metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Di- μ -carbonyl-bis{carbonyl[η^5 -2,3,4,5-tetramethyl-1-(2-thienyl)cyclo-pentadienyl]ruthenium(I)}(Ru—Ru)

Zhi-Hong Ma,^{a,b} Gui-Ying Dong,^c Xiao-Huan Liu^a and Jin Lin^a*

^aCollege of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, People's Republic of China, ^bCollege of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China, and ^cCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China Correspondence e-mail: tswlhx@126.com

Received 7 June 2009; accepted 5 July 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.027; wR factor = 0.100; data-to-parameter ratio = 14.4.

The title compound, $[Ru_2(C_{13}H_{15}S)_2(CO)_4]$, is a centrosymmetric binuclear metal–carbonyl complex containing an Ru– Ru single bond [2.7511 (8) Å]. Each Ru^I atom is coordinated by two bridging carbonyl ligands, one terminal carbonyl ligand and one η^5 -cyclopentadienyl group. The complex has a *trans* conformation and the two cyclopentadienyl ring planes are parallel. The crystal structure involves weak C–H···O hydrogen bonds.

Related literature

For general background to substituted cyclopentadienylmetal complexes, see: Arndt (2002); Bailey *et al.* (1978); King (1976); Möhring & Coville (2006). For the crystal structures of related ruthenium complexes, see: Schumann *et al.* (2002).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ru}_2(\text{C}_{13}\text{H}_{15}\text{S})_2(\text{CO})_4 \end{bmatrix} \\ M_r = 720.82 \\ \text{Triclinic, } P\overline{1} \\ a = 8.269 \ (2) \text{ Å} \\ b = 8.899 \ (3) \text{ Å} \\ c = 10.056 \ (3) \text{ Å}$

 $\alpha = 81.826 (4)^{\circ}$ $\beta = 76.083 (5)^{\circ}$ $\gamma = 82.876 (5)^{\circ}$ $V = 707.9 (4) \text{ Å}^{3}$ Z = 1Mo K\alpha radiation Cross

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

3667 measured reflections 2493 independent reflections 2431 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.016$

 $\mu = 1.25 \text{ mm}^{-1}$ T = 273 K

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.835, T_{\rm max} = 0.885$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ 173 parameters $wR(F^2) = 0.100$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ 2493 reflections $\Delta \rho_{min} = -0.63 \text{ e } \text{\AA}^{-3}$

Table 1Selected bond lengths (Å).

Ru1-C1	2.018 (3)	Ru1-C4	2.291 (3)
Ru1-C1 ⁱ	2.048 (3)	Ru1-C5	2.302 (3)
Ru1-C2	1.862 (3)	Ru1-C6	2.282 (3)
Ru1-C3	2.246 (3)	Ru1-C7	2.217 (3)

Symmetry code: (i) -x, -y + 1, -z + 1.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10\cdots O2^{ii}$	0.93	2.60	3.335 (5)	136
$C14 - H14B \cdots O2^{n}$	0.96	2.58	3.319 (4)	134

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Hebei Natural Science Foundation of China (No. B2008000150) and the Research Fund for the Doctoral Program of Hebei Normal University (No. L2005B18).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2205).

References

- Arndt, S. O. (2002). J. Chem. Rev. 102, 1953-1976.
- Bailey, N. A., Radford, S. L., Sanderson, J. A., Tabatabaian, K., White, C. & Worthington, J. A. (1978). J. Organomet. Chem. 154, 343–351.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- King, R. B. (1976). Coord. Chem. Rev. 20, 155-169.
- Möhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev. 250, 18-35.
- Schumann, H., Stenz, S., Girgsdies, F. & Mühle, S. Z. (2002). Z. Naturforsch. Teil B, 57, 1017–1026.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m894 [doi:10.1107/S1600536809026063]

trans-Di- μ -carbonyl-bis{carbonyl[η^5 -2,3,4,5-tetramethyl-1-(2-thienyl)cyclo-pentadienyl]ruthenium(I)}(Ru—Ru)

Zhi-Hong Ma, Gui-Ying Dong, Xiao-Huan Liu and Jin Lin

S1. Comment

Cyclopentadienyl metal complexes have been extensively investigated since ferrocene has been discovered. Replacement of the hydrogen atoms by other substituents alters both the steric and electronic influences of the *H*⁵-cyclopentadienyl ring, resulting in differing reactivity and stability of the substituted cyclopentadienyl metal complexes (Arndt, 2002; King, 1976). Especially for metallocene polymerization catalysts, the steric and electronic effects of the substituents on cyclopentadienyl ring greatly influence catalytic activity (Bailey *et al.*, 1978; Möhring & Coville, 2006).

