

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Carboxymethyl-1,3-benzimidazolium-1-acetate monohydrate

Jinling Miao,^a* Yong Nie,^a Hongwei Chen,^a Jingtao Li^a and Dagi Wang^b

^aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering. Liaocheng University, Liaocheng 252059, People's Republic of China. Correspondence e-mail: chm_miaojl@ujn.edu.cn

Received 27 June 2009; accepted 12 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.127; data-to-parameter ratio = 12.2.

The title compound, $C_{11}H_{10}N_2O_4 H_2O_1$, has a zwitterionic structure, in which the benzimidazole ring system is planar, with a maximum deviation of 0.007 (3) Å. The carboxyl/ carboxylate groups adopt a trans configuration. In the crystal structure, intermolecular O-H···O hydrogen bonds involving the hydroxy/oxide O atoms link the molecules into a onedimensional chain. These chains are further linked by O-H···O hydrogen bonds involving the water molecules into a two-dimensional network. π - π contacts between the benzimidazole rings [centroid–centroid distance = 3.5716(4) Å] lead to the formation of a three-dimensional supramolecular structure.

Related literature

For a related structure, see: Chen & Huang (2006).

V = 2272.2 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

5875 measured reflections

2213 independent reflections

1495 reflections with $I > 2\sigma(I)$

T = 298 (2) K $0.50 \times 0.40 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.048$

Z = 8

Experimental

Crystal data

$C_{11}H_{10}N_2O_4 \cdot H_2O$	
$M_r = 252.23$	
Monoclinic, $C2/c$	
a = 16.0731 (15) Å	
b = 8.1619 (11) Å	
c = 18.8678 (17) Å	
$\beta = 113.3680 \ (10)^{\circ}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.943, T_{\max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.120$	independent and constrained
S = 1.00	refinement
2213 reflections	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
173 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2 ⁱ	0.925 (17)	1.592 (18)	2.487 (2)	162 (2)
O5−H5···O1	0.88 (3)	1.95 (3)	2.825 (2)	172 (3)
$O6-H6\cdots O1$	0.84 (3)	2.11 (3)	2.943 (2)	173 (3)

Symmetry code: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the University of Jinan (grant No. B0604) for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2729).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, D.-B. & Huang, L. (2006). Acta Cryst. E62, 04686-04688. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o2005

supporting information

Acta Cryst. (2009). E65, o2005 [doi:10.1107/S1600536809027391]

3-Carboxymethyl-1,3-benzimidazolium-1-acetate monohydrate

Jinling Miao, Yong Nie, Hongwei Chen, Jingtao Li and Daqi Wang

S1. Comment

Benzimidazole carboxylic acids have received much attention because of their application in the design of therapeutic agents and in construction of supramolecular metal complexes. Previously, the synthesis and crystal structure of 1-(carb-oxymethyl)-1,3-benzimidazol-3-ium-3-acetate, (II), have been described (Chen & Huang, 2006). We report herein the crystal struture of the title compound, (I).

In the molecule of the title compound (Fig. 1), the benzimidazole ring system is planar with a maximum deviation of 0.007 (3) Å for atom N1, and the two carboxyl groups adopt a *trans* configuration with respect to the benzimidazole ring plane. The C—N bonds on the imidazolium rings are found to be within 1.323 (2)–1.391 (2) Å, which are between the C —N single and C=N double bonds, suggesting charge delocalization on the imidazolium rings. The torsion angles of C5 —N1—C2—C1 [95.5 (2)°] and C6—N2—C4—C3 [-89.5 (2)°] are much smaller than the corresponding values in (II). The lattice water molecules have site symmetries 2.

In the crystal structure, intermolecular O-H···O hydrogen bonds involving the hydroxy O atoms (Table 1) link the molecules into a one-dimensional chain (Fig. 2), in which they are further linked by O-H···O hydrogen bonds of lattice water molecules (Table 1) into a two-dimensional network (Fig. 3). The π ··· π contacts between the benzene rings of the benzimidazole groups (Fig. 4), Cg2···Cg2ⁱ [symmetry code: (i) -x, 2 - y, -z, where Cg2 is centroid of the ring (C6-C11)] may further stabilize the structure, with centroid-centroid distance of 3.5716 (4) Å and lead to the formation of a three-dimensional supramolecular structure (Fig. 5).

