metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[diaqua(μ_3 -8-oxidoquinoline-5sulfonato- $\kappa^4 N_{\cdot}O^8:O^5:O^8$)nickel(II)]

Ying Wang, Li Wang, Jianing Xu* and Guangshan Zhu‡

Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: xujianing@email.jlu.edu.cn

Received 30 May 2009; accepted 5 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.079; data-to-parameter ratio = 12.9.

In title compound, $[Ni(C_9H_5NO_4S)(H_2O)_2]_n$, the Ni^{II} atom is coordinated by one N atom and two bridging O atoms from two 8-oxidoquinoline-5-sulfonate ligands, one sulfonate O atom from a third ligand, and two water molecules in a distorted octahedral geometry. The two Ni^{II} atoms are linked to each other through the bridging O atoms, forming a dimer. Adjacent dimers are connected through the coordination of the sulfonate O atom into a two-dimensional coordination network parallel to (010). Hydrogen bonds between the coordinated water molecules and the uncoordinated O atoms of the sulfonate groups result in the construction of a threedimensional supramolecular structure.

Related literature

For related structures, see: Ammor et al. (1992); Petit et al. (1993a,b); Rao et al. (2003); Wu et al. (2008); Xie et al. (1992).

Experimental

Crystal data $[Ni(C_9H_5NO_4S)(H_2O)_2]$ $M_r = 317.94$ Orthorhombic, Pbca a = 9.2067 (8) Å b = 15.0504 (13) Å c = 16.1599 (14) Å

V = 2239.2 (3) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 1.94 \text{ mm}^{-1}$
T = 293 K
$0.28 \times 0.22 \times 0.18 \text{ mm}$

‡ Additional correspondence author.

doi:10.1107/S1600536809026105

11973 measured reflections

 $R_{\rm int} = 0.037$

2198 independent reflections

1874 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.601, T_{\max} = 0.701$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.02	refinement
2198 reflections	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
171 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
4 restraints	

Table 1

Selected bond lengths (Å).

Ni1-O1 ⁱ	2.0153 (17)	Ni1-N1	2.052 (2)
Ni1 - O6W	2.0285 (19)	Ni1-O5W	2.0936 (19)
Ni1-O1	2.0443 (16)	Ni1-O2 ⁱⁱ	2.1437 (17)

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5W−H5WA···O3 ⁱⁱⁱ	0.82	2.00	2.812 (2)	171
O5W−H5WB···O4 ^{iv}	0.80(2)	2.07 (2)	2.866 (3)	170 (2)
O6W−H6WA···O3 ^{iv}	0.82	1.93	2.687 (2)	153
$O6W - H6WB \cdots O4^{v}$	0.78 (2)	2.04 (2)	2.787 (3)	159 (3)

Symmetry codes: (iii) $-x - \frac{1}{2}, -y, z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20571030).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2203).

References

Ammor, S., Coquerel, G., Perez, G. & Robert, F. (1992). Eur. J. Solid State Inorg. Chem. 29, 131-139.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA.
- Petit, S., Ammor, S., Coquerel, G., Mayer, G., Perez, G. & Dance, J.-M. (1993a). Eur. J. Solid State Inorg. Chem. 39, 497-507.
- Petit, S., Coquerel, G., Perez, G., Louer, D. & Louer, M. (1993b). New J. Chem. 17, 187-192.

Rao, H.-Y., Tao, J. & Ng, S. W. (2003). Acta Cryst. E59, m859-m860.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wu, H., Dong, X. W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331-5341.
- Xie, Z. X., Liu, W., Liu, H. F. & Zheng, L. S. (1992). Chin. J. Struct. Chem. 11, 139-142.

supporting information

Acta Cryst. (2009). E65, m902 [doi:10.1107/S1600536809026105]

Poly[diaqua(μ_3 -8-oxidoquinoline-5-sulfonato- $\kappa^4 N$, O^8 : O^5 : O^8)nickel(II)]