The title compound, $[Ru_2(C_{13}H_{15}S)_2(CO)_4]$, is a centrosymmetric binuclear metal–carbonyl complex containing an Ru– Ru single bond. As shown in Fig. 1, the cyclopentadienyl ring of the organic ligand coordinates to the Ru¹ atom (Table 1), while the thienyl group acting as a substituent is uncoordinated. The Ru1–Cg1 distance is 1.911 (3) Å, where Cg1 is the centroid of the cyclopentadienyl ring. The Ru–Ru bond distance is 2.7511 (8) Å and agrees with that observed in the analogous structure [2.751 (1) Å] (Schumann *et al.*, 2002). The two cyclopentadienyl rings are parallel by virtue of the center of symmetry. The complex has a *trans* conformation, with two bridging carbonyl ligands and two terminal carbonyl ligands. The crystal packing is stabilized by weak C–H···O hydrogen bonds (Table 2).

S2. Experimental

A solution of 1-(2-thienyl)-2,3,4,5-tetramethylcyclopentadiene (0.288 g, 1.41 mmol) and $Ru_3(CO)_{12}$ (0.30 g, 0.47 mmol) in xylene (30 ml) was refluxed for 12 h. The solvent was removed under vacuum and the residue was chromatographed on an Al₂O₃ column using petroleum ether/dichloromethane (volume ratio = 1:3) as eluent. The red band was collected, and after several days red crystals were obtained (yield 0.142 g, 27.9%). Analysis calculated for $C_{30}H_{30}O_4Ru_2S_2$: C 49.99, H 4.19%; found: C 49.94, H 4.21%.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH₃) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 1-y, 1-z.]

trans-Di- μ -carbonyl-bis{carbonyl[η^5 -2,3,4,5-tetramethyl-1-(2- thienyl)cyclopentadienyl]ruthenium(I)}(Ru-Ru)

f = 1 (000) = 362 $D_x = 1.691 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ cell parameters from 1002 reflections
= $4.5-22.2^{\circ}$ = 1.25 mm^{-1} '= 273 K Block, red $.15 \times 0.12 \times 0.10 \text{ mm}$
667 measured reflections 493 independent reflections 431 reflections with $I > 2\sigma(I)$ $\sigma_{int} = 0.016$ $\sigma_{max} = 25.1^{\circ}, \theta_{min} = 2.3^{\circ}$ $= -9 \rightarrow 9$ $= -10 \rightarrow 10$ $= -11 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.09P)^2 + 0.0001P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2493 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
173 parameters	$\Delta ho_{ m max} = 0.53 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.026 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	-0.01450 (2)	0.40733 (2)	0.623212 (18)	0.02438 (17)
S1	0.40230 (13)	0.12210 (13)	0.86000 (11)	0.0622 (3)
01	-0.1870 (5)	0.1684 (4)	0.5431 (3)	0.0836 (10)
02	0.2945 (3)	0.3491 (3)	0.4011 (3)	0.0510 (6)
C1	0.1653 (3)	0.4142 (3)	0.4472 (3)	0.0314 (6)
C2	-0.1213 (4)	0.2620 (4)	0.5688 (3)	0.0440 (8)
C3	0.1390 (3)	0.2962 (3)	0.7731 (3)	0.0298 (6)
C4	0.1719 (3)	0.4517 (3)	0.7456 (3)	0.0302 (6)
C5	0.0180 (4)	0.5430 (3)	0.7921 (3)	0.0327 (6)
C6	-0.1104 (4)	0.4436 (3)	0.8499 (3)	0.0337 (6)
C7	-0.0383 (4)	0.2915 (4)	0.8363 (3)	0.0319 (6)
C8	0.2643 (4)	0.1630 (3)	0.7537 (3)	0.0329 (6)
C9	0.2855 (4)	0.0553 (4)	0.6641 (4)	0.0452 (8)
Н9	0.2217	0.0550	0.5996	0.054*
C10	0.4219 (5)	-0.0577 (4)	0.6847 (5)	0.0606 (10)
H10	0.4556	-0.1393	0.6328	0.073*
C11	0.4936 (5)	-0.0364 (5)	0.7814 (5)	0.0657 (11)
H11	0.5834	-0.0992	0.8050	0.079*
C12	0.3402 (4)	0.5088 (4)	0.6853 (3)	0.0423 (7)
H12A	0.3276	0.6035	0.6280	0.063*
H12B	0.4104	0.4352	0.6308	0.063*
H12C	0.3905	0.5244	0.7583	0.063*
C13	-0.0043 (5)	0.7128 (4)	0.7947 (4)	0.0500 (8)
H13A	-0.0294	0.7352	0.8885	0.075*
H13B	-0.0946	0.7558	0.7523	0.075*
H13C	0.0970	0.7558	0.7449	0.075*
C14	-0.2858 (4)	0.4923 (5)	0.9167 (3)	0.0504 (9)
H14A	-0.3539	0.4098	0.9259	0.076*
H14B	-0.3272	0.5783	0.8610	0.076*
H14C	-0.2900	0.5202	1.0063	0.076*
C15	-0.1239 (4)	0.1515 (4)	0.8928 (3)	0.0439 (8)
H15A	-0.1240	0.1282	0.9890	0.066*

