Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-2-(2-Amino-4-oxo-4,5-dihydro-1,3thiazol-5-yl)-2-hydroxyindane-1,3-dione

Narsimha Reddy Penthala,^a Thirupathi Reddy Yerram Reddy,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA Correspondence e-mail: pcrooks@email.uky.edu

Received 25 June 2009; accepted 1 July 2009

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.076; data-to-parameter ratio = 14.4.

In the crystal of the title compound, $C_{12}H_8N_2O_4S$, molecules are linked into chains by a series of intermolecular $O-H \cdots O$, $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds. The ninhydrin and aminothiazolidine units make a dihedral angle of $66.41 (3)^{\circ}$. The crystal structure indicates the presence of equimolar Rand S enantiomers in the crystal lattice, due to the presence of a chiral centre in the title compound.

Related literature

The NADPH-dependent oxidase activity of 2-indol-3-ylmethylenequinuclidin-3-ols has been reported by Sekhar et al. (2003) and novel substituted (Z)-2-(N-benzylindol-3vlmethylene) quinuclidin-3-one and (Z)- (\pm) -2-(N-benzylindol-3-ylmethylene) quinuclidin-3-ol derivatives have been identified as potent thermal sensitizing agents (Sonar et al., 2007). The crystal structure and bond-length data for ninhydrin have been described by Medrud (1969) and Fun et al. (2009).

0.05 mm

23811 measured reflections

 $R_{\rm int} = 0.035$

2498 independent reflections

2268 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{12}H_8N_2O_4S$	V = 1088.58 (3) A ³
$M_r = 276.26$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.1702 (2) Å	$\mu = 0.31 \text{ mm}^{-1}$
b = 5.6713 (1) Å	T = 90 K
c = 14.8296 (3) Å	$0.25 \times 0.12 \times 0.05$
$\beta = 114.0171 \ (9)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.927, T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	173 parameters
$wR(F^2) = 0.076$ S = 1.06	H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$
2498 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D2 - H2 \cdots O3^{i}$ $N2 - H2A \cdots N1^{ii}$ $N2 - H2B \cdots O2^{iii}$	0.84	1.99	2.8225 (13)	170
	0.88	2.07	2.9372 (15)	168
	0.88	2.14	2.9629 (14)	155

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457 (PAC) and by NSF MRI grant CHE 0319176 (SP).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2529).

References

- Fun, H.-K., Quah, C. K., Parveen, M., Ghalib, R. M. & Mehdi, S. H. (2009). Acta Cryst. E65, 01209.
- Medrud, R. C. (1969). Acta Cryst. B25, 213-220.
- Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636-5645.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821-6824.

supporting information

Acta Cryst. (2009). E65, o1877 [doi:10.1107/S1600536809025574]

rac-2-(2-Amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-2-hydroxyindane-1,3-dione

Narsimha Reddy Penthala, Thirupathi Reddy Yerram Reddy, Sean Parkin and Peter A. Crooks

S1. Comment

In continuing studies on the design and synthesis of novel radiosensitizers such as (*Z*)-2-(*N*-benzylindol-3-ylmethylene)quinuclidin-3-one and (*Z*)-(\pm)-2-(*N*-benzylindol-3-ylmethylene) quinuclidin-3-ol derivatives (Sekhar *et al.*, 2003; Sonar *et al.*, 2007), we have undertaken the design, synthesis and structural analysis of a series of ninhydrin analogs with a variety of active methylene compounds. The X-ray analysis of the title compound was carried out to confirm stereochemistry and to obtain detailed information on the structural conformation of the molecule, that might be useful in structure-activity relationship (SAR) studies. The title compound was prepared by the condensation of ninhydrin with 2aminothiazol-4(5*H*)-one in ethanol at reflux temperature. The compound was crystallized from ethanol. The molecular structure and the atom-numbering scheme are shown in Fig.1. The ninhydrin ring is planar (r.m.s. deviation = 0.0255 (10) Å) with bond distances and angles comparable with those previously reported for ninhydrin (Medrud, 1969 and Fun *et al.* (2009). The title compound has a chiral centre at C₁₀ and the X-ray data indicate that the compound is racemic (Fig. 2). The ninhydrin and 2-aminothiazol-4(5*H*)-one moieties make a dihedral angle of 66.41 (3)°. Intermolecular O—H···O, N —H···O and N—H···N hydrogen bonds stabilize the crystal structure, and form a three-dimensional network.

