metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[hemi- μ_4 -oxalato-hemi- μ_2 -oxalatobis(μ_3 -pyrazine-2-carboxylato)erbium(III)silver(I)] monohydrate]

Ling-Zhi Zhao,^{a,b} Rui-Xia He,^a Qiu-Gui Zhong,^a Rong-Hua Zeng^{a,b}* and Dong-Sheng Lu^{a,b}

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: zrh321@yahoo.com.cn

Received 21 June 2009; accepted 27 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.021; wR factor = 0.050; data-to-parameter ratio = 10.9.

The asymmetric unit of the title complex, $\{[AgEr(C_5H_3-N_2O_2)_2(C_2O_4)]\cdot H_2O\}_n$, contains one Er^{III} atom, one Ag^I atom, two pyrazine-2-carboxylate (pyc) ligands, two half oxalate ligands (each lying on an inversion center) and one uncoordinated water molecule. The Er^{III} atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands in a distorted monocapped square-antiprismatic geometry. The Ag^I atom is coordinated by two N atoms from two pyc ligands, one O atom from a third pyc ligands, one O atom from a third pyc ligand and one O atom from a third pyc ligand s, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The crystal structure exhibits a three-dimensional heterometallic polymeric network. $O-H \cdots O$ hydrogen bonding between the uncoordinated water molecule and carboxylate O atoms is observed.

Related literature

For general background to lanthanide-transition heterometallic complexes, see: Deng *et al.* (2008); Wang *et al.* (2006); Zhou *et al.* (2006).

Experimental

Crystal data [AgEr(C₅H₃N₂O₂)₂(C₂O₄)]·H₂O $M_r = 627.35$ Monoclinic, $P2_1/c$ a = 10.0482 (6) Å b = 18.3968 (11) Å c = 8.0371 (5) Å $\beta = 95.397$ (1)°

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.307, T_{max} = 0.349
(expected range = 0.232–0.263)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.050$ S = 1.042649 reflections 244 parameters Z = 4 Mo K\alpha radiation μ = 7.02 mm⁻¹ T = 296 K 0.22 × 0.20 × 0.19 mm

V = 1479.11 (16) Å³

7533 measured reflections 2649 independent reflections 2450 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

12 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.43$ e Å⁻³ $\Delta \rho_{min} = -1.14$ e Å⁻³

Table 1

Selected bond lengths (Å).

Er1-O4	2.333 (3)	Er1-N1	2.611 (4)
Er1-07	2.367 (3)	Er1-N3	2.636 (4)
Er1-O1	2.385 (3)	Ag1-N4 ^{iv}	2.299 (4)
Er1-O6 ⁱ	2.387 (3)	Ag1-O3 ^v	2.312 (3)
Er1-O8 ⁱⁱ	2.388 (3)	Ag1-N2	2.368 (4)
Er1-O2 ⁱⁱⁱ	2.403 (3)	Ag1-O5 ^{vi}	2.648 (4)
Er1-O5	2.451 (3)		

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y, -z + 1; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W-H1W\cdots O1$	0.86	2.14	2.971 (6)	162

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge China Postdoctoral Science Foundation (project No. 20080440764), Guangdong Province Natural Science Foundation (project No. 9451063101002082), the Key Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities for supporting this work, and also the Young Teacher Training Plan of Guangdong Universities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2207).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, H., Li, Y.-H., Qiu, Y.-C., Li, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1152–1155.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi,
S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.
Zhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135–143.

supporting information

Acta Cryst. (2009). E65, m1018-m1019 [doi:10.1107/S1600536809029742]

Poly[[hemi- μ_4 -oxalato-hemi- μ_2 -oxalato-bis(μ_3 -pyrazine-2-carboxylato)erbium(III)silver(I)] monohydrate]

