

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis{6-methyl-2-[(trimethylsilyl)amino]pyridine- κN^1 }cobalt(II)

Xiaoyan Xue,^a Xia Chen^a* and Hongbo Tong^b

^aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and ^bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China Correspondence e-mail: chenxia@sxu.edu.cn

Received 7 July 2009; accepted 16 July 2009

Key indicators: single-crystal X-ray study; T = 213 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 17.5.

In the structure of the title compound, $[CoCl_2(C_9H_{16}N_2Si)_2]$, the Co^{II} atom is located on an inversion center in a slightly distorted tetrahedral environment formed by two chloride ions and the pyridine N atoms of two chelating 6-methyl-2-[(trimethylsilyl)amino]pyridine ligands. The dihedral angle between the planes of the pyridine rings is $80.06 (5)^{\circ}$. Cohesion within the crystal structure is accomplished by $N-H\cdots Cl$ hydrogen bonds.

Related literature

For the chemistry of N-functionalized amino ligands, see: Liddle & Clegg (2001); Engelhardt et al. (1988); Kempe (2000) and references therein. Trimethylsilyl-substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activity, see: Andrews et al. (2004).

5113 measured reflections

 $R_{\rm int} = 0.020$

2224 independent reflections

1905 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[CoCl_2(C_9H_{16}N_2Si)_2]$	$V = 2527.8 (10) \text{ Å}^3$
$M_r = 490.49$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 14.817 (3) Å	$\mu = 1.00 \text{ mm}^{-1}$
b = 12.554 (4) Å	T = 213 K
c = 14.886 (2) Å	$0.30 \times 0.30 \times 0.20$ mm
$\beta = 114.09 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min}=0.754,\;T_{\rm max}=0.826$

Refinement

ł v

S

2

$R[F^2 > 2\sigma(F^2)] = 0.033$	127 parameters
$vR(F^2) = 0.089$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
224 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N2-H2A\cdots Cl1^{i}$ 0.86 2.48 3.284 (2) 155

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2001).

References

Andrews, J. E., McGrady, P. J. & Nichols, P. T. (2004). Organometallics, 23, 446-453.

Bruker (1996). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Engelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011-1020.

Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.

Liddle, S. T. & Clegg, W. (2001). J. Chem. Soc., Dalton Trans. pp. 402-408.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m957 [doi:10.1107/S1600536809027937]

Dichloridobis{6-methyl-2-[(trimethylsilyl)amino]pyridine- κN^1 }cobalt(II)

Xiaoyan Xue, Xia Chen and Hongbo Tong

S1. Comment

The stucture of the title compound, (I), is shown below. The molecule (Co atom) lies on a crystallographic inversion centre. Dimensions are available in the archived CIF. The chemistry of the N-functionalized amido ligands (Liddle and Clegg, 2001; Engelhardt *et al.*, 1988; Kempe, 2000, and references therein) has attracted much interest, and a number of maingroup and transition metal amido complexes with unusual coordination geometry have been isolated. Trimethylsily substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activities (Andrews *et al.*, 2004). Here, we report the synthesis and structure of a new 6-methyl-2-(trimethylsilylamino) pyridine cobalt complex.

The molecular structure is illustrated in Fig. 1. In the complex, the Co atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyridine and two terminal Cl atoms. The bond lengths and angles are within normal ranges. Phenanthridine ring systems are, of course, planar and the dihedral angle between them is $A/B = 80.06 (5)^{\circ}$. The compound displays intramolecular N—H···Cl hydrogen bonds (Table 2).

S2. Experimental

6-Methyl-2-aminopyridine (0.25 g, 2.31 mmol) was added to a solution of LiBu^{*n*} (0.81 ml g, 2.31 mmol) in Et₂O (30 ml) at 0°C. The resulting mixture was then warmed to room temperature and stirred for 3 h. SiMe₃Cl (0.27 ml, 2.19 mmol) was added at 0°C. The resulting mixture was warmed to room temperature again and stirred for 3 h.CoCl₂ (0.31 g, 2.39 mmol) was the added at -78°C and the mixture was warmed to room temperature and stirred for 24 h. The volatiles were removed *in vacuo* and the residue was extracted with dichloromethane then filtered. The filtrate was concentrated to give blue crystals (0.79 g, 67%). Anal. Calcd for C₁₈H₃₂Cl₂CoN₄Si₂(%): C, 44.08; H, 6.58; N 11.42. Found: C, 42.85; H, 6.52; N, 10.99.

