metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dibromidobis(triphenylphosphineκP)palladium(II) chloroform monosolvate

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 1 July 2009; accepted 12 July 2009

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.023; wR factor = 0.061; data-to-parameter ratio = 18.5.

The Pd^{II} atom in the title compound, $[PdBr_2{P(C_6H_5)_3}_2]$ -CHCl₃, lies on a twofold rotation axis and is coordinated in a distorted square-planar geometry by two P atoms from two triphenylphosphine ligands and by two Br atoms in a *trans* arrangement. The chloroform solvent molecule is equally disordered about another twofold rotation axis.

Related literature

For isostructural $PdI_2(PPh_3)_2 \cdot CHCl_3$, see: Kubota *et al.* (1991). For the other solvates of $PdBr_2(PPh_3)_2$, see: Crawforth *et al.* (2005); Rodríguez *et al.* (2007); Stark & Whitmire (1997).

Experimental

Crystal data [PdBr₂(C₁₈H₁₅P)₂]·CHCl₃

 $M_r = 910.13$

Monoclinic, $C2/c$	
a = 12.2314 (2) Å	
b = 14.4754 (2) Å	
c = 20.1653 (3) Å	
$\beta = 92.477 \ (1)^{\circ}$	
$V = 3567.02 (9) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD	16862 measured reflections
diffractometer	4110 independent reflections
Absorption correction: multi-scan	3266 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.018$
$T_{\min} = 0.456, \ T_{\max} = 0.576$	
(expected range = $0.426-0.538$)	

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20$ mm

 $\mu = 3.10 \text{ mm}^{-1}$

T = 153 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	24 restraints
$wR(F^2) = 0.061$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
4110 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
222 parameters	

Table 1 Selected bond lengths (Å).

Pd1-P1	2.3360 (5)	Pd1-Br1	2.4277 (2)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2209).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005). *Tetrahedron*, **61**, 9736–9751.
- Kubota, M., Ohba, S. & Saito, Y. (1991). Acta Cryst. C47, 1727-1729.
- Rodríguez, N., de Arellano, C. M., Asensio, G. & Medio-Simón, M. (2007). *Chem. Eur. J.* **13**, 4223–4229.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m940 [doi:10.1107/S1600536809027408]

trans-Dibromidobis(triphenylphosphine-*kP*)palladium(II) chloroform monosolvate

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Commercially available dark-brown bis(triphenylphosphine)palladium dichloride (0.70 g, 1 mmol) and 4-dimethylaminopyridinium hydrobromide perbromide (0.36 g, 1 mmol) were heated in an ethanol/chloroform mixture (1:1 v/v, 100 ml) for an hour. The solution was filtered and a small amount of deep yellow crystals were isolated along with some dark brown material.

S2. Refinement

H atoms were placed at calculated positions (C–H = 0.95 and 1.00 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The chloroform molecule is disordered about a twofold rotation axis, and was allowed to refine off the symmetry element as a whole molecule of 0.5 site occupancy. The three C—Cl distances were restrained to within 0.01 Å of each other, as were the Cl…Cl distances. The anisotropic displacements of the Cl atoms were restrained to be nearly isotropic.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level.

trans-Dibromidobis(triphenylphosphine-*кP*)palladium(II) chloroform monosolvate

Crystal data
$[PdBr_2(C_{18}H_{15}P)_2]$ ·CHCl ₃
$M_r = 910.13$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
a = 12.2314 (2) Å
b = 14.4754 (2) Å
c = 20.1653 (3) Å
$\beta = 92.477 (1)^{\circ}$
V = 3567.02 (9) Å ³
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.456, T_{\max} = 0.576$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.061$ S = 1.024110 reflections 222 parameters 24 restraints Primary atom site location: structure-invariant direct methods F(000) = 1800 $D_x = 1.695 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6987 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 3.10 \text{ mm}^{-1}$ T = 153 KPrism, brown $0.30 \times 0.25 \times 0.20 \text{ mm}$

16862 measured reflections 4110 independent reflections 3266 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -26 \rightarrow 26$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0263P)^2 + 6.7144P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Pd1	0.5000	0.250839 (14)	0.2500	0.01811 (6)		
Br1	0.322982 (17)	0.253392 (15)	0.299982 (11)	0.02692 (7)		
P1	0.59326 (4)	0.25342 (3)	0.35355 (3)	0.01868 (11)		
C1	0.70341 (17)	0.16892 (14)	0.35728 (10)	0.0226 (4)		
C2	0.6778 (2)	0.08037 (16)	0.33385 (12)	0.0324 (5)		
H2	0.6064	0.0675	0.3159	0.039*		
C3	0.7560 (2)	0.01137 (17)	0.33665 (13)	0.0418 (6)		
H3	0.7378	-0.0492	0.3217	0.050*		
C4	0.8602 (2)	0.0307 (2)	0.36119 (13)	0.0465 (7)		
H4	0.9142	-0.0165	0.3624	0.056*		

