organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[2-(Methylsulfonyl)ethyl]isoindoline-1,3-dione

Qiong Tang, Qi Feng, Jian Xu and Cheng Yao*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: yaocheng@njut.edu.cn

Received 28 June 2009; accepted 3 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.144; data-to-parameter ratio = 13.2.

In the molecule of the title compound, $C_{11}H_{11}NO_4S$, the isoindoline ring system is almost planar with a maximum deviation of 0.008 (3)Å. In the crystal structure, intermolecular C-H···O interactions link the molecules into a three-dimensional network. $\pi - \pi$ contacts between the isoindoline rings [centroid-centroid distances = 3.592 (1) and 3.727 (1) Å] may further stabilize the structure.

Related literature

For a related structure, see: Kilburn et al. (2007). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data C₁₁H₁₁NO₄S $M_r = 253.27$

Monoclinic, $P2_1/c$ a = 7.6030 (15) Å

b = 17.766 (4) Å	
c = 8.9940 (18) Å	
$\beta = 112.31 (3)^{\circ}$	
V = 1123.9 (5) Å ³	
Z = 4	

Data collection

Enraf-Nonius CAD-4	2027 independent reflections
diffractometer	1567 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.030$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.944, \ T_{\max} = 0.972$	frequency: 120 min
2182 measured reflections	intensity decay: 1%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	154 parameters
$wR(F^2) = 0.144$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
2027 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-3}$

 $0.20 \times 0.10 \times 0.10$ mm

T = 294 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1A\cdots O3^{i}$	0.93	2.34	3.189 (5)	152
$C11-H11A\cdots O1^{ii}$	0.96	2.51	3.463 (4)	175

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2730).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kilburn, J. P., Andersen, H. S., Kampen, G. C. T. & Ebdrup, S. (2007). PCT Int. Appl. WO 2007051811.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o1932 [doi:10.1107/S160053680902580X]

2-[2-(Methylsulfonyl)ethyl]isoindoline-1,3-dione

Qiong Tang, Qi Feng, Jian Xu and Cheng Yao

S1. Comment

The title compound is an important pharmaceutical intermediate, which is used in treatment of metabolic syndrome. As part of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N/C4-C7) and B (C1-C4/C7/C8) are, of course, planar and the dihedral angle between them is A/B = 0.61 (3)°. The isoindoline ring system is planar with a maximum deviation of -0.008 (3) Å for atom N.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The π - π contacts between the isoindoline rings, Cg1—Cg2ⁱ and Cg2—Cg2ⁱⁱ [symmetry codes: (i) 2 - x, -y, 2 - z, (ii) 1 - x, -y, 2 - z, where Cg1 and Cg2 are centroids of the rings A (N/C4-C7) and B (C1-C4/C7/C8), respectively] may further stabilize the structure, with centroid-centroid distances of 3.592 (1) and 3.727 (1) Å, respectively.

S2. Experimental

The title compound was prepared according to the literature method (Kilburn *et al.*, 2007). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.1 g) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

S3. Refinement

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme.

2-[2-(Methylsulfonyl)ethyl]isoindoline-1,3-dione

Crystal data

C₁₁H₁₁NO₄S $M_r = 253.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.6030 (15) Å b = 17.766 (4) Å c = 8.9940 (18) Å $\beta = 112.31$ (3)° V = 1123.9 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.944, T_{\max} = 0.972$ 2182 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.144$ S = 1.012027 reflections 154 parameters F(000) = 528 $D_x = 1.497 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 294 KBlock, colorless $0.20 \times 0.10 \times 0.10 \text{ mm}$

2027 independent reflections 1567 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.3^\circ, \ \theta_{min} = 2.3^\circ$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 21$ $l = -10 \rightarrow 9$ 3 standard reflections every 120 min intensity decay: 1%