Ying Wang, Li Wang, Jianing Xu and Guangshan Zhu

S1. Comment

The metal complexes with organic ligands containing sulfonate group still remain largely unexplored. We have been investigating the formation of novel transition metal coordination polymers employing hydrothermal methods. During the course of the investigation employing 8-hydroxylquinoline-5-sulfonic acids (H₂QS) as organic ligand, which has received a little attention (Ammor *et al.*, 1992; Petit *et al.*, 1993*a*,b; Rao *et al.*, 2003; Wu *et al.*, 2008; Xie *et al.*, 1992), and nickel(II) as metal center, we isolated a new two-dimensional coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one Ni^{II} atom, one QS ligand, and two water molecules. The Ni^{II} atom adopts a distorted octahedral coordination geometry, defined by one N atom and two bridging olate O atoms from two QS ligands, one sulfonate O atom from a third ligand, and two water molecules (Table 1). Two crystallographically equivalent Ni atoms [Ni1 and Ni1ⁱ, symmetry code: (i) -*x*, -*y*, 1 - *z*] link to each other through two bridging atoms O1 and O1ⁱ, forming an edge-sharing dimer. These dimers are connected by the sulfonate groups of the QS ligands into an infinite two-dimensional coordination network with a (4,4) topology along the [0 1 0] direction, as shown in Fig. 2. These networks are further connected by hydrogen bonds between the coordinated water molecules and the uncoordinated O atoms of the sulfonate groups into a three-dimensional supramolecular structure (Fig. 3 and Table 2).

S2. Experimental

A mixture of Ni(NO₃)₂.4H₂O (0.250 g, 1 mmol) and H₂QS (0.024 g, 0.1 mmol) was dissolved in 6 ml H₂O with stirring about half an hour and pH = 6. The mixture was transferred to a 15 ml Teflon-lined stainless-steel hydrothermal autoclave and heated at 413 K for two weeks under autogenous pressure. The green block crystals were filtered off, washed with ethanol and dried at room temperature.

S3. Refinement

H atoms on C atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso} = 1.2U_{eq}(C)$. H atoms of water molecules are located in a difference Fourier map. Two H atoms (H5WA and H6WA) were refined as riding atoms, with O—H = 0.82 Å and $U_{iso} = 1.5U_{eq}(O)$, and the other two (H5WB and H6WB) were refined isotropically.

Figure 1

Coordination environment of the Ni atom in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x,-y,-z + 1; (ii) x + 1/2, y, -z + 1/2.]

Figure 2

The two-dimensional coordination network of the title compound with a (4,4) topology, viewed along the [0 1 0] direction.

Figure 3

The three-dimensional supramolecular structure of the title compound, connected by hydrogen bonds between the coordinated water molecules and the uncoordinated sulfonate O atoms.

Poly[diaqua(μ_3 -8-oxidoquinoline-5-sulfonato- $\kappa^4 N$, O^8 : O^5 : O^8)nickel(II)]

Crystal data	
$[Ni(C_{9}H_{5}NO_{4}S)(H_{2}O)_{2}]$ $M_{r} = 317.94$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab a = 9.2067 (8) Å b = 15.0504 (13) Å c = 16.1599 (14) Å V = 2239.2 (3) Å ³ Z = 8 F(000) = 1296	$D_{\rm x} = 1.886 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.886 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo K\$\alpha\$ radiation, \$\lambda\$ = 0.71073 Å Cell parameters from 2198 reflections \$\theta\$ = 2.5-28.1° \$\mu\$ = 1.94 mm}^{-1} $T = 293 \text{ K}$ Block, green 0.28 × 0.22 × 0.18 mm
Data collection	
Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.601, T_{\max} = 0.701$	11973 measured reflections 2198 independent reflections 1874 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.5^\circ$ $h = -10 \rightarrow 11$ $k = -18 \rightarrow 17$ $l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
2198 reflections	and constrained refinement
171 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0484P)^2]$
4 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.64 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.10943 (3)	0.058524 (19)	0.446648 (17)	0.02363 (12)
O5W	-0.0374 (2)	0.16474 (12)	0.44545 (10)	0.0326 (4)
H5WA	-0.0848	0.1645	0.4884	0.049*
O1	0.04736 (19)	0.03393 (11)	0.56593 (9)	0.0264 (4)
N1	0.0998 (2)	0.05336 (12)	0.31986 (12)	0.0250 (5)
C8	-0.0750 (3)	-0.05668 (14)	0.35675 (14)	0.0232 (5)
C9	0.0015 (3)	-0.00829 (15)	0.29298 (13)	0.0231 (5)
C4	-0.0248 (3)	-0.02414 (16)	0.20803 (13)	0.0251 (5)
C2	0.1498 (3)	0.09088 (18)	0.17944 (15)	0.0338 (6)
H2A	0.2007	0.1263	0.1423	0.041*
C3	0.0542 (3)	0.02903 (17)	0.15126 (14)	0.0300 (6)
H3B	0.0406	0.0216	0.0947	0.036*
C5	-0.1275 (3)	-0.09119 (16)	0.18792 (14)	0.0256 (5)
C1	0.1711 (3)	0.10083 (16)	0.26430 (15)	0.0311 (6)
H1B	0.2383	0.1426	0.2826	0.037*
C6	-0.1969 (3)	-0.13796 (16)	0.24900 (15)	0.0310 (6)
H6A	-0.2631	-0.1819	0.2342	0.037*
C7	-0.1711 (3)	-0.12159 (15)	0.33312 (15)	0.0314 (6)
H7A	-0.2193	-0.1549	0.3731	0.038*
O6W	0.2752 (2)	0.14637 (13)	0.45841 (13)	0.0415 (5)
H6WA	0.2501	0.1948	0.4401	0.062*
H5WB	-0.011 (3)	0.2155 (12)	0.4428 (14)	0.029 (7)*
H6WB	0.347 (3)	0.134 (2)	0.4814 (19)	0.060 (11)*
S1	-0.16782 (7)	-0.11580 (4)	0.08365 (4)	0.02460 (16)
O2	-0.21464 (19)	-0.03403 (11)	0.04239 (9)	0.0293 (4)
O4	-0.03579 (19)	-0.15043 (12)	0.04607 (10)	0.0352 (4)
O3	-0.28431 (19)	-0.18166 (11)	0.08585 (10)	0.0313 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0259 (2)	0.0217 (2)	0.02325 (19)	-0.00303 (12)	-0.00136 (12)	0.00040 (11)
O5W	0.0340 (11)	0.0262 (10)	0.0375 (10)	0.0004 (8)	0.0078 (8)	0.0026 (8)