C5	0.8869 (2)	0.1177 (2)	0.38400 (14)	0.0443 (7)	
H5	0.9591	0.1303	0.4008	0.053*	
C6	0.80823 (19)	0.18742 (17)	0.38251 (11)	0.0306 (5)	
H6	0.8264	0.2473	0.3987	0.037*	
C7	0.51852 (17)	0.22807 (14)	0.42793 (10)	0.0218 (4)	
C8	0.4458 (2)	0.29338 (17)	0.45150 (12)	0.0339 (5)	
H8	0.4357	0.3504	0.4287	0.041*	
C9	0.3886 (2)	0.2759 (2)	0.50751 (13)	0.0405 (6)	
Н9	0.3397	0.3212	0.5231	0.049*	
C10	0.4014 (2)	0.19368 (19)	0.54117 (12)	0.0369 (6)	
H10	0.3613	0.1820	0.5796	0.044*	
C11	0.4724 (2)	0.12875 (17)	0.51881 (12)	0.0356 (6)	
H11	0.4821	0.0721	0.5421	0.043*	
C12	0.53046 (19)	0.14535 (15)	0.46205 (11)	0.0292 (5)	
H12	0.5787	0.0995	0.4466	0.035*	
C13	0.65111 (17)	0.36690 (14)	0.37174 (10)	0.0219 (4)	
C14	0.6954 (2)	0.38791 (16)	0.43498 (11)	0.0314 (5)	
H14	0.6938	0.3432	0.4694	0.038*	
C15	0.7417 (2)	0.47408 (16)	0.44744 (12)	0.0352 (6)	
H15	0.7720	0.4881	0.4904	0.042*	
C16	0.7439 (2)	0.53955 (15)	0.39760 (12)	0.0316 (5)	
H16	0.7776	0.5978	0.4060	0.038*	
C17	0.6973 (2)	0.52028 (15)	0.33583 (12)	0.0315 (5)	
H17	0.6968	0.5660	0.3020	0.038*	
C18	0.65112 (18)	0.43408 (14)	0.32274 (11)	0.0258 (5)	
H18	0.6193	0.4211	0.2799	0.031*	
C11	0.0544 (6)	0.4068 (4)	0.1875 (3)	0.083 (2)	0.50
Cl2	-0.0249 (2)	0.23500 (12)	0.23506 (13)	0.0769 (8)	0.50
C13	-0.0654 (5)	0.4028 (2)	0.3067 (2)	0.0454 (8)	0.50
C19	0.0330 (4)	0.3413 (3)	0.2596 (2)	0.0423 (13)	0.50
H19	0.1030	0.3321	0.2862	0.051*	0.50

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.02113 (11)	0.01538 (10)	0.01773 (11)	0.000	-0.00004 (8)	0.000
Br1	0.02633 (11)	0.02758 (12)	0.02707 (12)	-0.00200 (9)	0.00362 (8)	0.00051 (9)
P1	0.0216 (2)	0.0161 (2)	0.0182 (2)	0.0013 (2)	-0.00033 (19)	0.00040 (19)
C1	0.0282 (11)	0.0208 (10)	0.0190 (10)	0.0061 (8)	0.0032 (8)	0.0033 (8)
C2	0.0430 (14)	0.0238 (11)	0.0302 (12)	0.0056 (10)	0.0000 (10)	-0.0027 (9)
C3	0.0663 (19)	0.0268 (12)	0.0327 (13)	0.0174 (12)	0.0091 (13)	0.0022 (10)
C4	0.0561 (18)	0.0461 (16)	0.0382 (15)	0.0334 (14)	0.0129 (13)	0.0146 (12)
C5	0.0313 (13)	0.0581 (18)	0.0434 (15)	0.0148 (12)	0.0005 (11)	0.0121 (13)
C6	0.0291 (12)	0.0335 (12)	0.0292 (12)	0.0037 (9)	0.0019 (10)	0.0050 (9)
C7	0.0223 (10)	0.0233 (10)	0.0194 (10)	-0.0015 (8)	-0.0020 (8)	0.0006 (8)
C8	0.0394 (13)	0.0319 (13)	0.0311 (13)	0.0094 (11)	0.0082 (11)	0.0063 (10)
C9	0.0385 (14)	0.0485 (15)	0.0353 (14)	0.0093 (12)	0.0113 (11)	-0.0042 (12)
C10	0.0363 (13)	0.0515 (16)	0.0234 (12)	-0.0087 (12)	0.0078 (10)	0.0012 (11)