S2. Experimental

For the preparation of the title compound, benzimidazole (0.714 g,6 mmol) was added to an aqueous solution (35 ml) of iodoacetic acid (1.859 g, 10 mmol) and NaOH (0.405 g, 10 mmol). The resulting mixture was heated at reflux during which benzimidazole was gradually dissolved and the colorless solution changed to yellow. The pH was adjusted using saturated NaOH solution at 20 min intervals, keeping in the range of 8–9. When no pH change was detected, the solution was further refluxed for 30 min, cooled, acidified with hydrochloric acid until pH = 2–3. The brown precipitate formed was filtered and recrystallized using water during which the deep yellow solution changed to colorless. The colorless plate crystals were formed after 5 d.

S3. Refinement

Atoms H3, H5 and H6 were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level.

Figure 2

The one-dimensional chain constructed by hydrogen bondings.

The two-dimensional network viewed along [001] direction.

Figure 4

The π - π stacking between the benzene rings.

Figure 5

The three-dimensional network viewed along the *b* axis.

3-Carboxymethyl-1,3-benzimidazolium-1-acetate monohydrate

Crystal data

 $C_{11}H_{10}N_2O_4 \cdot H_2O$ $M_r = 252.23$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.0731 (15) Å b = 8.1619 (11) Å c = 18.8678 (17) Å $\beta = 113.368 (1)^{\circ}$ $V = 2272.2 (4) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.943, T_{\max} = 0.977$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.120$ S = 1.002213 reflections F(000) = 1056 $D_x = 1.475 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1932 reflections $\theta = 2.4-26.4^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 298 KPlate, colorless $0.50 \times 0.40 \times 0.20 \text{ mm}$

5875 measured reflections 2213 independent reflections 1495 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -14 \rightarrow 19$ $k = -10 \rightarrow 10$ $l = -23 \rightarrow 23$

173 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.9016P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotro	opic or equivalent	isotropic displacement	t parameters (Ų)
--	--------------------	------------------------	------------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.64155 (9)	0.6138 (2)	0.28621 (9)	0.0608 (5)
O2	0.75932 (9)	0.5077 (2)	0.38158 (10)	0.0658 (6)
03	1.16479 (10)	0.80460 (19)	0.41440 (9)	0.0501 (4)
H3	1.1979 (16)	0.867 (3)	0.3937 (14)	0.075*
O4	1.20178 (11)	0.6063 (2)	0.35149 (10)	0.0646 (5)
05	0.5000	0.8452 (3)	0.2500	0.0582 (6)
Н5	0.5476 (18)	0.782 (4)	0.2614 (17)	0.087*
06	0.5000	0.3611 (3)	0.2500	0.0688 (8)
H6	0.544 (2)	0.427 (4)	0.2634 (19)	0.103*
N1	0.87906 (10)	0.7126 (2)	0.36403 (9)	0.0349 (4)
N2	1.01818 (10)	0.62393 (18)	0.40836 (9)	0.0337 (4)
C1	0.72276 (12)	0.6073 (3)	0.32812 (11)	0.0377 (5)
C2	0.78365 (12)	0.7326 (3)	0.31305 (11)	0.0416 (5)
H2A	0.7772	0.7230	0.2599	0.050*
H2B	0.7641	0.8417	0.3199	0.050*
C3	1.16099 (12)	0.6581 (3)	0.38815 (11)	0.0372 (5)
C4	1.10076 (13)	0.5451 (3)	0.41022 (13)	0.0411 (5)
H4A	1.0840	0.4524	0.3752	0.049*
H4B	1.1348	0.5034	0.4618	0.049*
C5	0.94014 (13)	0.6308 (2)	0.34744 (11)	0.0376 (5)
H5A	0.9297	0.5845	0.2996	0.045*
C6	1.00799 (12)	0.7058 (2)	0.46895 (11)	0.0322 (4)
C7	0.91917 (12)	0.7614 (2)	0.44087 (10)	0.0320 (4)
C8	0.88646 (14)	0.8494 (3)	0.48694 (12)	0.0429 (5)
H8	0.8271	0.8877	0.4683	0.052*
C9	0.94620 (17)	0.8773 (3)	0.56172 (13)	0.0494 (6)
H9	0.9265	0.9350	0.5947	0.059*
C10	1.03527 (16)	0.8218 (3)	0.58943 (12)	0.0480 (6)
H10	1.0736	0.8443	0.6403	0.058*
C11	1.06811 (14)	0.7353 (3)	0.54415 (11)	0.0409 (5)
H11	1.1277	0.6981	0.5628	0.049*

