.3               |
| С8—С7—Н7А                | 109.3                    | C13—C17—H17A                                         | 111.3               |
| С6—С7—Н7В                | 109.3                    | C16—C17—H17B                                         | 111.3               |
| С8—С7—Н7В                | 109.3                    | C13—C17—H17B                                         | 111.3               |
| H7A—C7—H7B               | 107.9                    | H17A—C17—H17B                                        | 109.2               |
| C14—C8—C7                | 111.37 (14)              | C13—C18—H18A                                         | 109.5               |
| C14—C8—C9                | 108.93 (15)              | C13—C18—H18B                                         | 109.5               |
| C7—C8—C9                 | 109 80 (16)              | H18A - C18 - H18B                                    | 109 5               |
| $C_14$ — $C_8$ — $H_8A$  | 108.9                    | C13 - C18 - H18C                                     | 109.5               |
| C7 - C8 - H8A            | 108.9                    | H18A - C18 - H18C                                    | 109.5               |
| C9-C8-H8A                | 108.9                    | H18B— $C18$ — $H18C$                                 | 109.5               |
|                          | 100.7                    |                                                      | 10/.0               |

| C8—C9—C11      | 112.89 (15)  | O1—C19—C10      | 105.95 (16)  |
|----------------|--------------|-----------------|--------------|
| C8—C9—C10      | 111.57 (15)  | O1—C19—H19A     | 110.5        |
| C11—C9—C10     | 113.97 (14)  | C10-C19-H19A    | 110.5        |
| С8—С9—Н9       | 105.9        | O1—C19—H19B     | 110.5        |
| С11—С9—Н9      | 105.9        | C10-C19-H19B    | 110.5        |
| С10—С9—Н9      | 105.9        | H19A—C19—H19B   | 108.7        |
|                |              |                 |              |
| C19—O1—C2—O2   | -142.16 (15) | C4—C5—C10—C1    | -60.1 (2)    |
| C19—O1—C2—C1   | -23.84 (19)  | C6-C5-C10-C9    | 52.7 (2)     |
| C19—O1—C2—C3   | 93.54 (17)   | C4—C5—C10—C9    | 176.02 (17)  |
| C10—C1—C2—O2   | 158.11 (16)  | C6-C5-C10-C19   | -75.65 (19)  |
| C10-C1-C2-O1   | 41.46 (17)   | C4—C5—C10—C19   | 47.7 (2)     |
| C10—C1—C2—C3   | -72.9 (2)    | C8—C9—C11—C12   | 50.3 (2)     |
| O2—C2—C3—O3    | 64.1 (2)     | C10-C9-C11-C12  | 178.96 (17)  |
| O1—C2—C3—O3    | -175.03 (16) | C9-C11-C12-C13  | -54.3 (2)    |
| C1—C2—C3—O3    | -63.1 (2)    | C11—C12—C13—C18 | -67.1 (2)    |
| O2—C2—C3—C4    | -174.50 (18) | C11—C12—C13—C17 | 170.30 (18)  |
| O1—C2—C3—C4    | -53.7 (2)    | C11—C12—C13—C14 | 57.9 (2)     |
| C1—C2—C3—C4    | 58.3 (2)     | C7—C8—C14—C15   | -59.0 (2)    |
| O3—C3—C4—C5    | 75.6 (2)     | C9—C8—C14—C15   | 179.72 (16)  |
| C2—C3—C4—C5    | -42.7 (2)    | C7—C8—C14—C13   | 177.94 (17)  |
| C3—C4—C5—C6    | 169.86 (18)  | C9—C8—C14—C13   | 56.7 (2)     |
| C3—C4—C5—C10   | 45.1 (2)     | C12—C13—C14—C8  | -61.8 (2)    |
| C4—C5—C6—C7    | -176.24 (17) | C18—C13—C14—C8  | 61.8 (2)     |
| C10—C5—C6—C7   | -52.4 (2)    | C17—C13—C14—C8  | 176.12 (17)  |
| C5—C6—C7—C8    | 54.4 (3)     | C12—C13—C14—C15 | 166.64 (15)  |
| C6-C7-C8-C14   | -177.36 (19) | C18—C13—C14—C15 | -69.71 (19)  |
| C6—C7—C8—C9    | -56.6 (2)    | C17—C13—C14—C15 | 44.6 (2)     |
| C14—C8—C9—C11  | -49.58 (18)  | C8-C14-C15-C16  | -156.82 (17) |
| C7—C8—C9—C11   | -171.78 (16) | C13—C14—C15—C16 | -29.09 (19)  |
| C14—C8—C9—C10  | -179.45 (14) | C14—C15—C16—O4  | -179.7 (2)   |
| C7—C8—C9—C10   | 58.35 (18)   | C14—C15—C16—C17 | 2.5 (2)      |
| C2-C1-C10-C9   | -166.58 (15) | O4—C16—C17—C13  | -152.8 (2)   |
| C2-C1-C10-C19  | -42.37 (17)  | C15—C16—C17—C13 | 25.0 (2)     |
| C2-C1-C10-C5   | 71.82 (17)   | C12—C13—C17—C16 | -158.74 (18) |
| C8—C9—C10—C1   | -176.07 (14) | C18—C13—C17—C16 | 76.7 (2)     |
| C11—C9—C10—C1  | 54.6 (2)     | C14—C13—C17—C16 | -42.0 (2)    |
| C8—C9—C10—C19  | 68.68 (19)   | C2-O1-C19-C10   | -3.4 (2)     |
| C11—C9—C10—C19 | -60.6 (2)    | C1-C10-C19-O1   | 28.71 (17)   |
| C8—C9—C10—C5   | -56.09 (19)  | C9—C10—C19—O1   | 151.40 (15)  |
| C11—C9—C10—C5  | 174.61 (17)  | C5-C10-C19-O1   | -83.62 (18)  |
| C6—C5—C10—C1   | 176.60 (15)  |                 |              |
|                |              |                 |              |
|                |              |                 |              |
|                |              |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A | <i>D</i> —Н | H···A | D···A | D—H···A |
|---------|-------------|-------|-------|---------|
|         |             |       |       |         |

# supporting information

| O2—H2A···O1 <sup>i</sup> | 0.82 | 2.03 | 2.8088 (19) | 158 |
|--------------------------|------|------|-------------|-----|

Symmetry code: (i) -x, y+1/2, -z+1.