

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[μ -14,29-Di-*tert*-butyl-3,10,18,25-tetraazatpentacyclo[25.3.1.1^{12,16}.0^{4,9}.0^{19,24}]dotriaconta-1(31),4,6,8,12(32),14,16,-19,21,23,27,29-dodecaene-31,32-diolato]bis[(nitrato- $\kappa^2 O, O'$)zinc(II)]

Li-Jing Fan, Jian-Fang Ma* and Bo Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: majf247nenu@yahoo.com.cn

Received 10 July 2009; accepted 20 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.065; data-to-parameter ratio = 18.0.

In the title centrosymmetric dinuclear zinc(II) complex, $[Zn_2(C_{36}H_{42}N_4O_2)(NO_3)_2]$, the Zn^{II} atom has a distorted octahedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion and are bridged by two phenolate O atoms, forming a four-membered Zn_2O_2 ring.

Related literature

For general background to the biochemistry of zinc(II) compounds, see: Bazzicalupi *et al.* (1997); Burley *et al.* (1990); Lipscomb & Straeter (1996); Roderick & Mathews (1993). For related structures, see: Dutta *et al.* (2005). For further synthetic details, see: Fan *et al.* (2009).

V = 1787.87 (16) Å³

 $0.45 \times 0.25 \times 0.20 \text{ mm}$

15034 measured reflections

4340 independent reflections 1698 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.40 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.099$

Z = 2

Experimental

Crystal data

 $[Zn_2(C_{36}H_{42}N_4O_2)(NO_3)_2]$ $M_r = 817.20$ Monoclinic, $P2_1/c$ a = 13.7149 (8) Å b = 18.0691 (10) Å c = 7.3523 (3) Å $\beta = 101.110$ (5)°

Data collection

Oxford Diffraction Gemini R Ultra
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2006)
$T_{\min} = 0.661, \ T_{\max} = 0.752$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.065$	independent and constrained
S = 0.91	refinement
4340 reflections	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$
357 restraints	

Table 1

Selected bond	lengths (Å).	
---------------	--------------	--

Symmetry code: (i) -	$-x \pm 1 - y \pm 1 - z$		
Zn1-O1	2.264 (3)	$Zn1-O4^{i}$	2.043 (2)
Zn1-N2	2.102 (3)	Zn1-O4	2.019 (2)
Zn1-N1	2.081 (4)	Zn1-O2	2.243 (3)

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05–0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2213).

References

- Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). *Inorg. Chem.* **36**, 2784–2790.
- Burley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl. Acad. Sci. USA, 87, 6878–6882.
- Dutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem. 44,147–157.
- Fan, L.-J., Ma, J.-F. & Liu, J. (2009). Acta Cryst. E65, m777-m778.
- Lipscomb, W. N. & Straeter, N. (1996). Chem. Rev. 96, 2375-2434.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Roderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907-3912.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m985 [doi:10.1107/S1600536809028530]

[μ -14,29-Di-*tert*-butyl-3,10,18,25-tetraazatpentacyclo-[25.3.1.1^{12,16}.0^{4,9}.0^{19,24}]dotriaconta-1(31),4,6,8,12(32),14,16,19,21,23,27,29dodecaene-31,32-diolato]bis[(nitrato- $\kappa^2 O, O'$)zinc(II)]

Li-Jing Fan, Jian-Fang Ma and Bo Liu

S1. Comment

Dinuclear zinc(II) compounds have attracted much interest as a result of their significance in biological systems (Burley *et al.*, 1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds are found to have functions in dephosphorylation (Bazzicalupi *et al.*, 1997). As part of our studies in this area, the title compound, a new dinuclear zinc(II) compound, has been synthesized and its structure is reported here (Fig. 1).