01	0.0293 (10)	0.0275 (9)	0.0225 (8)	-0.0058 (8)	0.0005 (7)	-0.0008 (7)
N1	0.0235 (11)	0.0235 (11)	0.0279 (11)	-0.0013 (8)	-0.0027 (8)	-0.0001 (8)
C8	0.0250 (13)	0.0217 (12)	0.0230 (12)	0.0009 (9)	0.0008 (9)	0.0002 (9)
C9	0.0191 (11)	0.0232 (12)	0.0270 (12)	0.0017 (9)	-0.0022 (9)	-0.0010 (9)
C4	0.0246 (13)	0.0263 (12)	0.0245 (12)	0.0038 (10)	-0.0011 (10)	-0.0017 (9)
C2	0.0348 (15)	0.0385 (15)	0.0282 (13)	-0.0071 (12)	0.0025 (11)	0.0077 (12)
C3	0.0305 (14)	0.0348 (14)	0.0246 (12)	-0.0007 (11)	-0.0002 (10)	0.0009 (10)
C5	0.0259 (13)	0.0259 (12)	0.0250 (12)	0.0028 (10)	-0.0012 (10)	-0.0020 (10)
C1	0.0317 (14)	0.0299 (14)	0.0317 (13)	-0.0106 (11)	-0.0051 (11)	0.0019 (10)
C6	0.0338 (14)	0.0265 (13)	0.0327 (13)	-0.0065 (11)	-0.0032 (11)	-0.0038 (11)
C7	0.0358 (15)	0.0308 (14)	0.0276 (13)	-0.0072 (11)	0.0013 (11)	0.0017 (10)
O6W	0.0318 (11)	0.0256 (10)	0.0670 (13)	-0.0053 (8)	-0.0201 (10)	0.0100 (9)
S1	0.0260 (3)	0.0232 (3)	0.0246 (3)	0.0021 (2)	-0.0014 (2)	-0.0041 (2)
O2	0.0330 (10)	0.0263 (9)	0.0284 (9)	0.0054 (8)	-0.0022 (7)	0.0002 (7)
04	0.0320 (10)	0.0358 (11)	0.0377 (10)	0.0081 (8)	0.0043 (8)	-0.0047 (8)
03	0.0353 (10)	0.0276 (9)	0.0310 (9)	-0.0038 (8)	-0.0036 (7)	-0.0052 (7)

Geometric parameters (Å, °)