Ling-Zhi Zhao, Rui-Xia He, Qiu-Gui Zhong, Rong-Hua Zeng and Dong-Sheng Lu

S1. Comment

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition heterometallic coordination frameworks with bridging multifunctional organic ligands, not only because of their fascinating topological networks but also due to their potential applications in ion exchange, gas storage, catalysis and luminescence (Wang *et al.*, 2006; Zhou *et al.*, 2006). As a building block, pyrazine-2-carboxylate (pyc) and oxalate are excellent candidates for the construction of heterometallic complexes (Deng *et al.*, 2008). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

The asymmetric unit of the title complex contains one Er^{III} atom, one Ag^I atom, two pyc ligands, two half oxalate ligands, each lying on an inversion center, and one uncoordinated water molecule (Fig. 1). The Er^{III} atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands. The coordination geometry around the Er^{III} atom can be described as distorted monocapped square-antiprismatic, with Er—O bond distances and O—Er—O bond angles range from 2.333 (3) to 2.451 (3) Å and 66.24 (9) to 147.36 (10)°, respectively (Table 1). The Ag^I atom has a distorted tetrahedral coordination geometry, defined by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The Ag—N and Ag—O bond distances vary from 2.299 (4) to 2.648 (4) Å. The oxalate ligands bridge the Er atoms to form a zigzag chain. These chains are further interconnected by Ag–pyc subunits into a three-dimensional polymeric network (Fig. 2). O—H…O hydrogen bond involving the carboxylate O atoms of the pyc ligands and uncoordinated water molecules further enhance the stability of the three-dimensional network (Table 2).

S2. Experimental

A mixture of Er_2O_3 (0.183 g, 0.5 mmol), AgNO₃ (0.170 g, 1 mmol), pyrazine-2-carboxylic acid (0.124 g, 1 mmol), oxalic acid (0.09 g, 1 mmol) and water (10 ml) in the presence of HNO₃ (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h⁻¹. Colorless block crystals were obtained.

S3. Refinement

Water H atoms were tentatively located in a difference Fourier map and refined with distance restraints of O—H = 0.86 (1) and H…H = 1.35 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. H atoms attached to C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 0.84 Å from Ag1 and the deepest hole 0.73 Å from Ag1.

Figure 1

The asymmetric unit of the title compound. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, -y, -z; (ii) 1-x, -y, 1-z; (iii) x, 1/2-y, -1/2+z; (iv) 1+x, 1/2-y, -1/2+z; (v) 1+x, 1/2-y, 1/2+z; (vi) 1-x, 1/2+y, 1/2-z.]

Figure 2

Packing diagram of the title compound.

Poly[[hemi- μ_4 -oxalato-hemi- μ_2 -oxalato-bis(μ_3 -pyrazine-2- carboxylato)erbium(III)silver(I)] monohydrate]

Crystal data
$[AgEr(C_5H_3N_2O_2)_2(C_2O_4)] \cdot H_2O$
$M_r = 627.35$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 10.0482 (6) Å
b = 18.3968 (11) Å
c = 8.0371 (5) Å
$\beta = 95.397 (1)^{\circ}$
V = 1479.11 (16) Å ³
Z=4

