Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[bis (μ_{2}-pyrimidine-2-carboxylato$\left.\kappa^{4} O, N: O^{\prime}, N^{\prime}\right)$ calcium]

Bing-Yu Zhang, Jing-Jing Nie and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Received 26 June 2009; accepted 1 July 2009
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.025 ; w R$ factor $=0.068$; data-to-parameter ratio $=11.0$.

In the crystal structure of the title polymeric complex, $\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Ca}^{\text {II }}$ cation has site symmetry $\overline{4} m 2$ and is N, O-chelated by four pyrimidine-2-carboxylate anions in a square-antiprismatic geometry. The planar pyrimidine-2carboxylate anion is located on a crystallographic special position, three C atoms have site symmetry 2 mm , while the carboxyl O atom, the pyrimidine N atom and the other C atom have site symmetry m. Each pyrimidine-2-carboxylate anion bridges two $\mathrm{Ca}^{\mathrm{II}}$ cations, forming polymeric sheets extending parallel to (001). $\pi-\pi$ stacking exists between parallel pyrimidine rings [centroid-centroid distance $=3.6436$ (6) \AA] of adjacent polymeric sheets. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also observed between these sheets.

Related literature

For general background, see: Deisenhofer \& Michel (1989); Pan \& Xu (2004); Li et al. (2005). For polymeric structures of metal complexes with the pyrimidine-2-carboxylate ligand, see: Rodríguez-Diéguez et al. (2007, 2008); Zhang et al. (2008a,b); Sava et al. (2008). For mononuclear metal complexes of pyrimidine-2-carboxylate, see: Antolić et al. (2000); Zhang et al. (2008); Xu et al. (2008). For $\mathrm{Ca}-\mathrm{N}$ and $\mathrm{Ca}-\mathrm{O}$ bond distances in N, O-chelated complexes, see: Starosta \& Leciejewicz (2004).

Experimental

Crystal data
$\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=286.27$
Tetragonal, $I 4_{1} /$ amd
$a=6.5312$ (12) £
$c=25.734(3) \AA$
$V=1097.7(3) \AA^{3}$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.22 \times 0.20 \times 0.14 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.85, T_{\text {max }}=0.92$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad 34$ parameters
$w R\left(F^{2}\right)=0.068$
$S=1.13$
375 reflections

H -atom parameters constrained
3191 measured reflections 375 independent reflections 364 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Ca}-\mathrm{O} 1$	2.3644 (11)	$\mathrm{Ca}-\mathrm{N} 1$	2.6923 (13)

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.57	$3.3689(19)$	144
Symmetry code: (i) $y+\frac{1}{4},-x+\frac{5}{4}, z-\frac{1}{4}$				

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2721).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Antolić, S., Kojić-Prodić, B. \& Lovrić, J. (2000). Acta Cryst. C56, e51-e52.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

metal-organic compounds

Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. \& Colacio, E. (2008). Acta Cryst. E64, m618.
Rodríquez-Diéguez, A., Cano, J., Kivekas, R., Debdoudi, A. \& Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.

Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. \& Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768-3770.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Starosta, W. \& Leciejewicz, J. (2004). J. Coord. Chem. 57, 1151-1156.
Xu, D.-J., Zhang, B.-Y., Yang, Q. \& Nie, J.-J. (2008). Acta Cryst. E64, m77.
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. \& Gao, E.-Q. (2008a). Chem. Comтии. pp. 847-849.
Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. \& Gao, E.-Q. (2008b). Dalton Trans. pp. 2061-2066.
Zhang, B.-Y., Yang, Q. \& Nie, J.-J. (2008). Acta Cryst. E64, m7.

supporting information

Acta Cryst. (2009). E65, m878-m879 [doi:10.1107/S1600536809025537]

Poly[bis (μ_{2}-pyrimidine-2-carboxylato- $\kappa^{4} O, N: O^{\prime}, N^{\prime}$) calcium]

Bing-Yu Zhang, Jing-Jing Nie and Duan-Jun Xu

S1. Comment

As $\pi-\pi$ stacking between aromatic rings is correlated with the electron transfer process in some biological systems (Deisenhofer \& Michel, 1989), a series metal complexes incorporating the aromatic compound has been prepared in our laboratory to investigate the nature of $\pi-\pi$ stacking (Li et al., 2005; Pan \& Xu, 2004). We report herein the crystal structure of the title compound of pyridinecarboxylate to show $\pi-\pi$ stacking in the crystal structure.