S2. Experimental

A mixture of ninhydrin (1 mmol) and 2-aminothiazol-4(5*H*)-one (1.1 mmol) was stirred under reflux in ethanol for 6 hrs. After the reaction was complete, the reaction mixture was cooled to room temperature. The precipitate thus obtained was collected by filtration, washed with cold ethanol and dried, to afford the crude product. Crystallization from ethanol afforded a light yellow crystalline product of 2-(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)-2-hydroxy -1*H*-indene-1,3(2*H*)-dione that was suitable for X-ray analysis. ¹H NMR (DMSO-d₆): δ 5.01 (*s*, 1H, CH), 7.10 (*s*, 1H, OH), 7.93–8.03 (*m*, 4H, Ar—H), 8.94–9.06 (*bd*, 2H, NH₂), p.p.m.; ¹³C NMR (DMSO-d₆): δ 62.15, 73.62, 123.47, 123.57, 136.67, 137.26, 140.68, 141.09, 182.49, 185.12, 197.48, 198.25 p.p.m..

S3. Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 1.00 Å (R-3~CH), 0.95 Å (CÃr~H), 0.84 Å (O—H), 0.88 Å (N—H), and with Uiso~(H) values set to either 1.2U~eq~ or 1.5U~eq~(OH) of the attached atom.

Figure 1

A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the molecule viewed along the a axis. H atoms have been omitted for clarity.

rac-2-(2-amino-4-oxo-4,5-dihydro-1,3-thiazol-5-yl)-2-hydroxyindane- 1,3-dione

F(000) = 568

 $\theta = 1.0-27.5^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$

T = 90 K

 $R_{\rm int} = 0.035$

 $k = -7 \rightarrow 7$ $l = -19 \rightarrow 19$

 $D_{\rm x} = 1.686 {\rm Mg} {\rm m}^{-3}$

Tablet, pale yellow

 $0.25 \times 0.12 \times 0.05 \text{ mm}$

23811 measured reflections 2498 independent reflections 2268 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ $h = -18 \rightarrow 18$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2750 reflections

Crystal data

 $C_{12}H_8N_2O_4S$ $M_r = 276.26$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.1702 (2) Å b = 5.6713 (1) Å c = 14.8296 (3) Å $\beta = 114.0171$ (9)° V = 1088.58 (3) Å³ Z = 4

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.06	H-atom parameters constrained
2498 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 0.6796P],$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of $F^{2^{}}$ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on $F^{2^{}}$, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative $F^{2^{}}$. The threshold expression of $F^{2^{}} > 2\sigma(F^{2^{}})$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on $F^{2^{}}$ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	Fractional atomic coordina	tes and isotropic	or equivalent iso	otropic displacen	nent parameters	$(Å^2)$
--	----------------------------	-------------------	-------------------	-------------------	-----------------	---------

	X	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.66382 (2)	0.49412 (5)	0.17138 (2)	0.01284 (10)	
01	0.42723 (7)	0.96668 (16)	0.23512 (7)	0.0153 (2)	
N1	0.49352 (8)	0.24974 (19)	0.06881 (8)	0.0125 (2)	