F(000) = 1180 $D_x = 2.817 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5128 reflections $\theta = 2.2-28.2^{\circ}$ $\mu = 7.02 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.22 \times 0.20 \times 0.19 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.307, T_{max} = 0.349$ <i>Refinement</i>	7533 measured reflections 2649 independent reflections 2450 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 12$ $k = -22 \rightarrow 19$ $l = -9 \rightarrow 5$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.050$	neighbouring sites
S = 1.04	H-atom parameters constrained
2649 reflections	$w = 1/[\sigma^2(F_o^2) + (0.024P)^2 + 4.153P]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
12 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.43$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.14$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Er1	0.364162 (17)	0.105359 (10)	0.24162 (2)	0.01442 (7)
Ag1	0.85087 (4)	0.42746 (2)	0.39306 (4)	0.03045 (11)
01	0.2989 (3)	0.21768 (16)	0.3579 (4)	0.0242 (7)
O2	0.3493 (3)	0.32200 (16)	0.4921 (4)	0.0235 (7)
O3	-0.0813 (3)	0.0887 (2)	0.1736 (4)	0.0317 (8)
O4	0.1381 (3)	0.09487 (18)	0.1482 (4)	0.0250 (7)
O5	0.3318 (3)	0.01811 (16)	0.0110 (4)	0.0207 (6)
07	0.5023 (3)	0.09455 (15)	0.4957 (4)	0.0199 (6)
N1	0.5506 (3)	0.20455 (19)	0.2760 (4)	0.0190 (8)
N2	0.7204 (4)	0.3245 (2)	0.3075 (5)	0.0289 (9)
N3	0.1969 (4)	0.09160 (19)	0.4735 (4)	0.0194 (8)
N4	-0.0028 (4)	0.0827 (2)	0.6909 (4)	0.0239 (8)
C1	0.3752 (4)	0.2695 (2)	0.4013 (5)	0.0193 (9)
C2	0.5118 (4)	0.2678 (2)	0.3374 (5)	0.0195 (9)
C3	0.5950 (4)	0.3270 (3)	0.3465 (6)	0.0259 (10)
Н3	0.5621	0.3711	0.3818	0.031*
C4	0.7614 (5)	0.2604 (3)	0.2544 (6)	0.0287 (11)
H4	0.8491	0.2554	0.2282	0.034*
C5	0.6765 (4)	0.2009 (3)	0.2372 (6)	0.0255 (10)
Н5	0.7082	0.1573	0.1976	0.031*
C6	0.0371 (4)	0.0914 (2)	0.2309 (5)	0.0185 (9)
C7	0.0668 (4)	0.0902 (2)	0.4181 (5)	0.0183 (9)
C8	-0.0327 (4)	0.0862 (3)	0.5258 (5)	0.0223 (10)
H8	-0.1219	0.0860	0.4824	0.027*
C9	0.1265 (4)	0.0855 (3)	0.7468 (5)	0.0267 (10)