In the title centrosymmetric dinuclear zinc(II) compound, each of the two Zn^{II} atoms has a distorted octahedral geometry, defined by two N atoms and two O atoms from the macrocyclic ($C_{36}H_{42}N_4O_2$) ligand and two O atoms from a chelating nitrate anion. The two Zn atoms are bridged by two phenolate O atoms, forming a four-membered Zn_2O_2 ring. The Zn—O and Zn—N distances are normal (Table 1) (Dutta *et al.*, 2005).

S2. Experimental

The title compound was prepared by a reaction between the macrocyclic ligand $C_{36}H_{44}N_4O_2$ (H₂L), which was synthesized according to the published procedure (Fan *et al.*, 2009), and zinc nitrate. A mixture of H₂L (0.135 g, 0.25 mmol) and Zn(NO₃)₂.6H₂O (0.149 g, 0.5 mmol) in ethanol (20 ml) was heated with stirring to yield a clear pale yellow solution. Filtration and cooling to room temperature resulted in the formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the compound resulted in well formed yellow blocks of the title compound (yield 52%).

S3. Refinement

N-bonded H atoms were located in a difference map and their coordinates were freely refined, with U_{iso} fixed. C-bonded H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.96 Å and with $U_{iso}(H) = 1.2$ (or 1.5 for methyl) $U_{eq}(C)$.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity.

[μ -14,29-Di-*tert*-butyl-3,10,18,25- tetraazatpentacyclo[25.3.1.1^{12,16}.0^{4,9}.0^{19,24}]dotriaconta-1(31),4,6,8,12 (32),14,16,19,21,23,27,29-dodecaene-31,32-diolato]bis[(nitrato- $\kappa^2 O, O'$)zinc(II)]

Crystal data	
$[Zn_2(C_{36}H_{42}N_4O_2)(NO_3)_2]$	F(000) = 848
$M_r = 817.20$	$D_{\rm x} = 1.518 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2682 reflections
a = 13.7149 (8) Å	$\theta = 1.9-29.2^{\circ}$
b = 18.0691 (10) Å	$\mu=1.40~\mathrm{mm^{-1}}$
c = 7.3523 (3) Å	T = 293 K
$\beta = 101.110 \ (5)^{\circ}$	Block, yellow
$V = 1787.87 (16) Å^3$	$0.45 \times 0.25 \times 0.20$ mm
Z = 2	