C1	0.45157 (9)	0.7729 (2)	0.27136 (9)	0.0120 (2)
O2	0.63896 (6)	0.76852 (16)	0.33559 (7)	0.01299 (19)
H2	0.6250	0.9129	0.3335	0.019*
N2	0.64515 (8)	0.0977 (2)	0.06834 (8)	0.0143 (2)
H2A	0.6112	-0.0200	0.0303	0.017*
H2B	0.7125	0.1084	0.0878	0.017*
C2	0.54859 (9)	0.6411 (2)	0.27535 (9)	0.0111 (2)
03	0.61330 (7)	0.25829 (17)	0.35097 (7)	0.0167 (2)
C3	0.54791 (9)	0.4118 (2)	0.33094 (9)	0.0120 (2)
O4	0.37082 (7)	0.45803 (17)	0.10054 (7)	0.0162 (2)
C4	0.45890 (10)	0.4216 (2)	0.35841 (9)	0.0127 (2)
C5	0.42889 (10)	0.2577 (2)	0.41132 (9)	0.0153 (3)
H5	0.4654	0.1135	0.4326	0.018*
C6	0.34424 (10)	0.3100 (3)	0.43217 (9)	0.0178 (3)
H6	0.3220	0.1996	0.4676	0.021*
C7	0.29109 (10)	0.5234 (3)	0.40164 (10)	0.0180 (3)
H7	0.2348	0.5578	0.4186	0.022*
C8	0.31936 (10)	0.6860 (3)	0.34679 (9)	0.0158 (3)
H8	0.2823	0.8293	0.3248	0.019*
С9	0.40390 (9)	0.6314 (2)	0.32529 (9)	0.0130 (2)
C10	0.54450 (9)	0.6061 (2)	0.17129 (9)	0.0116 (2)
H10	0.5296	0.7620	0.1368	0.014*
C11	0.45938 (9)	0.4304 (2)	0.10930 (9)	0.0121 (2)
C12	0.59513 (9)	0.2577 (2)	0.09614 (9)	0.0121 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01022 (15)	0.01467 (17)	0.01409 (16)	-0.00198 (11)	0.00543 (12)	-0.00411 (11)
01	0.0149 (4)	0.0140 (5)	0.0158 (4)	0.0023 (4)	0.0051 (4)	0.0012 (4)
N1	0.0116 (5)	0.0137 (5)	0.0120 (5)	-0.0008 (4)	0.0046 (4)	-0.0010 (4)
C1	0.0101 (5)	0.0138 (6)	0.0107 (5)	-0.0008 (5)	0.0027 (4)	-0.0026 (5)
O2	0.0108 (4)	0.0104 (4)	0.0154 (4)	-0.0007 (3)	0.0030 (3)	-0.0023 (3)
N2	0.0109 (5)	0.0154 (5)	0.0162 (5)	-0.0014 (4)	0.0051 (4)	-0.0049 (4)
C2	0.0098 (5)	0.0113 (6)	0.0117 (5)	-0.0005 (4)	0.0038 (4)	-0.0009 (5)
O3	0.0153 (4)	0.0131 (5)	0.0209 (5)	0.0027 (4)	0.0065 (4)	0.0013 (4)
C3	0.0123 (6)	0.0118 (6)	0.0101 (5)	-0.0012 (5)	0.0029 (5)	-0.0015 (5)
O4	0.0112 (4)	0.0197 (5)	0.0176 (4)	0.0001 (4)	0.0056 (4)	-0.0015 (4)
C4	0.0133 (6)	0.0139 (6)	0.0108 (6)	-0.0017 (5)	0.0047 (5)	-0.0029 (5)
C5	0.0180 (6)	0.0150 (6)	0.0125 (6)	-0.0023 (5)	0.0056 (5)	-0.0005 (5)
C6	0.0193 (6)	0.0234 (7)	0.0113 (6)	-0.0065 (5)	0.0071 (5)	-0.0021 (5)
C7	0.0131 (6)	0.0278 (8)	0.0136 (6)	-0.0039 (5)	0.0060 (5)	-0.0046 (5)
C8	0.0122 (6)	0.0199 (7)	0.0140 (6)	-0.0001 (5)	0.0041 (5)	-0.0026 (5)
C9	0.0123 (6)	0.0146 (6)	0.0109 (5)	-0.0022 (5)	0.0035 (5)	-0.0017 (5)
C10	0.0109 (5)	0.0125 (6)	0.0119 (5)	-0.0002 (4)	0.0051 (4)	-0.0006 (5)
C11	0.0126 (6)	0.0133 (6)	0.0095 (5)	-0.0006 (5)	0.0035 (5)	0.0009 (5)
C12	0.0137 (6)	0.0128 (6)	0.0096 (5)	-0.0017 (5)	0.0046 (4)	0.0004 (5)

Geometric parameters (Å, °)