0.1508	0.0845	0.8614	0.032*
0.2255 (4)	0.0900 (3)	0.6381 (6)	0.0269 (10)
0.3145	0.0920	0.6818	0.032*
0.4313 (4)	-0.0108 (2)	-0.0429 (5)	0.0164 (9)
0.5388 (4)	0.0323 (2)	0.5434 (5)	0.0176 (9)
0.0424 (5)	0.2589 (3)	0.4885 (8)	0.0827 (16)
0.1096	0.2521	0.4314	0.124*
0.0662	0.2368	0.5816	0.124*
0.4323 (3)	-0.05626 (16)	-0.1587 (4)	0.0212 (7)
0.6284 (3)	0.01649 (16)	0.6555 (4)	0.0226 (7)
	$\begin{array}{c} 0.1508\\ 0.2255\ (4)\\ 0.3145\\ 0.4313\ (4)\\ 0.5388\ (4)\\ 0.0424\ (5)\\ 0.1096\\ 0.0662\\ 0.4323\ (3)\\ 0.6284\ (3) \end{array}$	$\begin{array}{cccccc} 0.1508 & 0.0845 \\ 0.2255 (4) & 0.0900 (3) \\ 0.3145 & 0.0920 \\ 0.4313 (4) & -0.0108 (2) \\ 0.5388 (4) & 0.0323 (2) \\ 0.0424 (5) & 0.2589 (3) \\ 0.1096 & 0.2521 \\ 0.0662 & 0.2368 \\ 0.4323 (3) & -0.05626 (16) \\ 0.6284 (3) & 0.01649 (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Er1	0.01594 (11)	0.01469 (11)	0.01268 (11)	0.00069 (7)	0.00162 (7)	-0.00034 (7)
Ag1	0.0286 (2)	0.0423 (2)	0.02146 (19)	-0.00868 (16)	0.00783 (14)	-0.00439 (16)
01	0.0201 (15)	0.0210 (16)	0.0326 (18)	-0.0023 (13)	0.0074 (13)	-0.0060 (14)
O2	0.0281 (17)	0.0210 (16)	0.0212 (16)	0.0042 (13)	0.0014 (13)	-0.0076 (13)
03	0.0201 (16)	0.059 (2)	0.0152 (16)	0.0027 (15)	-0.0017 (13)	-0.0041 (15)
O4	0.0199 (16)	0.042 (2)	0.0140 (15)	-0.0004 (13)	0.0046 (12)	0.0007 (14)
05	0.0205 (15)	0.0238 (17)	0.0176 (15)	0.0042 (13)	0.0006 (12)	-0.0029 (13)
07	0.0255 (16)	0.0166 (15)	0.0169 (15)	0.0009 (12)	-0.0013 (12)	0.0016 (12)
N1	0.0229 (19)	0.0172 (18)	0.0170 (18)	0.0012 (14)	0.0025 (14)	-0.0010 (15)
N2	0.027 (2)	0.028 (2)	0.032 (2)	-0.0040 (17)	0.0074 (17)	-0.0054 (18)
N3	0.0221 (19)	0.0197 (19)	0.0165 (19)	-0.0003 (15)	0.0029 (14)	0.0004 (15)
N4	0.025 (2)	0.032 (2)	0.0160 (19)	0.0015 (16)	0.0052 (15)	0.0012 (16)
C1	0.025 (2)	0.019 (2)	0.013 (2)	0.0028 (18)	0.0001 (17)	0.0025 (18)
C2	0.025 (2)	0.018 (2)	0.015 (2)	0.0029 (17)	0.0000 (17)	0.0000 (17)
C3	0.027 (2)	0.020 (2)	0.031 (3)	-0.0018 (19)	0.0060 (19)	-0.008 (2)
C4	0.020 (2)	0.031 (3)	0.035 (3)	-0.0030 (19)	0.006 (2)	-0.004 (2)
C5	0.022 (2)	0.026 (2)	0.028 (2)	0.0039 (19)	0.0025 (19)	-0.006 (2)
C6	0.021 (2)	0.018 (2)	0.016 (2)	0.0029 (17)	0.0032 (17)	0.0011 (17)
C7	0.020 (2)	0.018 (2)	0.017 (2)	-0.0001 (17)	0.0016 (17)	0.0000 (17)
C8	0.019 (2)	0.032 (3)	0.016 (2)	0.0006 (19)	0.0033 (17)	0.0000 (19)
C9	0.028 (3)	0.039 (3)	0.013 (2)	0.006 (2)	0.0032 (18)	0.004 (2)
C10	0.019 (2)	0.044 (3)	0.018 (2)	0.001 (2)	0.0023 (18)	0.000 (2)
C11	0.023 (2)	0.013 (2)	0.013 (2)	0.0026 (16)	0.0016 (17)	0.0050 (17)
C12	0.019 (2)	0.021 (2)	0.013 (2)	0.0000 (17)	0.0041 (16)	0.0021 (17)
O1W	0.053 (3)	0.067 (3)	0.130 (5)	-0.008 (2)	0.013 (3)	-0.020 (3)
06	0.0200 (15)	0.0215 (16)	0.0224 (16)	-0.0006 (12)	0.0033 (12)	-0.0073 (13)
08	0.0237 (16)	0.0220 (16)	0.0209 (16)	-0.0013 (13)	-0.0038 (13)	0.0024 (13)

Geometric parameters (Å, °)

Er1—O4	2.333 (3)	N3—C10	1.328 (6)
Er1—O7	2.367 (3)	N3—C7	1.341 (5)
Er1—O1	2.385 (3)	N4—C8	1.335 (5)
Er1—O6 ⁱ	2.387 (3)	N4—C9	1.336 (6)