Data collection

Oxford Diffraction Gemini R Ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006) $T_{\min} = 0.661, T_{\max} = 0.752$	15034 measured reflections 4340 independent reflections 1698 reflections with $I > 2\sigma(I)$ $R_{int} = 0.099$ $\theta_{max} = 29.3^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -16 \rightarrow 17$ $k = -24 \rightarrow 24$ $l = -8 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.065$ S = 0.91 4340 reflections 241 parameters 357 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.01P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.66 \text{ e} \text{ Å}^{-3}$ $\Lambda a_{mix} = -0.45 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.2727 (3)	0.6078 (2)	0.1435 (5)	0.0401 (11)
0.1724 (3)	0.6150 (2)	0.1476 (5)	0.0486 (12)
0.1254	0.5897	0.0621	0.058*
0.1424 (3)	0.6598 (2)	0.2783 (5)	0.0506 (12)
0.0753	0.6651	0.2807	0.061*
0.2122 (4)	0.6965 (2)	0.4047 (5)	0.0469 (12)
0.1920	0.7266	0.4931	0.056*
0.3108 (3)	0.6893 (2)	0.4022 (5)	0.0404 (11)
0.3572	0.7141	0.4900	0.048*
0.3426 (3)	0.6460 (2)	0.2723 (5)	0.0332 (10)
0.5006 (3)	0.4041 (2)	-0.4386 (4)	0.0334 (11)
0.4997	0.3731	-0.5467	0.040*
0.5382	0.4484	-0.4537	0.040*
0.3954 (3)	0.4258 (2)	-0.4294 (4)	0.0296 (9)
0.3152 (3)	0.3961 (2)	-0.5486 (5)	0.0386 (10)
0.3268	0.3600	-0.6320	0.046*
0.2177 (3)	0.4175 (3)	-0.5504 (5)	0.0427 (10)
0.2043 (3)	0.4716 (2)	-0.4249 (5)	0.0464 (11)
0.1400	0.4879	-0.4243	0.056*
0.2823 (3)	0.5029 (2)	-0.2995 (5)	0.0375 (11)
0.3800 (3)	0.4796 (2)	-0.3002 (5)	0.0322 (10)
0.2598 (3)	0.5610 (3)	-0.1703 (5)	0.0584 (12)
0.2707	0.6085	-0.2244	0.070*
0.1894	0.5578	-0.1684	0.070*
	x 0.2727 (3) 0.1724 (3) 0.1254 0.1424 (3) 0.0753 0.2122 (4) 0.1920 0.3108 (3) 0.3572 0.3426 (3) 0.5006 (3) 0.4997 0.5382 0.3954 (3) 0.3152 (3) 0.3268 0.2177 (3) 0.2043 (3) 0.1400 0.2823 (3) 0.3800 (3) 0.2707 0.1894	x y $0.2727 (3)$ $0.6078 (2)$ $0.1724 (3)$ $0.6150 (2)$ 0.1254 0.5897 $0.1424 (3)$ $0.6598 (2)$ 0.0753 0.6651 $0.2122 (4)$ $0.6965 (2)$ 0.1920 0.7266 $0.3108 (3)$ $0.6893 (2)$ 0.3572 0.7141 $0.3426 (3)$ $0.6460 (2)$ $0.5006 (3)$ $0.4041 (2)$ 0.4997 0.3731 0.5382 0.4484 $0.3954 (3)$ $0.4258 (2)$ $0.3152 (3)$ $0.3961 (2)$ 0.3268 0.3600 $0.2177 (3)$ $0.4175 (3)$ $0.2043 (3)$ $0.5029 (2)$ $0.3800 (3)$ $0.4796 (2)$ $0.2598 (3)$ $0.5610 (3)$ 0.2707 0.6085 0.1894 0.5578	xyz $0.2727 (3)$ $0.6078 (2)$ $0.1435 (5)$ $0.1724 (3)$ $0.6150 (2)$ $0.1476 (5)$ 0.1254 0.5897 0.0621 $0.1424 (3)$ $0.6598 (2)$ $0.2783 (5)$ 0.0753 0.6651 0.2807 $0.2122 (4)$ $0.6965 (2)$ $0.4047 (5)$ 0.1920 0.7266 0.4931 $0.3108 (3)$ $0.6893 (2)$ $0.4022 (5)$ 0.3572 0.7141 0.4900 $0.3426 (3)$ $0.6460 (2)$ $0.2723 (5)$ $0.5006 (3)$ $0.4041 (2)$ $-0.4386 (4)$ 0.4997 0.3731 -0.5467 0.5382 0.4484 -0.4537 $0.3954 (3)$ $0.4258 (2)$ $-0.4294 (4)$ $0.3152 (3)$ $0.3961 (2)$ $-0.5504 (5)$ $0.2043 (3)$ $0.4716 (2)$ $-0.4249 (5)$ 0.1400 0.4879 -0.4243 $0.2823 (3)$ $0.5029 (2)$ $-0.2995 (5)$ $0.3800 (3)$ $0.4796 (2)$ -0.2244 0.1894 0.5578 -0.1684