	1		T 722	T 10	T 12	T 72
	U^{Π}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0289 (8)	0.0773 (13)	0.0644 (10)	-0.0032 (8)	0.0059 (7)	0.0195 (9)
O2	0.0296 (8)	0.0579 (11)	0.0966 (13)	-0.0030 (7)	0.0107 (8)	0.0402 (10)
O3	0.0451 (9)	0.0378 (10)	0.0757 (11)	-0.0041 (7)	0.0328 (8)	0.0023 (8)
O4	0.0649 (11)	0.0641 (12)	0.0884 (12)	0.0002 (9)	0.0552 (10)	-0.0062 (9)
O5	0.0550 (15)	0.0519 (16)	0.0612 (14)	0.000	0.0161 (13)	0.000
O6	0.0574 (16)	0.0520 (17)	0.0872 (19)	0.000	0.0181 (15)	0.000
N1	0.0279 (8)	0.0388 (10)	0.0393 (9)	-0.0036 (7)	0.0147 (7)	0.0031 (7)
N2	0.0306 (9)	0.0294 (9)	0.0451 (9)	-0.0026 (7)	0.0193 (8)	-0.0003 (7)
C1	0.0250 (10)	0.0426 (13)	0.0433 (11)	0.0014 (9)	0.0111 (9)	0.0025 (10)
C2	0.0323 (11)	0.0449 (13)	0.0440 (11)	0.0004 (10)	0.0115 (9)	0.0092 (10)
C3	0.0276 (10)	0.0401 (13)	0.0428 (11)	0.0054 (9)	0.0129 (9)	0.0027 (10)
C4	0.0383 (11)	0.0327 (12)	0.0576 (12)	0.0032 (9)	0.0246 (10)	0.0002 (10)
C5	0.0378 (11)	0.0383 (12)	0.0410 (11)	-0.0087 (9)	0.0203 (9)	-0.0027 (9)
C6	0.0343 (10)	0.0242 (10)	0.0419 (11)	-0.0019 (8)	0.0191 (9)	0.0028 (9)
C7	0.0318 (10)	0.0281 (11)	0.0391 (10)	-0.0016 (8)	0.0172 (8)	0.0060 (8)
C8	0.0441 (12)	0.0381 (13)	0.0551 (13)	0.0084 (10)	0.0287 (11)	0.0078 (10)
C9	0.0702 (16)	0.0377 (13)	0.0503 (13)	0.0032 (11)	0.0345 (12)	-0.0009 (10)
C10	0.0603 (15)	0.0413 (13)	0.0389 (11)	-0.0061 (11)	0.0158 (11)	-0.0014 (10)
C11	0.0379 (11)	0.0351 (12)	0.0457 (12)	-0.0012 (9)	0.0124 (10)	0.0051 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.230 (2)	C2—H2B	0.9700
O2—C1	1.246 (2)	C3—C4	1.511 (3)
O3—C3	1.286 (3)	C4—H4A	0.9700
O3—H3	0.925 (17)	C4—H4B	0.9700
O4—C3	1.203 (2)	С5—Н5А	0.9300
O5—H5	0.88 (3)	C6—C11	1.385 (3)
O6—H6	0.84 (3)	C6—C7	1.387 (3)
N1—C5	1.323 (2)	С7—С8	1.382 (3)
N1—C7	1.391 (2)	C8—C9	1.375 (3)
N1—C2	1.461 (2)	C8—H8	0.9300
N2—C5	1.324 (2)	C9—C10	1.391 (3)
N2—C6	1.389 (2)	С9—Н9	0.9300
N2—C4	1.463 (2)	C10-C11	1.366 (3)
C1—C2	1.519 (3)	C10—H10	0.9300
C2—H2A	0.9700	C11—H11	0.9300
С3—О3—Н3	107.1 (16)	C3—C4—H4B	108.9
C5—N1—C7	108.08 (16)	H4A—C4—H4B	107.7
C5—N1—C2	125.76 (17)	N1—C5—N2	110.62 (17)
C5—N2—C6	108.28 (15)	N1—C5—H5A	124.7
C5—N2—C4	125.26 (16)	N2—C5—H5A	124.7
C6—N2—C4	126.45 (16)	C11—C6—C7	121.93 (18)
C7—N1—C2	125.85 (16)	C11—C6—N2	131.65 (18)