A part of the polymeric structure of the title molecule is shown in Fig. 1. In the crystal structure, the $\mathrm{Ca}^{\text {II }}$ cation has site symmetry $-4 m 2$ and is N, O-chelated by four pyrimidinecarboxylate anions with the square-antiprism geometry. The Ca N and $\mathrm{Ca}-\mathrm{O}$ bond distances (Table 1) agree with those found in the N, O-chelated $\mathrm{Ca}^{\mathrm{II}}$ complex (Starosta \& Leciejewicz, 2004). The planar pyrimidinecarboxylate anion is located on the crystallographic special position, three C atoms have site symmetry 2 mm while the carboxyl O atom, the pirimidine N atom and the other C atom have site symmetry m . Each pyrimidinecarboxylate anion N, O-chelates two Ca ${ }^{\mathrm{II}}$ cations (Antolić et al., 2000; Zhang et al., 2008; Xu et al., 2008), forming the two-dimensional polymeric sheets, similar to those found in reported compounds (Rodríguez-Diéguez et al., 2007, 2008; Zhang et al., 2008a,b; Sava et al. 2008). $\pi-\pi$ stacking [centroid-centroid distance $=3.6436$ (6) \AA] exists between parallel pyrimidine rings of adjacent polymeric sheets (Fig. 2). Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also observed between polymeric sheets (Table 2).

S2. Experimental

2-Cyanopyrimidine ($0.2 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{NaOH}(1.2 \mathrm{~g}, 30 \mathrm{mmol})$ and calcium chloride $(0.1 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in water (10 ml). The solution was refluxed for 3 h . After cooling to room temperature the solution was filtered. The single crystals were obtained from the filtrate after 5 d .

S3. Refinement

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
A part of polymeric structure of the title compound with 30% probability displacement ellipsoids for non-H atoms (arbitrary spheres for H atoms) [symmetry codes: (i) $1-x, 3 / 2-y, z$; (ii) $1-x, 1 / 2-y, z$; (iii) $5 / 4-y, 1 / 4+x, 3 / 4-z$; (iv) $-1 / 4+y, 1 / 4+x, 3 / 4-z$; (v) $x,-1+y, z]$.

Figure 2
A diagram showing $\pi-\pi$ stacking between parallel pyrimidine rings of adjacent polymeric sheets.
Poly[bis (μ_{2}-pyrimidine-2-carboxylato- $\left.\boldsymbol{\kappa}^{4} O, N: O^{\prime}, N^{\prime}\right)$ calcium]
Crystal data
$\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=286.27$
Tetragonal, $14_{1} /$ amd
Hall symbol: -I 4bd 2
$a=6.5312$ (12) \AA
$c=25.734$ (3) \AA
$V=1097.7$ (3) \AA^{3}
$Z=4$
$F(000)=584$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$D_{\mathrm{x}}=1.732 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1086 reflections
$\theta=3.2-25.0^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colorless
$0.22 \times 0.20 \times 0.14 \mathrm{~mm}$
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.85, T_{\text {max }}=0.92$

3191 measured reflections
375 independent reflections
364 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.068$
$S=1.13$
375 reflections
34 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-7 \rightarrow 8 \\
& l=-14 \rightarrow 33
\end{aligned}
$$

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0407 P)^{2}+0.7773 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.071(5)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Ca	0.5000	0.7500	0.3750	$0.0164(3)$
N 1	0.5000	$0.4327(2)$	$0.30820(5)$	$0.0226(4)$
O 1	0.5000	$0.41994(18)$	$0.41274(4)$	$0.0292(4)$
C 1	0.5000	0.2500	$0.39085(8)$	$0.0197(5)$
C 2	0.5000	0.2500	$0.33146(8)$	$0.0188(5)$
C 3	0.5000	$0.4306(3)$	$0.25605(6)$	$0.0299(4)$
H 3	0.5000	0.5542	0.2381	0.036^{*}
C4	0.5000	0.2500	$0.22845(10)$	$0.0319(6)$
H 4	0.5000	0.2500	0.1923	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca	$0.0152(3)$	$0.0152(3)$	$0.0189(4)$	0.000	0.000	0.000
N 1	$0.0254(7)$	$0.0209(7)$	$0.0215(7)$	0.000	0.000	$0.0026(5)$
O1	$0.0499(8)$	$0.0169(6)$	$0.0209(6)$	0.000	0.000	$-0.0015(4)$
C1	$0.0224(10)$	$0.0181(10)$	$0.0186(10)$	0.000	0.000	0.000
C2	$0.0170(9)$	$0.0201(10)$	$0.0193(10)$	0.000	0.000	0.000
C3	$0.0345(9)$	$0.0326(9)$	$0.0226(8)$	0.000	0.000	$0.0072(7)$