C15	0.1319 (3)	0.3808 (3)	-0.6848 (6)	0.0525 (12)
C16	0.1355 (4)	0.2980 (3)	-0.6507 (6)	0.0896 (16)
H16A	0.1987	0.2791	-0.6668	0.134*
H16B	0.0835	0.2744	-0.7372	0.134*
H16C	0.1267	0.2882	-0.5266	0.134*
C17	0.1414 (3)	0.3929 (2)	-0.8848 (5)	0.0749 (14)
H17A	0.2044	0.3745	-0.9031	0.112*
H17B	0.1367	0.4448	-0.9128	0.112*
H17C	0.0889	0.3670	-0.9653	0.112*
C18	0.0325 (3)	0.4077 (3)	-0.6600 (6)	0.0918 (16)
H18A	0.0253	0.3993	-0.5344	0.138*
H18B	-0.0185	0.3813	-0.7427	0.138*
H18C	0.0268	0.4596	-0.6869	0.138*
N1	0.3096 (3)	0.5622 (2)	0.0108 (5)	0.0479 (11)
N2	0.4476 (3)	0.63682 (17)	0.2695 (4)	0.0315 (9)
N3	0.5574 (4)	0.6847 (2)	-0.1030 (5)	0.0470 (12)
01	0.6025 (2)	0.63223 (18)	-0.0177 (4)	0.0545 (8)
O2	0.4639 (3)	0.68288 (18)	-0.1261 (4)	0.0575 (10)
O3	0.5992 (3)	0.73463 (18)	-0.1672 (4)	0.0714 (11)
O4	0.4592 (2)	0.50597 (14)	-0.1821 (3)	0.0309 (7)
Znl	0.46177 (4)	0.57671 (3)	0.03129 (6)	0.03462 (15)
H1N	0.296 (3)	0.5176 (13)	0.031 (5)	0.052*
H2N	0.475 (3)	0.6800 (13)	0.282 (5)	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.034 (3)	0.050 (3)	0.040(2)	0.006 (2)	0.017 (2)	-0.011 (2)
C2	0.037 (3)	0.065 (3)	0.045 (2)	0.003 (2)	0.012 (2)	-0.008(2)
C3	0.038 (3)	0.063 (3)	0.055 (3)	0.006 (2)	0.019 (2)	-0.010 (2)
C4	0.046 (3)	0.052 (3)	0.045 (2)	0.011 (3)	0.014 (2)	-0.014 (2)
C5	0.038 (3)	0.045 (3)	0.039 (2)	0.003 (2)	0.010(2)	-0.010 (2)
C6	0.029 (3)	0.041 (3)	0.032 (2)	0.009 (2)	0.012 (2)	0.0007 (19)
C7	0.036 (3)	0.039 (3)	0.026 (2)	0.004 (2)	0.0078 (19)	-0.0020 (19)
C8	0.030(2)	0.033 (2)	0.0254 (19)	-0.003 (2)	0.0060 (18)	-0.003 (2)
C9	0.041 (2)	0.044 (2)	0.0300 (19)	0.001 (2)	0.0052 (19)	-0.0112 (18)
C10	0.033 (2)	0.052 (2)	0.041 (2)	-0.005 (2)	0.0022 (18)	-0.013 (2)
C11	0.031 (2)	0.063 (3)	0.043 (2)	0.003 (2)	0.004 (2)	-0.010 (2)
C12	0.035 (2)	0.042 (2)	0.034 (2)	0.004 (2)	0.003 (2)	-0.0104 (19)
C13	0.031 (2)	0.038 (2)	0.028 (2)	0.001 (2)	0.007 (2)	-0.0019 (19)
C14	0.043 (3)	0.078 (3)	0.051 (2)	0.020(2)	0.001 (2)	-0.018 (2)
C15	0.034 (3)	0.061 (3)	0.061 (2)	0.001 (2)	0.006 (2)	-0.019 (2)
C16	0.083 (3)	0.087 (3)	0.088 (3)	-0.027 (3)	-0.011 (3)	-0.007 (3)
C17	0.064 (3)	0.089 (3)	0.062 (3)	-0.011 (3)	-0.013 (2)	-0.013 (3)
C18	0.048 (3)	0.120 (4)	0.101 (3)	-0.012 (3)	-0.002 (3)	-0.055 (3)
N1	0.032 (2)	0.065 (3)	0.046 (2)	0.000 (3)	0.0058 (19)	-0.017 (3)
N2	0.037 (3)	0.028 (2)	0.0292 (18)	0.004 (2)	0.0064 (18)	-0.0054 (17)
N3	0.071 (4)	0.031 (3)	0.041 (2)	0.005 (3)	0.018 (3)	-0.005 (2)