Er1—O8 ⁱⁱ	2.388 (3)	C1—C2	1.510 (6)
Er1—O2 ⁱⁱⁱ	2.403 (3)	C2—C3	1.370 (6)
Er1—O5	2.451 (3)	С3—Н3	0.9300
Er1—N1	2.611 (4)	C4—C5	1.387 (7)
Er1—N3	2.636 (4)	C4—H4	0.9300
Ag1—N4 ^{iv}	2.299 (4)	С5—Н5	0.9300
Ag1—O3 ^v	2.312 (3)	C6—C7	1.506 (6)
Ag1—N2	2.368 (4)	C7—C8	1.385 (6)
Ag1—O5 ^{vi}	2.648 (4)	С8—Н8	0.9300
01	1.253 (5)	C9—C10	1.387 (6)
O2—C1	1.252 (5)	С9—Н9	0.9300
03-C6	1.236 (5)	C10—H10	0.9300
04—C6	1 265 (5)	C11—O6	1 252 (5)
05—C11	1 245 (5)	$C11-C11^{i}$	1.537 (8)
07-C12	1.213 (5)	C12 - 08	1.337(0) 1 247(5)
N1	1.232 (6)	$C12 - C12^{ii}$	1.247(3) 1 549(8)
N1_C2	1.332(0) 1.337(5)	O1W $H1W$	0.86
N1 - C2	1.337(3) 1.328(6)	O1W H2W	0.86
N2 - C3	1.320(0) 1.222(6)	01 w—h2 w	0.80
N2-C4	1.332 (0)		
O_4 Er1 O_7	129 16 (10)	C_2 N2 C_4	1159(4)
$04 = E_1 = 07$	136.10(10)	$C_3 = N_2 = C_4$	113.6(4)
04—Er1—O1	84.40 (11)	$C_3 = N_2 = A_{g1}$	114.5 (3)
0/-Erl-Ol	83.98 (10)	C4—N2—Agi	128.4 (3)
$O4$ —Erl— $O6^{1}$	135.46 (10)	C10-N3-C/	116.3 (4)
$O7$ —Er1— $O6^{1}$	76.17 (10)	C10—N3—Er1	127.9 (3)
$O1$ — $Er1$ — $O6^{1}$	135.36 (10)	C7—N3—Er1	115.7 (3)
$O4$ — $Er1$ — $O8^{ii}$	91.81 (11)	C8—N4—C9	117.0 (4)
$O7$ — $Er1$ — $O8^{ii}$	68.02 (10)	C8—N4—Ag1 ^{ix}	127.4 (3)
$O1$ — $Er1$ — $O8^{ii}$	132.72 (11)	C9—N4—Ag1 ^{ix}	115.6 (3)
$O6^{i}$ —Er1— $O8^{ii}$	75.03 (10)	O2—C1—O1	126.4 (4)
O4—Er1—O2 ⁱⁱⁱ	78.18 (10)	O2—C1—C2	117.4 (4)
O7—Er1—O2 ⁱⁱⁱ	138.78 (10)	O1—C1—C2	116.2 (4)
O1—Er1—O2 ⁱⁱⁱ	81.23 (11)	N1—C2—C3	120.9 (4)
O6 ⁱ —Er1—O2 ⁱⁱⁱ	87.99 (10)	N1-C2-C1	116.7 (4)
O8 ⁱⁱ —Er1—O2 ⁱⁱⁱ	143.95 (10)	C3—C2—C1	122.3 (4)
O4—Er1—O5	69.30 (10)	N2—C3—C2	123.2 (4)
O7—Er1—O5	128.53 (10)	N2—C3—H3	118.4
O1—Er1—O5	147.36 (10)	С2—С3—Н3	118.4
O6 ⁱ —Er1—O5	66.24 (9)	N2—C4—C5	121.7 (4)
O8 ⁱⁱ —Er1—O5	69.19 (10)	N2—C4—H4	119.2
$\Omega^{2^{iii}}$ Er1 Ω^{5}	74.90 (10)	C5-C4-H4	119.2
04 - Fr1 - N1	139 39 (11)	N1-C5-C4	121.7 (4)
07— $Fr1$ — $N1$	67.09(10)	N1-C5-H5	119.1
01—Fr1—N1	64 79 (10)	C4-C5-H5	119.1
$O6^{i}$ Fr1 N1	70.67 (10)	03	1267(4)
$O8^{ii}$ $Er1$ N1	128 36 (10)	03	120.7(7) 1177(A)
$O2^{iii} \text{Er1} \text{N1}$	120.30(10) 71 78 (10)	04 - C6 - C7	117.7(4)
$O_2 = E_1 = N_1$	125 40 (10)	$\begin{array}{ccc} \mathbf{U}_{+} & \mathbf{U}_{-} & \mathbf{U}_{-} \\ \mathbf{N}_{2} & \mathbf{C}_{2} & \mathbf{C}_{2} \\ \mathbf{N}_{2} & \mathbf{C}_{3} & \mathbf{C}_{3} \\ \end{array}$	113.0(4)
UJ-ErI-NI	123.49 (10)	$N_{3} - C_{4} - C_{8}$	122.2 (4)