H15B	-0.0661	0.0681	0.8443	0.066*
H15C	-0.2372	0.1677	0.8818	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0253 (2)	0.0278 (2)	0.0202 (2)	-0.00256 (12)	-0.00515 (12)	-0.00352 (12)
S1	0.0550 (6)	0.0681 (7)	0.0699 (7)	0.0124 (5)	-0.0345 (5)	-0.0105 (5)
01	0.121 (3)	0.074 (2)	0.071 (2)	-0.060 (2)	-0.0269 (19)	-0.0075 (16)
O2	0.0391 (13)	0.0660 (17)	0.0375 (13)	0.0190 (12)	-0.0024 (10)	-0.0029 (11)
C1	0.0284 (14)	0.0381 (15)	0.0274 (14)	0.0025 (11)	-0.0075 (11)	-0.0057 (12)
C2	0.056 (2)	0.0469 (18)	0.0334 (17)	-0.0202 (16)	-0.0128 (14)	-0.0008 (14)
C3	0.0289 (14)	0.0367 (14)	0.0258 (14)	-0.0035 (11)	-0.0108 (11)	-0.0023 (11)
C4	0.0323 (14)	0.0360 (15)	0.0242 (13)	-0.0065 (11)	-0.0093 (11)	-0.0020 (11)
C5	0.0397 (15)	0.0379 (16)	0.0235 (14)	0.0006 (12)	-0.0123 (11)	-0.0088 (12)
C6	0.0344 (15)	0.0460 (17)	0.0212 (13)	-0.0002 (13)	-0.0070 (11)	-0.0070 (12)
C7	0.0310 (14)	0.0416 (17)	0.0211 (14)	-0.0071 (12)	-0.0033 (11)	0.0017 (12)
C8	0.0322 (14)	0.0367 (15)	0.0290 (14)	-0.0025 (11)	-0.0091 (11)	0.0013 (12)
C9	0.0489 (19)	0.0351 (17)	0.0497 (19)	0.0096 (14)	-0.0128 (15)	-0.0076 (14)
C10	0.056 (2)	0.045 (2)	0.077 (3)	0.0101 (17)	-0.009 (2)	-0.0149 (19)
C11	0.046 (2)	0.058 (2)	0.086 (3)	0.0160 (18)	-0.019 (2)	0.005 (2)
C12	0.0353 (16)	0.0540 (19)	0.0393 (17)	-0.0175 (14)	-0.0081 (13)	-0.0001 (14)
C13	0.068 (2)	0.0416 (18)	0.0459 (19)	0.0010 (15)	-0.0186 (16)	-0.0176 (15)
C14	0.0393 (18)	0.073 (2)	0.0341 (17)	0.0036 (16)	0.0012 (14)	-0.0136 (17)
C15	0.0439 (18)	0.0474 (19)	0.0400 (17)	-0.0165 (15)	-0.0109 (14)	0.0095 (14)

Geometric parameters (Å, °)