O1—C1—O2	126.00 (19)	C7—C6—N2	106.41 (16)
O1—C1—C2	116.68 (18)	C8—C7—C6	121.35 (18)
O2—C1—C2	117.31 (16)	C8—C7—N1	132.04 (18)
N1—C2—C1	112.79 (16)	C6—C7—N1	106.60 (16)
N1—C2—H2A	109.0	C9—C8—C7	116.5 (2)
C1—C2—H2A	109.0	С9—С8—Н8	121.7
N1—C2—H2B	109.0	С7—С8—Н8	121.7
C1—C2—H2B	109.0	C8—C9—C10	121.8 (2)
H2A—C2—H2B	107.8	С8—С9—Н9	119.1
O4—C3—O3	126.48 (19)	С10—С9—Н9	119.1
O4—C3—C4	119.9 (2)	C11—C10—C9	121.9 (2)
O3—C3—C4	113.53 (17)	C11-C10-H10	119.0
N2—C4—C3	113.53 (16)	C9—C10—H10	119.0
N2—C4—H4A	108.9	C10-C11-C6	116.4 (2)
C3—C4—H4A	108.9	C10-C11-H11	121.8
N2—C4—H4B	108.9	C6—C11—H11	121.8
C5—N1—C2—C1	95.5 (2)	C11—C6—C7—C8	0.1 (3)
C7—N1—C2—C1	-77.4 (2)	N2—C6—C7—C8	-179.74 (17)
O1-C1-C2-N1	-178.35 (18)	C11—C6—C7—N1	179.22 (17)
O2—C1—C2—N1	1.7 (3)	N2—C6—C7—N1	-0.61 (19)
C5—N2—C4—C3	89.6 (2)	C5—N1—C7—C8	179.7 (2)
C6—N2—C4—C3	-89.5 (2)	C2—N1—C7—C8	-6.3 (3)
O4—C3—C4—N2	-143.40 (19)	C5—N1—C7—C6	0.7 (2)
O3—C3—C4—N2	38.8 (2)	C2—N1—C7—C6	174.70 (16)
C7—N1—C5—N2	-0.5 (2)	C6—C7—C8—C9	-0.5 (3)
C2—N1—C5—N2	-174.54 (16)	N1—C7—C8—C9	-179.39 (19)
C6—N2—C5—N1	0.2 (2)	C7—C8—C9—C10	0.7 (3)
C4—N2—C5—N1	-179.06 (16)	C8—C9—C10—C11	-0.6 (3)
C5—N2—C6—C11	-179.5 (2)	C9—C10—C11—C6	0.1 (3)
C4—N2—C6—C11	-0.3 (3)	C7—C6—C11—C10	0.1 (3)
C5—N2—C6—C7	0.30 (19)	N2-C6-C11-C10	179.90 (19)
C4—N2—C6—C7	179.50 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O3—H3…O2 ⁱ	0.93 (2)	1.59 (2)	2.487 (2)	162 (2)
O5—H5…O1	0.88 (3)	1.95 (3)	2.825 (2)	172 (3)
O6—H6…O1	0.84 (3)	2.11 (3)	2.943 (2)	173 (3)

Symmetry code: (i) *x*+1/2, *y*+1/2, *z*.