Nil—Ol ⁱ	2.0153 (17)	C4—C5	1.421 (3)
Ni1—O6W	2.0285 (19)	C2—C3	1.360 (4)
Nil—O1	2.0443 (16)	C2—C1	1.393 (3)
Ni1—N1	2.052 (2)	C2—H2A	0.9300
Ni1—O5W	2.0936 (19)	С3—Н3В	0.9300
Ni1—O2 ⁱⁱ	2.1437 (17)	C5—C6	1.371 (3)
O5W—H5WA	0.8200	C5—S1	1.765 (2)
O5W—H5WB	0.804 (17)	C1—H1B	0.9300
01—C8 ⁱ	1.320 (3)	C6—C7	1.402 (3)
N1-C1	1.322 (3)	C6—H6A	0.9300
N1—C9	1.367 (3)	C7—H7A	0.9300
C8—O1 ⁱ	1.320 (3)	O6W—H6WA	0.8200
C8—C7	1.372 (3)	O6W—H6WB	0.784 (17)
С8—С9	1.445 (3)	S1—O4	1.4553 (18)
C9—C4	1.414 (3)	S1—O3	1.4608 (17)
C4—C3	1.418 (3)	S1—O2	1.4645 (17)
Ol ⁱ —Nil—O6W	176.93 (8)	C9—C4—C5	117.1 (2)
01 ⁱ —Ni1—01	76.69 (7)	C3—C4—C5	126.5 (2)
06W—Ni1—01	103.89 (8)	C3—C2—C1	119.6 (2)
O1 ⁱ —Ni1—N1	80.92 (7)	C3—C2—H2A	120.2
O6W—Ni1—N1	98.67 (8)	C1—C2—H2A	120.2
O1—Ni1—N1	157.28 (7)	C2—C3—C4	120.1 (2)
O1 ⁱ —Ni1—O5W	93.64 (8)	С2—С3—Н3В	119.9
O6W—Ni1—O5W	89.40 (8)	C4—C3—H3B	119.9
O1—Ni1—O5W	88.06 (7)	C6—C5—C4	120.7 (2)
N1—Ni1—O5W	89.54 (7)	C6—C5—S1	118.81 (19)
O1 ⁱ —Ni1—O2	59.09 (4)	C4—C5—S1	120.49 (18)
O6W-Ni1-O2	120.98 (6)	N1—C1—C2	122.7 (2)

O1—Ni1—O2	133.91 (5)	N1—C1—H1B	118.6
N1—Ni1—O2 ⁱⁱ	95.19 (7)	C2—C1—H1B	118.6
O5W—Ni1—O2 ⁱⁱ	170.00 (7)	C5—C6—C7	121.9 (2)
Ni1—O5W—H5WA	109.5	С5—С6—Н6А	119.0
Ni1—O5W—H5WB	122 (2)	С7—С6—Н6А	119.0
H5WA—O5W—H5WB	102.2	C8—C7—C6	120.3 (2)
C8 ⁱ —O1—Ni1 ⁱ	114.35 (14)	С8—С7—Н7А	119.9
C8 ⁱ —O1—Ni1	142.34 (15)	С6—С7—Н7А	119.9
Ni1 ⁱ —O1—Ni1	103.31 (7)	Ni1—O6W—H6WA	109.5
C1—N1—C9	118.7 (2)	Ni1—O6W—H6WB	122 (2)
C1—N1—Ni1	129.50 (16)	H6WA—O6W—H6WB	128.7
C9—N1—Ni1	111.81 (15)	O4—S1—O3	112.36 (11)
O1 ⁱ —C8—C7	124.9 (2)	O4—S1—O2	110.91 (10)
O1 ⁱ —C8—C9	116.8 (2)	O3—S1—O2	111.42 (10)
С7—С8—С9	118.3 (2)	O4—S1—C5	107.33 (11)
N1—C9—C4	122.4 (2)	O3—S1—C5	105.87 (10)
N1—C9—C8	115.98 (19)	O2—S1—C5	108.68 (10)
C4—C9—C8	121.6 (2)	S1—O2—Ni1 ⁱⁱⁱ	136.95 (11)
C9—C4—C3	116.4 (2)		

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1/2, y, -z+1/2; (iii) x-1/2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
0.82	2.00	2.812 (2)	171
0.80 (2)	2.07 (2)	2.866 (3)	170 (2)
0.82	1.93	2.687 (2)	153
0.78 (2)	2.04 (2)	2.787 (3)	159 (3)
	<i>D</i> —H 0.82 0.80 (2) 0.82 0.78 (2)	D—H H···A 0.82 2.00 0.80 (2) 2.07 (2) 0.82 1.93 0.78 (2) 2.04 (2)	D—H H···A D···A 0.82 2.00 2.812 (2) 0.80 (2) 2.07 (2) 2.866 (3) 0.82 1.93 2.687 (2) 0.78 (2) 2.04 (2) 2.787 (3)

Symmetry codes: (iv) -*x*-1/2, -*y*, *z*+1/2; (v) -*x*, *y*+1/2, -*z*+1/2; (vi) -*x*+1/2, -*y*, *z*+1/2.