S1—C12	1.7623 (13)	C3—C4	1.4759 (17)
S1-C10	1.8056 (12)	O4—C11	1.2180 (16)
01—C1	1.2101 (16)	C4—C5	1.3903 (18)
N1—C12	1.3283 (16)	C4—C9	1.3973 (18)
N1—C11	1.3715 (17)	C5—C6	1.3873 (19)
C1—C9	1.4764 (17)	С5—Н5	0.9500
C1—C2	1.5449 (17)	C6—C7	1.400 (2)
O2—C2	1.4245 (14)	С6—Н6	0.9500
O2—H2	0.8400	C7—C8	1.3922 (19)
N2—C12	1.3166 (16)	С7—Н7	0.9500
N2—H2A	0.8800	C8—C9	1.3942 (18)
N2—H2B	0.8800	C8—H8	0.9500
C2-C10	1.5334 (17)	C10—C11	1.5460 (17)
C2—C3	1.5418 (17)	C10—H10	1.0000
O3—C3	1.2167 (16)		
C12—S1—C10	89.51 (6)	C5—C6—C7	120.88 (12)
C12—N1—C11	111.88 (11)	С5—С6—Н6	119.6
01—C1—C9	128.58 (12)	С7—С6—Н6	119.6
O1—C1—C2	123.02 (11)	C8—C7—C6	121.13 (12)
C9—C1—C2	108.20 (10)	C8—C7—H7	119.4
С2—О2—Н2	109.5	С6—С7—Н7	119.4
C12—N2—H2A	120.0	C7—C8—C9	117.69 (13)
C12—N2—H2B	120.0	С7—С8—Н8	121.2
H2A—N2—H2B	120.0	С9—С8—Н8	121.2
O2—C2—C10	110.66 (10)	C8—C9—C4	121.14 (12)
O2—C2—C3	107.00 (9)	C8—C9—C1	128.92 (12)
C10—C2—C3	115.04 (10)	C4—C9—C1	109.91 (11)
O2—C2—C1	109.71 (10)	C2-C10-C11	112.48 (10)
C10-C2-C1	110.82 (10)	C2C10S1	113.13 (8)
C3—C2—C1	103.28 (10)	C11—C10—S1	106.11 (8)
O3—C3—C4	127.68 (12)	C2	108.3
O3—C3—C2	124.33 (11)	C11—C10—H10	108.3
C4—C3—C2	107.91 (10)	S1-C10-H10	108.3
С5—С4—С9	120.86 (12)	O4—C11—N1	125.52 (12)
C5—C4—C3	128.50 (12)	O4—C11—C10	120.08 (11)
C9—C4—C3	110.63 (11)	N1-C11-C10	114.40 (10)
C6—C5—C4	118.26 (12)	N2-C12-N1	122.39 (12)
С6—С5—Н5	120.9	N2-C12-S1	119.58 (9)
С4—С5—Н5	120.9	N1—C12—S1	118.02 (10)
			()
01—C1—C2—O2	64.08 (15)	C5—C4—C9—C1	-179.91 (11)
C9—C1—C2—O2	-111.21 (11)	C3—C4—C9—C1	1.32 (14)
O1—C1—C2—C10	-58.41 (15)	O1—C1—C9—C8	0.5 (2)
C9-C1-C2-C10	126.30 (11)	C2—C1—C9—C8	175.40 (12)
O1—C1—C2—C3	177.88 (11)	O1—C1—C9—C4	-177.45 (12)

C9—C1—C2—C3	2.59 (12)	C2-C1-C9-C4	-2.51 (14)
O2—C2—C3—O3	-63.22 (15)	O2—C2—C10—C11	169.35 (10)
C10—C2—C3—O3	60.14 (16)	C3-C2-C10-C11	47.95 (14)
C1—C2—C3—O3	-178.97 (12)	C1-C2-C10-C11	-68.72 (13)
O2—C2—C3—C4	113.91 (10)	O2-C2-C10-S1	49.13 (12)
C10—C2—C3—C4	-122.72 (11)	C3—C2—C10—S1	-72.27 (12)
C1—C2—C3—C4	-1.84 (12)	C1-C2-C10-S1	171.06 (8)
O3—C3—C4—C5	-1.2 (2)	C12—S1—C10—C2	124.72 (9)
C2—C3—C4—C5	-178.24 (12)	C12—S1—C10—C11	0.93 (9)
O3—C3—C4—C9	177.42 (12)	C12—N1—C11—O4	-176.05 (12)
C2—C3—C4—C9	0.41 (14)	C12—N1—C11—C10	3.27 (15)
C9—C4—C5—C6	-1.35 (18)	C2-C10-C11-O4	52.60 (16)
C3—C4—C5—C6	177.19 (12)	S1-C10-C11-O4	176.80 (10)
C4—C5—C6—C7	-0.65 (19)	C2-C10-C11-N1	-126.76 (11)
C5—C6—C7—C8	2.1 (2)	S1-C10-C11-N1	-2.56 (13)
C6—C7—C8—C9	-1.44 (19)	C11—N1—C12—N2	178.04 (12)
C7—C8—C9—C4	-0.56 (19)	C11—N1—C12—S1	-2.57 (14)
C7—C8—C9—C1	-178.27 (12)	C10—S1—C12—N2	-179.74 (11)
C5—C4—C9—C8	1.99 (19)	C10—S1—C12—N1	0.85 (10)
C3—C4—C9—C8	-176.79 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
02—H2…O3 ⁱ	0.84	1.99	2.8225 (13)	170
N2—H2A····N1 ⁱⁱ	0.88	2.07	2.9372 (15)	168
N2—H2 <i>B</i> ···O2 ⁱⁱⁱ	0.88	2.14	2.9629 (14)	155

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*, –*z*; (iii) –*x*+3/2, *y*-1/2, –*z*+1/2.