supporting information

01	0.058 (2)	0.046 (2)	0.062 (2)	-0.0080 (17)	0.0188 (18)	0.0047 (17)
O2	0.055 (3)	0.063 (3)	0.0534 (19)	0.003 (2)	0.007 (2)	-0.0025 (17)
O3	0.098 (3)	0.038 (2)	0.090 (2)	-0.012 (2)	0.046 (2)	0.0090 (19)
O4	0.032 (2)	0.0326 (18)	0.0283 (15)	0.0044 (15)	0.0067 (14)	-0.0065 (13)
Znl	0.0343 (3)	0.0372 (3)	0.0319 (2)	0.0038 (4)	0.0052 (2)	-0.0047 (3)

Geometric parameters (Å, °)

C1—C2	1.388 (5)	C14—H14A	0.9700	
C1—C6	1.393 (5)	C14—H14B	0.9700	
C1—N1	1.441 (5)	C15—C18	1.490 (5)	
C2—C3	1.378 (5)	C15—C16	1.516 (6)	
С2—Н2	0.9300	C15—C17	1.517 (5)	
C3—C4	1.369 (5)	C16—H16A	0.9600	
С3—Н3	0.9300	C16—H16B	0.9600	
C4—C5	1.363 (5)	C16—H16C	0.9600	
C4—H4	0.9300	C17—H17A	0.9600	
C5—C6	1.368 (5)	C17—H17B	0.9600	
С5—Н5	0.9300	C17—H17C	0.9600	
C6—N2	1.453 (5)	C18—H18A	0.9600	
$C7-N2^{i}$	1.502 (4)	C18—H18B	0.9600	
С7—С8	1.510 (5)	C18—H18C	0.9600	
C7—H7A	0.9700	Zn1—N1	2.081 (4)	
С7—Н7В	0.9700	N1—H1N	0.845 (19)	
С8—С9	1.376 (5)	N2	1.502 (4)	
C8—C13	1.404 (5)	Zn1—N2	2.102 (3)	
C9—C10	1.390 (5)	N2—H2N	0.863 (19)	
С9—Н9	0.9300	N3—O3	1.212 (4)	
C10-C11	1.380 (5)	N3—O1	1.234 (4)	
C10-C15	1.534 (5)	N3—O2	1.262 (5)	
C11—C12	1.391 (5)	Zn1—O1	2.264 (3)	
C11—H11	0.9300	Zn1—O2	2.243 (3)	
C12—C13	1.405 (5)	Zn1—O4	2.019 (2)	
C12—C14	1.487 (5)	Zn1—O4 ⁱ	2.043 (2)	
C13—O4	1.341 (4)	Zn1—Zn1 ⁱ	3.0302 (10)	
C14—N1	1.375 (4)			
C2—C1—C6	119.6 (4)	C15—C16—H16C	109.5	
C2-C1-N1	123.1 (4)	H16A—C16—H16C	109.5	
C6-C1-N1	117.3 (4)	H16B—C16—H16C	109.5	
C3—C2—C1	120.0 (4)	C15—C17—H17A	109.5	
С3—С2—Н2	120.0	C15—C17—H17B	109.5	
C1—C2—H2	120.0	H17A—C17—H17B	109.5	
C4—C3—C2	119.6 (4)	C15—C17—H17C	109.5	
С4—С3—Н3	120.2	H17A—C17—H17C	109.5	
С2—С3—Н3	120.2	H17B—C17—H17C	109.5	
C3—C4—C5	120.7 (4)	C15—C18—H18A	109.5	
C3—C4—H4	119.7	C15—C18—H18B	109.5	