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{ m max}$ < 0.001
$w = 1/[\sigma^2(F_o^2) + (0.09P)^2]$	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S	0.44021 (11)	0.29490 (4)	0.03299 (8)	0.0425 (3)
01	0.8805 (3)	0.29528 (10)	0.4407 (3)	0.0524 (6)
O2	0.7221 (3)	0.50798 (11)	0.1325 (3)	0.0555 (6)
O3	0.3992 (4)	0.33791 (14)	0.1503 (3)	0.0700 (7)
O4	0.5068 (4)	0.21958 (12)	0.0776 (3)	0.0662 (7)
Ν	0.8004 (3)	0.39124 (12)	0.2541 (3)	0.0394 (6)
C1	0.7239 (5)	0.55296 (19)	0.6247 (4)	0.0582 (9)
H1A	0.6981	0.5972	0.6679	0.070*
C2	0.7703 (5)	0.4883 (2)	0.7187 (4)	0.0584 (9)
H2A	0.7765	0.4901	0.8239	0.070*
C3	0.8074 (4)	0.42096 (18)	0.6577 (4)	0.0496 (8)
H3A	0.8368	0.3774	0.7197	0.060*
C4	0.7993 (4)	0.42102 (15)	0.5027 (3)	0.0397 (7)
C5	0.8318 (4)	0.35948 (15)	0.4035 (3)	0.0390 (6)
C6	0.7531 (4)	0.46788 (15)	0.2484 (3)	0.0398 (7)
C7	0.7534 (4)	0.48617 (15)	0.4094 (3)	0.0399 (7)
C8	0.7155 (4)	0.55292 (16)	0.4690 (4)	0.0495 (8)
H8A	0.6854	0.5963	0.4066	0.059*
C9	0.8028 (4)	0.34924 (16)	0.1157 (3)	0.0447 (7)
H9A	0.8480	0.2986	0.1496	0.054*
H9B	0.8919	0.3730	0.0766	0.054*
C10	0.6092 (4)	0.34476 (15)	-0.0211 (3)	0.0399 (7)
H10A	0.6228	0.3201	-0.1123	0.048*
H10B	0.5626	0.3954	-0.0538	0.048*
C11	0.2381 (5)	0.29295 (18)	-0.1438 (4)	0.0541 (8)
H11A	0.1381	0.2665	-0.1253	0.081*
H11B	0.2668	0.2677	-0.2263	0.081*
H11C	0.1978	0.3435	-0.1773	0.081*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0537 (5)	0.0383 (4)	0.0401 (4)	-0.0056 (3)	0.0229 (3)	-0.0007 (3)
01	0.0670 (15)	0.0347 (12)	0.0607 (13)	0.0102 (10)	0.0302 (11)	0.0087 (9)
O2	0.0708 (16)	0.0379 (11)	0.0535 (13)	0.0018 (10)	0.0189 (11)	0.0063 (10)
O3	0.0893 (18)	0.0790 (17)	0.0613 (14)	-0.0205 (14)	0.0507 (14)	-0.0248 (12)
O4	0.0747 (17)	0.0441 (13)	0.0763 (16)	-0.0027 (11)	0.0248 (13)	0.0196 (11)
Ν	0.0463 (14)	0.0293 (12)	0.0421 (13)	0.0008 (10)	0.0161 (11)	-0.0030 (9)
C1	0.053 (2)	0.0501 (19)	0.077 (2)	-0.0085 (15)	0.0302 (18)	-0.0260 (18)
C2	0.054 (2)	0.072 (2)	0.057 (2)	-0.0098 (17)	0.0289 (16)	-0.0198 (17)
C3	0.0470 (18)	0.0546 (19)	0.0502 (18)	-0.0024 (14)	0.0219 (14)	0.0019 (14)
C4	0.0328 (15)	0.0393 (15)	0.0475 (16)	-0.0028 (11)	0.0158 (13)	-0.0039 (12)
C5	0.0365 (15)	0.0337 (15)	0.0458 (16)	-0.0012 (12)	0.0147 (12)	0.0020 (12)
C6	0.0378 (15)	0.0293 (14)	0.0483 (16)	-0.0010 (12)	0.0117 (13)	-0.0003 (12)
C7	0.0336 (14)	0.0344 (15)	0.0515 (17)	-0.0033 (12)	0.0159 (13)	-0.0065 (12)
C8	0.0469 (18)	0.0367 (16)	0.064 (2)	-0.0022 (13)	0.0199 (15)	-0.0097 (14)
C9	0.0505 (18)	0.0384 (16)	0.0490 (17)	0.0016 (13)	0.0231 (14)	-0.0025 (12)
C10	0.0516 (17)	0.0323 (14)	0.0404 (15)	-0.0016 (12)	0.0227 (13)	0.0002 (11)
C11	0.052 (2)	0.057 (2)	0.0540 (18)	-0.0038 (15)	0.0208 (16)	0.0012 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u> </u>	1.430 (2)	С3—НЗА	0.9300
S—O4	1.433 (2)	C4—C7	1.394 (4)
S—C11	1.743 (3)	C4—C5	1.490 (4)
S-C10	1.774 (3)	C6—C7	1.483 (4)
O1—C5	1.207 (3)	C7—C8	1.376 (4)
N—C5	1.392 (3)	C8—H8A	0.9300
N—C6	1.404 (3)	C9—C10	1.520 (4)
N—C9	1.457 (3)	С9—Н9А	0.9700
C1—C8	1.377 (5)	С9—Н9В	0.9700
C1—C2	1.391 (5)	C10—H10A	0.9700
C1—H1A	0.9300	C10—H10B	0.9700
O2—C6	1.210 (3)	C11—H11A	0.9600
C2—C3	1.389 (4)	C11—H11B	0.9600
C2—H2A	0.9300	C11—H11C	0.9600
C3—C4	1.371 (4)		
O3—S—O4	116.42 (16)	N—C6—C7	105.8 (2)
O3—S—C10	108.61 (14)	C8—C7—C4	121.5 (3)
O3—S—C11	108.68 (16)	C8—C7—C6	130.2 (3)
O4—S—C10	109.11 (14)	C4—C7—C6	108.2 (2)
O4—S—C11	109.42 (15)	C7—C8—C1	117.4 (3)
C11—S—C10	103.86 (15)	C7—C8—H8A	121.3
C5—N—C6	112.1 (2)	C1—C8—H8A	121.3
C5—N—C9	124.3 (2)	N—C9—C10	113.3 (2)
C6—N—C9	123.5 (2)	N—C9—H9A	108.9