C11	0.0462 (15)	0.0323 (13)	0.0286 (12)	-0.0070 (11)	0.0047 (11)	0.0071 (10)
C12	0.0361 (13)	0.0232 (11)	0.0284 (12)	0.0003 (9)	0.0031 (10)	0.0021 (9)
C13	0.0247 (10)	0.0178 (9)	0.0232 (10)	0.0005 (8)	0.0011 (8)	-0.0023 (8)
C14	0.0429 (14)	0.0257 (11)	0.0253 (11)	-0.0031 (10)	-0.0036 (10)	0.0004 (9)
C15	0.0459 (14)	0.0312 (12)	0.0279 (12)	-0.0034 (11)	-0.0060 (11)	-0.0074 (10)
C16	0.0375 (13)	0.0212 (11)	0.0366 (13)	-0.0056 (10)	0.0062 (10)	-0.0084 (9)
C17	0.0429 (14)	0.0206 (10)	0.0315 (12)	-0.0019 (10)	0.0077 (11)	0.0018 (9)
C18	0.0329 (12)	0.0210 (10)	0.0233 (11)	0.0002 (9)	0.0012 (9)	-0.0008 (8)
Cl1	0.087 (3)	0.103 (3)	0.059 (2)	0.013 (2)	0.0104 (18)	0.0265 (19)
Cl2	0.078 (2)	0.0667 (10)	0.089 (2)	-0.0211 (10)	0.0363 (14)	-0.0134 (10)
C13	0.0476 (13)	0.0525 (16)	0.0375 (14)	0.0017 (12)	0.0166 (12)	-0.0003 (12)
C19	0.030 (3)	0.056 (3)	0.041 (3)	0.004 (2)	-0.003 (2)	0.007 (3)

Geometric parameters (Å, °)

Pd1—P1	2.3360 (5)	C9—C10	1.376 (4)	
Pd1—P1 ⁱ	2.3360 (5)	С9—Н9	0.9500	
Pd1—Br1	2.4277 (2)	C10—C11	1.369 (4)	
Pd1—Br1 ⁱ	2.4277 (2)	C10—H10	0.9500	
P1	1.819 (2)	C11—C12	1.394 (3)	
P1-C13	1.820 (2)	C11—H11	0.9500	
P1—C7	1.827 (2)	C12—H12	0.9500	
C1—C6	1.385 (3)	C13—C18	1.386 (3)	
C1—C2	1.397 (3)	C13—C14	1.397 (3)	
C2—C3	1.382 (3)	C14—C15	1.388 (3)	
C2—H2	0.9500	C14—H14	0.9500	
C3—C4	1.377 (4)	C15—C16	1.383 (3)	
С3—Н3	0.9500	C15—H15	0.9500	
C4—C5	1.375 (4)	C16—C17	1.376 (3)	
C4—H4	0.9500	C16—H16	0.9500	
C5—C6	1.394 (3)	C17—C18	1.390 (3)	
С5—Н5	0.9500	C17—H17	0.9500	
С6—Н6	0.9500	C18—H18	0.9500	
C7—C12	1.386 (3)	Cl1—C19	1.764 (5)	
С7—С8	1.395 (3)	Cl2—C19	1.756 (4)	
С8—С9	1.377 (3)	Cl3—C19	1.800 (5)	
С8—Н8	0.9500	C19—H19	1.0000	
P1—Pd1—P1 ⁱ	178.16 (3)	C10—C9—C8	120.8 (2)	
P1—Pd1—Br1	92.204 (14)	С10—С9—Н9	119.6	
P1 ⁱ —Pd1—Br1	87.768 (14)	С8—С9—Н9	119.6	
P1—Pd1—Br1 ⁱ	87.768 (14)	C11—C10—C9	119.5 (2)	
P1 ⁱ —Pd1—Br1 ⁱ	92.204 (14)	C11—C10—H10	120.3	
Br1—Pd1—Br1 ⁱ	178.256 (14)	C9—C10—H10	120.3	
C1—P1—C13	108.54 (10)	C10—C11—C12	120.3 (2)	
C1—P1—C7	103.12 (9)	C10—C11—H11	119.8	
C13—P1—C7	102.70 (9)	C12—C11—H11	119.8	
C1—P1—Pd1	111.00 (7)	C7—C12—C11	120.7 (2)	
	· · ·			