supporting information

C 4	$0.0337(13)$	$0.0438(15)$	$0.0184(10)$	0.000	0.000	0.000

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Ca}-\mathrm{O} 1^{\text {i }}$	2.3644 (12)	N1-C3	1.342 (2)
$\mathrm{Ca}-\mathrm{O} 1^{\text {ii }}$	2.3644 (11)	O1-C1	1.2447 (15)
$\mathrm{Ca}-\mathrm{O} 1$	2.3644 (11)	$\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	1.2447 (15)
$\mathrm{Ca}-\mathrm{Ol}^{\text {iii }}$	2.3644 (12)	$\mathrm{C} 1-\mathrm{C} 2$	1.528 (3)
$\mathrm{Ca}-\mathrm{N} 1{ }^{\text {iii }}$	2.6923 (14)	$\mathrm{C} 2-\mathrm{N} 1^{\text {iv }}$	1.3350 (16)
$\mathrm{Ca}-\mathrm{N} 1$	2.6923 (13)	C3-C4	1.377 (2)
$\mathrm{Ca}-\mathrm{N} 1^{\text {ii }}$	2.6923 (13)	C3-H3	0.9300
$\mathrm{Ca}-\mathrm{N} 1^{\text {i }}$	2.6923 (14)	$\mathrm{C} 4-\mathrm{C} 3{ }^{\text {iv }}$	1.377 (2)
N1-C2	1.3350 (16)	C4-H4	0.9300
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 1^{\mathrm{ii}}$	99.72 (2)	$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{i}}$	74.795 (18)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 1$	99.72 (2)	$\mathrm{O} 1-\mathrm{Ca}-\mathrm{N} 1^{\text {i }}$	74.795 (18)
$\mathrm{O1} 1{ }^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 1$	131.49 (5)	$\mathrm{O} 1{ }^{\text {iiii }}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{i}}$	164.58 (4)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	131.49 (5)	$\mathrm{N} 1{ }^{\text {iii- }}-\mathrm{Ca}-\mathrm{N} 1^{\text {i }}$	100.65 (6)
$\mathrm{O} 1^{\text {ii- }}-\mathrm{Ca}-\mathrm{O} 1^{\text {iii }}$	99.72 (2)	$\mathrm{N} 1-\mathrm{Ca}-\mathrm{N} 1^{\text {i }}$	114.05 (3)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O}{ }^{1 i i}$	99.72 (2)	$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{i}}$	114.05 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ca}-\mathrm{N} 1^{\text {iii }}$	164.58 (4)	C2-N1-C3	116.03 (15)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ca}-\mathrm{N} 1^{\text {iii }}$	74.795 (18)	C2-N1-Ca	113.69 (10)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{N} 1^{\text {iii }}$	74.795 (18)	C3-N1-Ca	130.28 (11)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ca}-\mathrm{N} 1{ }^{\text {iii }}$	63.93 (4)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ca}$	128.83 (11)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Ca}-\mathrm{N} 1$	74.796 (18)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	126.2 (2)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Ca}-\mathrm{N} 1$	164.58 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.91 (10)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{N} 1$	63.93 (4)	$\mathrm{O}^{\mathrm{iv}}-\mathrm{C} 1-\mathrm{C} 2$	116.91 (10)
$\mathrm{O} 1{ }^{\text {iii-}} \mathrm{Ca}-\mathrm{N} 1$	74.796 (18)	$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{N} 1$	126.74 (19)
$\mathrm{N} 1 \mathrm{iii}-\mathrm{Ca}-\mathrm{N} 1$	114.05 (3)	$\mathrm{N} 1^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 1$	116.63 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{ii}}$	74.796 (18)	N1-C2-C1	116.63 (10)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{ii}}$	63.93 (4)	N1-C3-C4	121.66 (16)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{N} 1^{\text {ii }}$	164.58 (4)	N1-C3-H3	119.2
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ca}-\mathrm{N} 1^{\text {ii }}$	74.796 (18)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{N} 1{ }^{\text {ii }}$	114.05 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3{ }^{\text {iv }}$	117.9 (2)
$\mathrm{N} 1-\mathrm{Ca}-\mathrm{N} 1^{\text {ii }}$	100.65 (5)	C3-C4-H4	121.1
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ca}-\mathrm{N} 1^{\mathrm{i}}$	63.93 (4)	$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{C} 4-\mathrm{H} 4$	121.1

Symmetry codes: (i) $y-1 / 4, x+1 / 4,-z+3 / 4$; (ii) $-x+1,-y+3 / 2, z$; (iii) $-y+5 / 4, x+1 / 4,-z+3 / 4$; (iv) $-x+1,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{v}$	0.93	2.57	$3.3689(19)$	144

Symmetry code: (v) $y+1 / 4,-x+5 / 4, z-1 / 4$.