С5—С4—Н4	119.7	H18A—C18—H18B	109.5
C4—C5—C6	120.9 (4)	C15—C18—H18C	109.5
С4—С5—Н5	119.5	H18A—C18—H18C	109.5
С6—С5—Н5	119.5	H18B—C18—H18C	109.5
C5—C6—C1	119.2 (4)	C14—N1—C1	119.5 (4)
C5—C6—N2	121.6 (4)	C14—N1—Zn1	112.1 (3)
C1—C6—N2	119.1 (4)	C1—N1—Zn1	110.9 (3)
N2 ⁱ —C7—C8	113.3 (3)	C14—N1—H1N	94 (3)
N2 ⁱ —C7—H7A	108.9	C1—N1—H1N	108 (3)
C8—C7—H7A	108.9	Zn1-N1-H1N	111 (3)
N2 ⁱ —C7—H7B	108.9	$C6-N2-C7^{i}$	110.9 (3)
C8—C7—H7B	108.9	C6-N2-Zn1	108.8 (2)
H7A-C7-H7B	107.7	$C7^{i}$ N2 Zn1	100.0(2) 109.3(2)
C9-C8-C13	119.6 (4)	C6-N2-H2N	109.0(2)
C9-C8-C7	121 6 (4)	$C7^{i}$ N2 H2N	100(3)
C13 - C8 - C7	1121.0(1) 1187(4)	$Z_n 1 - N^2 - H^2 N$	105(3)
C_{8} C_{9} C_{10}	123.2(4)	03—N3—01	122 8 (5)
C8-C9-H9	118.4	03 - N3 - 02	122.0(5) 120.7(5)
C_{10} C_{9} H9	118.4	01-N3-02	120.7(5)
$C_{11} - C_{10} - C_{9}$	116.4	$N_{3} = 0_{1} = 7_{n_{1}}$	93.6(3)
$C_{11} = C_{10} = C_{15}$	1235(4)	$N_{3} = O_{1} = Z_{n1}$ $N_{3} = O_{2} = Z_{n1}$	93.8 (3)
$C_{10} - C_{10} - C_{15}$	120.2(4)	$C_{13} = O_{2} = 2 m_{13}$	1282(2)
$C_{10} = C_{10} = C_{13}$	120.2 (4) 123 1 (4)	$C_{13} = 04 = Z_{11}^{11}$	120.2(2)
$C_{10} = C_{11} = C_{12}$	123.1 (4)	$7n1 O4 7n1^{i}$	111.8(2)
C_{10} C_{11} H_{11}	118.5	$\sum \prod_{i=0}^{n} 04 - \sum \prod_{i=1}^{n} 04^{i}$	90.30 (9) 83 50 (0)
C_{12} C_{11} C_{12} C_{13}	110.3	O4 Zn1 O4	83.30(9)
$C_{11} = C_{12} = C_{13}$	119.2 (4)	$O_4 = Z_{\rm III} = N_1$	39.62(13)
C13 - C12 - C14	110.9(4)	$O4 = Z_{\text{III}} = NI$	111.34(13) 160.86(13)
$C_{13} - C_{12} - C_{14}$	121.9(4) 123.1(4)	O4 ZIII $N2$	109.80(13)
04 - C13 - C12	123.1 (4)	V4 - ZIII - N2	92.88 (11)
04-013-08	118.4 (4)	N1 - Zn1 - N2	82.08 (14)
C12 - C13 - C8	118.0 (4)	$04 - 2\pi 1 - 02$	98.08 (11)
NI = C14 = U14A	120.5 (4)	$04 - 2\pi 1 - 02$	147.90(13)
NI = C14 = H14A	107.2	N1 - Zn1 - O2	100.54(14)
C12—C14—H14A	107.2	$N_2 - Zn_1 - O_2$	90.02 (12)
NI = C14 = H14B	107.2	04 - 2n1 - 01	92.56 (11)
C12—C14—H14B	107.2	04 - 2n = 01	91.78 (11)
H14A - C14 - H14B	106.9	NI = ZnI = OI	156.68 (13)
	107.6 (4)	$N_2 = Zn_1 = O_1$	97.03 (12)
	108.8 (4)	02—Zn1— 01	56.16 (11)
C16—C15—C17	107.2 (4)	O4— $Zn1$ — $Zn1$	42.06 (7)
	112.8 (4)	$O4^{i}$ Znl Znl	41.45 (6)
C16—C15—C10	108.9 (4)	$NI - ZnI - ZnI^{\dagger}$	104.20 (11)
C1/-C15-C10	111.4 (4)	N_2 — Zn_1 — Zn_1^{\dagger}	133.61 (9)
CIS—CI6—HI6A	109.5	O_2 —Zn1—Zn1 ¹	131.67 (9)
C15—C16—H16B	109.5	$O1$ —Z $n1$ —Z $n1^{1}$	92.91 (9)
H16A—C16—H16B	109.5		
C6—C1—C2—C3	0.1 (6)	C12—C13—O4—Zn1	4.7 (5)