Ru1—C1	2.018 (3)	С6—С7	1.421 (4)
Ru1—C1 ⁱ	2.048 (3)	C6—C14	1.484 (4)
Ru1—C2	1.862 (3)	C7—C15	1.483 (4)
Ru1—C3	2.246 (3)	C8—C9	1.374 (4)
Ru1—C4	2.291 (3)	C9—C10	1.449 (5)
Ru1—C5	2.302 (3)	С9—Н9	0.9300
Ru1—C6	2.282 (3)	C10—C11	1.300 (6)
Ru1—C7	2.217 (3)	C10—H10	0.9300
Ru1—Ru1 ⁱ	2.7511 (8)	C11—H11	0.9300
S1—C11	1.718 (4)	C12—H12A	0.9600
S1—C8	1.718 (3)	C12—H12B	0.9600
O1—C2	1.139 (4)	C12—H12C	0.9600
O2—C1	1.173 (3)	C13—H13A	0.9600
C1—Ru1 ⁱ	2.048 (3)	C13—H13B	0.9600
C3—C4	1.420 (4)	C13—H13C	0.9600
С3—С7	1.454 (4)	C14—H14A	0.9600
C3—C8	1.476 (4)	C14—H14B	0.9600
C4—C5	1.436 (4)	C14—H14C	0.9600
C4—C12	1.499 (4)	C15—H15A	0.9600
C5—C6	1.428 (4)	C15—H15B	0.9600

C5—C13	1.502 (4)	C15—H15C	0.9600
C2—Ru1—C1	92.57 (13)	C6—C5—C13	124.5 (3)
$C2$ — $Ru1$ — $C1^i$	93.27 (14)	C4—C5—C13	126.8 (3)
C1—Ru1—C1 ⁱ	94.85 (10)	C6—C5—Ru1	71.09 (15)
C2—Ru1—C7	93.67 (13)	C4—C5—Ru1	71.36 (15)
C1—Ru1—C7	135.88 (11)	C13—C5—Ru1	128.18 (19)
C1 ⁱ —Ru1—C7	128.26 (11)	C7—C6—C5	107.8 (2)
C2—Ru1—C3	110.26 (13)	C7—C6—C14	126.8 (3)
C1—Ru1—C3	99.57 (11)	C5-C6-C14	125.4 (3)
C1 ⁱ —Ru1—C3	151.61 (11)	C7—C6—Ru1	69.11 (15)
C7—Ru1—C3	38.01 (10)	C5—C6—Ru1	72.61 (15)
C2—Ru1—C6	113.52 (13)	C14—C6—Ru1	125.5 (2)
C1—Ru1—C6	151.57 (11)	C6—C7—C3	108.2 (3)
C1 ⁱ —Ru1—C6	94.73 (11)	C6—C7—C15	125.8 (3)
C7—Ru1—C6	36.80 (10)	C3—C7—C15	125.7 (3)
C3— $Ru1$ — $C6$	61.88 (10)	C6—C7—Ru1	74.10 (16)