C13—P1—Pd1	111.42 (7)	С7—С12—Н12	119.7
C7—P1—Pd1	119.22 (7)	C11—C12—H12	119.7
C6—C1—C2	119.5 (2)	C18—C13—C14	119.07 (19)
C6—C1—P1	123.88 (17)	C18—C13—P1	120.10 (16)
C2—C1—P1	116.65 (17)	C14—C13—P1	120.83 (16)
C3—C2—C1	120.4 (2)	C15—C14—C13	120.0 (2)
C3—C2—H2	119.8	C15—C14—H14	120.0
C1—C2—H2	119.8	C13—C14—H14	120.0
C4-C3-C2	119.7 (2)	C_{16} $-C_{15}$ $-C_{14}$	120.3(2)
C4-C3-H3	120.1	C16-C15-H15	119.8
$C_2 - C_3 - H_3$	120.1	C_{14} C_{15} H_{15}	119.8
$C_{2} = C_{3} = C_{3}$	120.1 120.6(2)	C_{17} C_{16} C_{15}	119.0 119.9(2)
$C_{5} = C_{4} = C_{5}$	120.0 (2)	C17 = C16 = U16	119.9 (2)
$C_3 = C_4 = H_4$	119.7	$C_{17} = C_{10} = 110$	120.0
$C_3 = C_4 = H_4$	119.7	C16 - C17 - C18	120.0
C4 - C5 - C6	120.2 (3)	C16 - C17 - C18	120.2 (2)
C4—C5—H5	119.9	C10-C1/-H1/	119.9
C6	119.9	C18—C17—H17	119.9
C1C6C5	119.7 (2)		120.4 (2)
С1—С6—Н6	120.2	С13—С18—Н18	119.8
С5—С6—Н6	120.2	С17—С18—Н18	119.8
C12—C7—C8	118.1 (2)	Cl2—C19—Cl1	108.1 (3)
C12—C7—P1	122.38 (17)	Cl2—C19—Cl3	108.1 (3)
C8—C7—P1	119.50 (17)	Cl1—C19—Cl3	107.2 (3)
C9—C8—C7	120.6 (2)	Cl2—C19—H19	111.1
С9—С8—Н8	119.7	Cl1—C19—H19	111.1
С7—С8—Н8	119.7	Cl3—C19—H19	111.1
Br1—Pd1—P1—C1	134.30 (8)	C13—P1—C7—C8	50.5 (2)
Br1 ⁱ —Pd1—P1—C1	-47.44 (8)	Pd1—P1—C7—C8	-73.26 (19)
Br1—Pd1—P1—C13	-104.60 (7)	C12—C7—C8—C9	0.6 (4)
Br1 ⁱ —Pd1—P1—C13	73.65 (7)	P1—C7—C8—C9	-179.9 (2)
Br1—Pd1—P1—C7	14.74 (8)	C7—C8—C9—C10	-0.4 (4)
Br1 ⁱ —Pd1—P1—C7	-167.00(8)	C8—C9—C10—C11	0.4 (4)
C13—P1—C1—C6	11.4 (2)	C9-C10-C11-C12	-0.6(4)
C7—P1—C1—C6	-97.0(2)	C8-C7-C12-C11	-0.9(3)
Pd1—P1—C1—C6	134.19(17)	P1	179.67 (18)
C_{13} P1 C_{1} C_{2}	-16957(17)	C10-C11-C12-C7	0.9(4)
C7-P1-C1-C2	82 00 (18)	C1 - P1 - C13 - C18	112 87 (18)
$Pd1_P1_C1_C2$	-46.79(18)	C7 - P1 - C13 - C18	-13841(18)
C_{6}	0.9(3)	$Pd1_P1_C13_C18$	-96(2)
$P_1 = C_1 = C_2 = C_3$	-178 16 (19)	$C1_P1_C13_C14$	-67.5(2)
$C_1 = C_2 = C_3$	-16(4)	$C7_P1_C13_C14$	41.2(2)
$C_1 - C_2 - C_3 - C_4$	1 1 (1)	$P_{1} = 11 = C_{13} = C_{14}$	71.2(2)
$C_2 = C_3 = C_4 = C_5$	1.1(4)	101 - 11 - 013 - 014	-20(3)
$C_{2} = C_{4} = C_{5} = C_{5}$	0.0(4)	$C_{10} - C_{13} - C_{14} - C_{15}$	2.0(3)
$C_2 - C_1 - C_0 - C_3$	0.2(3)	$r_1 - c_{13} - c_{14} - c_{15}$	1/8.33 (19)
$\mathbf{r}_{1} = \mathbf{c}_{1} = \mathbf{c}_{0} = \mathbf{c}_{3}$	1/9.22 (18)	C13 - C14 - C15 - C16	0.2 (4)
C4 - C5 - C6 - C1	-0./(4)		1.8 (4)
C1 - P1 - C/ - C12	-17.3(2)	C15-C16-C17-C18	-2.1 (4)

C13—P1—C7—C12	-130.09 (19)	C14—C13—C18—C17	1.8 (3)
Pd1—P1—C7—C12	106.19 (18)	P1-C13-C18-C17	-178.57 (17)
C1—P1—C7—C8	163.24 (19)	C16—C17—C18—C13	0.2 (4)

Symmetry code: (i) -x+1, y, -z+1/2.