N1—C1—C2—C3	-179.9 (4)	C8—C13—O4—Zn1	-174.7 (2)
C1—C2—C3—C4	-0.6 (6)	C12-C13-O4-Zn1 ⁱ	122.7 (4)
C2—C3—C4—C5	0.2 (7)	C8—C13—O4—Zn1 ⁱ	-56.6 (4)
C3—C4—C5—C6	0.8 (7)	C13-04-Zn1-04 ⁱ	124.4 (3)
C4—C5—C6—C1	-1.2(6)	$Zn1^{i}$ —O4— $Zn1$ —O4 ⁱ	0.0
C4—C5—C6—N2	-179.0 (4)	C13—O4—Zn1—N1	12.7 (3)
C2-C1-C6-C5	0.8 (6)	$Zn1^{i}$ —O4— $Zn1$ —N1	-111.71 (13)
N1—C1—C6—C5	-179.2 (4)	C13—O4—Zn1—N2	54.8 (8)
C2-C1-C6-N2	178.7 (4)	$Zn1^{i}$ O4 Zn1 N2	-69.6 (7)
N1-C1-C6-N2	-1.4(6)	C13 - O4 - Zn1 - O2	-87.9(3)
$N2^{i}$ C7 C8 C9	-1142(4)	$Zn1^{i}$ 04 $Zn1$ 02	147.67(13)
$N2^{i}$ C7 C8 C13	68 2 (5)	$C_{13} = 04 = 7n1 = 01$	-1441(3)
C_{13} C_{8} C_{9} C_{10}	0.9 (6)	$7n1^{i}$ 04 7n1 01	91.50(12)
$C_{7}^{-}C_{8}^{-}C_{9}^{-}C_{10}^{-}$	-1767(4)	$C13 - 04 - 7n1 - 7n1^{i}$	1244(3)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	0.4.(6)	C13 = 04 = 2m = 2m	-416(3)
$C_{8} = C_{9} = C_{10} = C_{11}$	-178.8(4)	C1 = N1 = 7n1 = 04	-177.0(3)
$C_{0} = C_{10} = C_{11} = C_{12}$	-1/8.8(4)	C1 = N1 = Z11 = O4	-177.9(3)
C_{9} C_{10} C_{11} C_{12} C_{15} C_{10} C_{11} C_{12}	-1.5(0)	$C1 = N1 = Zn1 = O4^{i}$	-124.3(3)
	1/7.8 (4)	$C1 = N1 = Zn1 = 04^{\circ}$	99.2 (3)
C10-C11-C12-C13	0.9 (6)	C14— $N1$ — $Zn1$ — $N2$	145.2 (3)
C10-C11-C12-C14	1/9.8 (4)	CI = NI = ZnI = N2	8.9 (3)
C11—C12—C13—O4	-1/8.9(3)	C14— $N1$ — $Zn1$ — $O2$	56.6 (3)
C14—C12—C13—O4	2.2 (6)	C1— $N1$ — $Zn1$ — $O2$	-/9./ (3)
C11—C12—C13—C8	0.5 (6)	C14—N1—Zn1—O1	54.5 (5)
C14—C12—C13—C8	-178.4 (4)	C1—N1—Zn1—O1	-81.8 (4)
C9—C8—C13—O4	178.1 (3)	$C14$ — $N1$ — $Zn1$ — $Zn1^{1}$	-81.5 (3)
C7—C8—C13—O4	-4.3 (5)	C1—N1—Zn1—Zn1 ⁱ	142.2 (2)