C2—Ru1—C4	146.49 (13)	C3—C7—Ru1	72.09 (15)
C1— $Ru1$ — $C4$	91.03 (11)	C15—C7—Ru1	125.5 (2)
$C1^{i}$ Ru1 C4	119.61 (11)	C9—C8—C3	129.5(3)
C7—Ru1—C4	61.83 (10)	C9—C8—S1	111.3(2)
C3— $Ru1$ — $C4$	36.45 (10)	C3—C8—S1	119.1(2)
C6— $Ru1$ — $C4$	61.06 (10)	C8—C9—C10	110.1(3)
C_2 —Ru1—C5	149.83 (12)	С8—С9—Н9	125.0
C1— $Ru1$ — $C5$	116.93 (11)	C10-C9-H9	125.0
$C1^{i}$ —Ru1—C5	90.57 (11)	C11—C10—C9	114.9 (4)
C7—Ru1—C5	61.24 (11)	C11—C10—H10	122.6
C3— $Ru1$ — $C5$	61.10 (10)	C9—C10—H10	122.6
C6—Ru1—C5	36.30 (11)	C10-C11-S1	111.7 (3)
C4—Ru1—C5	36.45 (10)	C10-C11-H11	124.1
C2—Ru1—Ru1 ⁱ	94.32 (10)	S1—C11—H11	124.1
C1—Ru1—Ru1 ⁱ	47.87 (8)	C4—C12—H12A	109.5
C1 ⁱ —Ru1—Ru1 ⁱ	46.97 (8)	C4—C12—H12B	109.5
C7—Ru1—Ru1 ⁱ	170.96 (8)	H12A—C12—H12B	109.5
C3—Ru1—Ru1 ⁱ	140.96 (7)	C4—C12—H12C	109.5
C6—Ru1—Ru1 ⁱ	134.95 (8)	H12A—C12—H12C	109.5
C4—Ru1—Ru1 ⁱ	112.39 (7)	H12B—C12—H12C	109.5
C5—Ru1—Ru1 ⁱ	109.85 (8)	C5—C13—H13A	109.5
C11—S1—C8	91.94 (18)	C5—C13—H13B	109.5
O2—C1—Ru1	139.3 (2)	H13A—C13—H13B	109.5
O2—C1—Ru1 ⁱ	135.5 (2)	C5—C13—H13C	109.5
Ru1—C1—Ru1 ⁱ	85.15 (10)	H13A—C13—H13C	109.5
O1—C2—Ru1	175.9 (3)	H13B—C13—H13C	109.5
C4—C3—C7	107.5 (2)	C6—C14—H14A	109.5
C4—C3—C8	126.3 (2)	C6—C14—H14B	109.5
C7—C3—C8	126.0 (3)	H14A—C14—H14B	109.5
C4—C3—Ru1	73.49 (15)	C6—C14—H14C	109.5
C7—C3—Ru1	69.90 (15)	H14A—C14—H14C	109.5