C8—C1—C2	121.4 (3)	С10—С9—Н9А	108.9
C8—C1—H1A	119.3	N—C9—H9B	108.9
C2—C1—H1A	119.3	С10—С9—Н9В	108.9
C3—C2—C1	120.9 (3)	H9A—C9—H9B	107.7
C3—C2—H2A	119.5	C9—C10—S	112.58 (19)
C1—C2—H2A	119.5	C9—C10—H10A	109.1
C4—C3—C2	117.6 (3)	S-C10-H10A	109.1
С4—С3—НЗА	121.2	C9—C10—H10B	109.1
С2—С3—НЗА	121.2	S-C10-H10B	109.1
C3—C4—C7	121.1 (3)	H10A-C10-H10B	107.8
C3—C4—C5	130.9 (3)	S-C11-H11A	109.5
C7—C4—C5	108.0 (2)	S-C11-H11B	109.5
O1—C5—N	124.9 (3)	H11A—C11—H11B	109.5
O1—C5—C4	129.1 (3)	S-C11-H11C	109.5
NC5C4	105.9 (2)	H11A—C11—H11C	109.5
O2—C6—N	124.4 (3)	H11B—C11—H11C	109.5
O2—C6—C7	129.8 (3)		
C8—C1—C2—C3	-0.8 (5)	C5—C4—C7—C8	-179.9 (3)
C1—C2—C3—C4	0.9 (5)	C3—C4—C7—C6	-179.1 (3)
C2—C3—C4—C7	-0.6 (4)	C5—C4—C7—C6	0.7 (3)
C2—C3—C4—C5	179.7 (3)	O2—C6—C7—C8	1.3 (5)
C6—N—C5—O1	-177.4 (3)	N—C6—C7—C8	-179.5 (3)
C9—N—C5—O1	6.6 (4)	O2—C6—C7—C4	-179.4 (3)
C6—N—C5—C4	0.8 (3)	N	-0.2 (3)
C9—N—C5—C4	-175.2 (2)	C4—C7—C8—C1	-0.2 (4)
C3-C4-C5-O1	-3.1 (5)	C6—C7—C8—C1	179.0 (3)
C7—C4—C5—O1	177.2 (3)	C2-C1-C8-C7	0.5 (5)
C3—C4—C5—N	178.8 (3)	C5—N—C9—C10	112.9 (3)
C7—C4—C5—N	-0.9 (3)	C6—N—C9—C10	-62.6 (3)
C5—N—C6—O2	178.9 (3)	N-C9-C10-S	-63.7 (3)
C9—N—C6—O2	-5.1 (4)	O3—S—C10—C9	67.7 (2)
C5—N—C6—C7	-0.4 (3)	O4—S—C10—C9	-60.2 (2)
C9—N—C6—C7	175.6 (2)	C11—S—C10—C9	-176.8 (2)
C3—C4—C7—C8	0.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···O3 ⁱ	0.93	2.34	3.189 (5)	152
C11—H11A····O1 ⁱⁱ	0.96	2.51	3.463 (4)	175

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, -y+1/2, z-1/2.