C9—C8—C13—C12	-1.3 (6)	C6—N2—Zn1—O4	-51.9 (8)
C7—C8—C13—C12	176.3 (3)	$C7^{i}$ —N2—Zn1—O4	69.3 (8)
C11—C12—C14—N1	140.1 (4)	$C6$ — $N2$ — $Zn1$ — $O4^{i}$	-120.7 (2)
C13—C12—C14—N1	-40.9 (7)	$C7^{i}$ —N2—Zn1—O4 ⁱ	0.5 (2)
C11—C10—C15—C18	-2.3 (6)	C6—N2—Zn1—N1	-9.4 (2)
C9—C10—C15—C18	176.8 (4)	$C7^{i}$ —N2—Zn1—N1	111.8 (3)
C11—C10—C15—C16	-121.6 (5)	C6—N2—Zn1—O2	91.3 (3)
C9-C10-C15-C16	57.5 (5)	$C7^{i}$ —N2—Zn1—O2	-147.6 (2)
C11—C10—C15—C17	120.4 (4)	C6—N2—Zn1—O1	147.1 (2)
C9—C10—C15—C17	-60.5 (6)	$C7^{i}$ —N2—Zn1—O1	-91.7 (2)
C12—C14—N1—C1	-166.4 (4)	C6—N2—Zn1—Zn1 ⁱ	-112.0(2)
C12—C14—N1—Zn1	61.4 (5)	$C7^{i}$ —N2—Zn1—Zn1 ⁱ	9.2 (3)
C2-C1-N1-C14	40.4 (6)	N3—O2—Zn1—O4	-88.6(2)
C6-C1-N1-C14	-139.5 (4)	$N3-O2-Zn1-O4^{i}$	2.0 (3)
C2-C1-N1-Zn1	173.0 (3)	$N_{3} = 0_{2} = Z_{n_{1}} = N_{1}$	-180.0(2)
C6-C1-N1-Zn1	-69(5)	$N_{3} = 0^{2} = Z_{n1} = N_{2}^{2}$	97.5 (2)
C_{5} C_{6} N_{2} $C_{7^{i}}$	66 3 (5)	$N_{3} = 0^{2} = 7n_{1} = 0^{1}$	-1.0(2)
$C1 - C6 - N2 - C7^{i}$	-1115(4)	$N_{3} = 0^{2} = 7n^{1} = 7n^{1^{i}}$	-60.0(3)
C_{5} C_{6} N_{2} Z_{n1}	-173 5 (3)	$N_{3} = 01 = 7n_{1} = 04$	990(2)
C1 - C6 - N2 - 7n1	8 7 (<i>A</i>)	$N_{3} = 01 = 2n_{1} = 04$	-177 A(2)
$03_N3_01_71$	-179 5 (4)	$N_{3} = 0_{1} = 2n_{1} = 0_{1}$	35(5)
$O_2 = N_3 = O_1 = Z_{111}$	(+)	$N_{2} = 01 = 2n_{1} = N_{1}$ $N_{2} = 01 = 7n_{1} = N_{2}$	-843(2)
02 - 10 - 01 - 2111	1./ (+)	11J-01-LIII-INZ	07.3(2)

supporting information

O3—N3—O2—Zn1	179.5 (3)	N3—O1—Zn1—O2	1.0 (2)
O1—N3—O2—Zn1	1.7 (4)	N3—O1—Zn1—Zn1 ^{i}	141.1 (2)

Symmetry code: (i) -x+1, -y+1, -z.