C8—C3—Ru1	126.41 (19)	H14B—C14—H14C	109.5
C3—C4—C5	108.1 (2)	C7—C15—H15A	109.5
C3—C4—C12	125.5 (3)	C7—C15—H15B	109.5
C5—C4—C12	126.3 (3)	H15A—C15—H15B	109.5
C3—C4—Ru1	70.06 (15)	C7—C15—H15C	109.5
C5—C4—Ru1	72.19 (16)	H15A—C15—H15C	109.5
C12—C4—Ru1	125.7 (2)	H15B—C15—H15C	109.5
C6—C5—C4	108.4 (3)		
C2—Ru1—C1—O2	-85.4 (4)	Ru1 ⁱ —Ru1—C5—C4	-101.12 (15)
C1 ⁱ —Ru1—C1—O2	-178.9(5)	C2—Ru1—C5—C13	-119.8 (4)
C7—Ru1—C1—O2	12.6 (5)	C1—Ru1—C5—C13	73.4 (3)
C3—Ru1—C1—O2	25.7 (4)	C1 ⁱ —Ru1—C5—C13	-22.3 (3)
C6—Ru1—C1—O2	71.9 (5)	C7—Ru1—C5—C13	-156.8(3)
C4—Ru1—C1—O2	61.3 (4)	C3—Ru1—C5—C13	159.6 (3)
C5—Ru1—C1—O2	88.0 (4)	C6—Ru1—C5—C13	-119.5 (4)
$Ru1^{i}$ $Ru1$ $C1$ $O2$	-178.9(5)	C4— $Ru1$ — $C5$ — $C13$	122.6 (4)
$C2$ — $Ru1$ — $C1$ — $Ru1^i$	93.50 (13)	$Ru1^{i}$ — $Ru1$ — $C5$ — $C13$	21.5 (3)
$C1^{i}$ Ru1 C1 Ru1 ⁱ	0.0	C4—C5—C6—C7	-1.5(3)
$C7$ — $Ru1$ — $C1$ — $Ru1^i$	-168.55(12)	C13—C5—C6—C7	-175.7(3)
$C3$ — $Ru1$ — $C1$ — $Ru1^i$	-155.46(10)	Ru1—C5—C6—C7	60.44 (19)
C6—Ru1—C1—Ru1 ⁱ	-109.3(2)	C4—C5—C6—C14	176.4 (3)
$C4$ — $Ru1$ — $C1$ — $Ru1^i$	-119.83(10)	C13—C5—C6—C14	2.2 (5)
C5—Ru1— $C1$ —Ru1 ⁱ	-93.11 (11)	Ru1-C5-C6-C14	-121.6(3)
C2—Ru1—C3—C4	174.96 (17)	C4—C5—C6—Ru1	-61.97(18)
C1— $Ru1$ — $C3$ — $C4$	78.61 (17)	C13—C5—C6—Ru1	123.9 (3)
$C1^{i}$ —Ru1—C3—C4	-40.9 (3)	C2—Ru1—C6—C7	62.3 (2)
C7—Ru1—C3—C4	-116.2(2)	C1— $Ru1$ — $C6$ — $C7$	-92.8(3)
C6—Ru1—C3—C4	-78.47 (17)	$C1^{i}$ —Ru1—C6—C7	157.92 (18)
C5—Ru1—C3—C4	-36.95(16)	C3—Ru1—C6—C7	-39.01(17)
$Ru1^{i}$ Ru1 - C3 - C4	49.3 (2)	C4—Ru1—C6—C7	-80.71(18)
C2—Ru1—C3—C7	-68.8(2)	C5—Ru1—C6—C7	-117.6(2)
C1—Ru1—C3—C7	-165.16 (18)	Ru1 ⁱ —Ru1—C6—C7	-174.32 (13)
$C1^{i}$ —Ru1—C3—C7	75.4 (3)	C2—Ru1—C6—C5	179.85 (18)
C6—Ru1—C3—C7	37.75 (17)	C1—Ru1—C6—C5	24.8 (3)
C4—Ru1—C3—C7	116.2 (2)	C1 ⁱ —Ru1—C6—C5	-84.50 (18)
C5—Ru1—C3—C7	79.27 (18)	C7—Ru1—C6—C5	117.6 (2)
Ru1 ⁱ —Ru1—C3—C7	165.55 (13)	C3—Ru1—C6—C5	78.57 (18)
C2—Ru1—C3—C8	51.7 (3)	C4—Ru1—C6—C5	36.87 (16)
C1—Ru1—C3—C8	-44.6 (3)	$Ru1^{i}$ — $Ru1$ — $C6$ — $C5$	-56.74(19)
C1 ⁱ —Ru1—C3—C8	-164.1(2)	C2—Ru1—C6—C14	-58.7 (3)
C7—Ru1—C3—C8	120.5 (3)	C1— $Ru1$ — $C6$ — $C14$	146.3 (3)
C6—Ru1—C3—C8	158.3 (3)	$C1^{i}$ —Ru1—C6—C14	36.9 (3)
C4—Ru1—C3—C8	-123.2(3)	C7—Ru1—C6—C14	-121.0(4)
C5— $Ru1$ — $C3$ — $C8$	-160.2(3)	C3—Ru1—C6—C14	-160.0(3)
$Ru1^{i}$ $Ru1$ $C3$ $C8$	-73.9 (3)	C4— $Ru1$ — $C6$ — $C14$	158.3 (3)
C7—C3—C4—C5	0.5 (3)	C5— $Ru1$ — $C6$ — $C14$	121.4 (4)
C8-C3-C4-C5	-1741(3)	$Ru1^{i}$ Ru1 C6 C14	647(3)
	·/ ··· (<i>J</i>)		57.7 (3)