O4—Er1—N3	63.46 (10)	N3—C7—C6	115.2 (4)
O7—Er1—N3	75.12 (11)	C8—C7—C6	122.6 (4)
O1—Er1—N3	65.75 (11)	N4—C8—C7	121.0 (4)
O6 ⁱ —Er1—N3	141.34 (11)	N4—C8—H8	119.5
O8 ⁱⁱ —Er1—N3	70.51 (11)	С7—С8—Н8	119.5
O2 ⁱⁱⁱ —Er1—N3	130.51 (11)	N4C9C10	121.6 (4)
O5—Er1—N3	115.07 (10)	N4—C9—H9	119.2
N1—Er1—N3	119.41 (11)	С10—С9—Н9	119.2
N4 ^{iv} —Ag1—O3 ^v	121.94 (12)	N3—C10—C9	121.9 (4)
N4 ^{iv} —Ag1—N2	95.91 (13)	N3—C10—H10	119.0
O3 ^v —Ag1—N2	106.55 (13)	C9—C10—H10	119.0
C1Er1	125.8 (3)	O5—C11—O6	127.3 (4)
C1—O2—Er1 ^{vii}	156.2 (3)	O5—C11—C11 ⁱ	116.8 (4)
C6—O3—Ag1 ^{viii}	123.6 (3)	O6-C11-C11 ⁱ	115.9 (4)
C6—O4—Er1	129.8 (3)	O8—C12—O7	127.2 (4)
C11—O5—Er1	119.3 (3)	O8—C12—C12 ⁱⁱ	116.4 (5)
C12—O7—Er1	118.2 (3)	O7—C12—C12 ⁱⁱ	116.3 (4)
C5—N1—C2	116.5 (4)	H1W—O1W—H2W	103.0
C5—N1—Er1	128.9 (3)	C11—O6—Er1 ⁱ	121.8 (3)
C2—N1—Er1	114.6 (3)	C12—O8—Er1 ⁱⁱ	117.8 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*, -*y*+1/2, *z*-1/2; (iv) *x*+1, -*y*+1/2, *z*-1/2; (v) *x*+1, -*y*+1/2, *z*+1/2; (vi) -*x*+1, *y*+1/2, -*z*+1/2; (vii) *x*, -*y*+1/2, *z*+1/2; (viii) *x*-1, -*y*+1/2, *z*-1/2; (ix) *x*-1, -*y*+1/2, *z*+1/2; (viii) *x*-1, -*y*+1/2, *z*+1/2; (vii) *x*-1, -*y*+1/2, *z*+1/2; (viii) *x*-1, -*y*+1/2; (viii) *x*-

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>W</i> …O1	0.86	2.14	2.971 (6)	162