Ru1—C3—C4—C5	62.55 (18)	С5—С6—С7—С3	1.8 (3)
C7—C3—C4—C12	177.7 (3)	C14—C6—C7—C3	-176.0 (3)
C8—C3—C4—C12	3.1 (4)	Ru1—C6—C7—C3	64.53 (19)
Ru1—C3—C4—C12	-120.3 (3)	C5—C6—C7—C15	174.8 (3)
C7—C3—C4—Ru1	-62.02 (18)	C14—C6—C7—C15	-3.1 (5)
C8—C3—C4—Ru1	123.4 (3)	Ru1—C6—C7—C15	-122.6 (3)
C2—Ru1—C4—C3	-8.6 (3)	C5—C6—C7—Ru1	-62.68 (19)
C1—Ru1—C4—C3	-104.80 (17)	C14—C6—C7—Ru1	119.4 (3)
$C1^{i}$ —Ru1—C4—C3	159.04 (16)	C4—C3—C7—C6	-1.5 (3)
C7—Ru1—C4—C3	38.80 (16)	C8—C3—C7—C6	173.1 (3)
C6—Ru1—C4—C3	80.91 (17)	Ru1—C3—C7—C6	-65.85 (19)
C5—Ru1—C4—C3	117.6 (2)	C4—C3—C7—C15	-174.4 (3)
Ru1 ⁱ —Ru1—C4—C3	-148.89 (13)	C8—C3—C7—C15	0.2 (5)
C2—Ru1—C4—C5	-126.2 (2)	Ru1—C3—C7—C15	121.2 (3)
C1—Ru1—C4—C5	137.56 (18)	C4—C3—C7—Ru1	64.38 (18)
C1 ⁱ —Ru1—C4—C5	41.4 (2)	C8—C3—C7—Ru1	-121.0 (3)
C7—Ru1—C4—C5	-78.84 (18)	C2—Ru1—C7—C6	-125.6 (2)
C3—Ru1—C4—C5	-117.6 (2)	C1—Ru1—C7—C6	136.91 (19)
C6—Ru1—C4—C5	-36.73 (17)	C1 ⁱ —Ru1—C7—C6	-28.5 (2)
Ru1 ⁱ —Ru1—C4—C5	93.47 (16)	C3—Ru1—C7—C6	115.6 (2)
C2—Ru1—C4—C12	111.4 (3)	C4—Ru1—C7—C6	78.44 (18)
C1—Ru1—C4—C12	15.2 (3)	C5—Ru1—C7—C6	36.77 (16)
C1 ⁱ —Ru1—C4—C12	-81.0 (3)	C2—Ru1—C7—C3	118.77 (19)
C7—Ru1—C4—C12	158.8 (3)	C1—Ru1—C7—C3	21.3 (3)
C3—Ru1—C4—C12	120.0 (3)	$C1^{i}$ —Ru1—C7—C3	-144.14 (17)
C6—Ru1—C4—C12	-159.1 (3)	C6—Ru1—C7—C3	-115.6 (2)
C5—Ru1—C4—C12	-122.4 (3)	C4—Ru1—C7—C3	-37.20 (16)
Ru1 ⁱ —Ru1—C4—C12	-28.9 (3)	C5—Ru1—C7—C3	-78.87 (18)
C3—C4—C5—C6	0.6 (3)	C2—Ru1—C7—C15	-2.7 (3)
C12—C4—C5—C6	-176.5 (3)	C1—Ru1—C7—C15	-100.2 (3)
Ru1—C4—C5—C6	61.80 (18)	C1 ⁱ —Ru1—C7—C15	94.4 (3)
C3—C4—C5—C13	174.6 (3)	C3—Ru1—C7—C15	-121.5 (3)
C12—C4—C5—C13	-2.5 (4)	C6—Ru1—C7—C15	122.9 (3)
Ru1—C4—C5—C13	-124.2 (3)	C4—Ru1—C7—C15	-158.7 (3)
C3—C4—C5—Ru1	-61.19 (18)	C5—Ru1—C7—C15	159.7 (3)
C12—C4—C5—Ru1	121.7 (3)	C4—C3—C8—C9	-114.8 (4)
C2—Ru1—C5—C6	-0.3 (3)	C7—C3—C8—C9	71.6 (5)
C1—Ru1—C5—C6	-167.05 (16)	Ru1—C3—C8—C9	-18.8 (5)
C1 ⁱ —Ru1—C5—C6	97.23 (18)	C4—C3—C8—S1	69.0 (3)
C7—Ru1—C5—C6	-37.27 (17)	C7—C3—C8—S1	-104.6 (3)
C3—Ru1—C5—C6	-80.92 (18)	Ru1—C3—C8—S1	164.94 (16)
C4—Ru1—C5—C6	-117.9 (2)	C11—S1—C8—C9	1.7 (3)
Ru1 ⁱ —Ru1—C5—C6	141.01 (15)	C11—S1—C8—C3	178.6 (3)
C2—Ru1—C5—C4	117.6 (3)	C3—C8—C9—C10	-178.1 (3)
C1—Ru1—C5—C4	-49.17 (19)	S1—C8—C9—C10	-1.6 (4)
$C1^{i}$ —Ru1—C5—C4	-144.90 (17)	C8—C9—C10—C11	0.6 (5)
C7—Ru1—C5—C4	80.60 (18)	C9—C10—C11—S1	0.7 (5)

C3—Ru1—C5—C4	36.96 (16)	C8—S1—C11—C10	-1.4 (4)
C6—Ru1—C5—C4	117.9 (2)		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A	
С10—Н10…О2 ^{іі}	0.93	2.60	3.335 (5)	136	
C14—H14 <i>B</i> ···O2 ⁱ	0.96	2.58	3.319 (4)	134	

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.