S3. Refinement

H atoms of the methyl groups were derived from Fourier maps (HFIX 137) and allowed to ride during subsequent refinement with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other hydrogen atoms were refined at calculated positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.86 Å) atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Dichloridobis{6-methyl-2-[(trimethylsilyl)amino]pyridine- κN^1 }cobalt(II)

Crystal data	
$\begin{bmatrix} \text{CoCl}_2(\text{C}_9\text{H}_{16}\text{N}_2\text{Si})_2 \end{bmatrix}$ $M_r = 490.49$ Monoclinic, C2/c Hall symbol: -C 2yc a = 14.817 (3) Å b = 12.554 (4) Å c = 14.886 (2) Å $\beta = 114.09$ (2)° V = 2527.8 (10) Å ³ Z = 4	F(000) = 1028 $D_x = 1.289 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2926 reflections $\theta = 2.2-260639^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 213 K Block, blue $0.30 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.754, T_{\max} = 0.826$

5113 measured reflections	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
2224 independent reflections	$h = -13 \rightarrow 17$
1905 reflections with $I > 2\sigma(I)$	$k = -14 \rightarrow 13$
$R_{\rm int} = 0.020$	$l = -17 \rightarrow 17$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: geom and difmap
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0559P)^2]$
2224 reflections	where $P = (F_0^2 + 2F_c^2)/3$
127 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.0000	0.78913 (3)	0.2500	0.03732 (16)	
Cl1	0.10398 (5)	0.89853 (5)	0.21598 (5)	0.0592 (2)	
Si1	0.00558 (5)	0.75476 (5)	0.57526 (5)	0.04150 (19)	
N1	0.09602 (12)	0.69403 (12)	0.36153 (13)	0.0331 (4)	
N2	0.04259 (13)	0.76380 (14)	0.47782 (13)	0.0407 (5)	
H2A	0.0166	0.8153	0.4373	0.049*	
C1	0.10695 (15)	0.70085 (15)	0.45668 (16)	0.0352 (5)	
C2	0.18218 (15)	0.64481 (17)	0.53209 (16)	0.0396 (5)	
H2B	0.1894	0.6512	0.5969	0.048*	
C3	0.24442 (16)	0.58107 (17)	0.50937 (17)	0.0437 (6)	
H3A	0.2952	0.5446	0.5588	0.052*	
C4	0.23132 (16)	0.57104 (17)	0.41187 (17)	0.0422 (5)	
H4A	0.2723	0.5262	0.3955	0.051*	
C5	0.15804 (15)	0.62725 (17)	0.34001 (16)	0.0372 (5)	
C6	0.14102 (18)	0.6165 (2)	0.23377 (17)	0.0514 (6)	
H6A	0.1861	0.5649	0.2278	0.077*	
H6B	0.1518	0.6841	0.2096	0.077*	
H6C	0.0743	0.5936	0.1960	0.077*	
C7	0.1062 (2)	0.7875 (2)	0.69626 (19)	0.0632 (7)	
H7A	0.1575	0.7349	0.7127	0.095*	
H7B	0.0804	0.7883	0.7458	0.095*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7C 0.132	29 0).8564	0.6929	0.095*
C8 -0.02	395 (2) 0	0.6186 (2)	0.5781 (2)	0.0780 (9)
H8A -0.09	910 0	0.6017	0.5152	0.117*
H8B -0.00	651 0	0.6141	0.6278	0.117*
H8C 0.014	40 0).5690	0.5930	0.117*
C9 -0.09	937 (2) 0).8548 (3)	0.5436 (2)	0.0819 (10)
H9A -0.06	685 0).9234	0.5370	0.123*
H9B -0.1	174 0).8574	0.5947	0.123*
H9C -0.14	470 0	0.8356	0.4826	0.123*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Col	0.0405 (3)	0.0364 (3)	0.0298 (3)	0.000	0.00890 (19)	0.000
Cl1	0.0730 (5)	0.0549 (4)	0.0429 (4)	-0.0265 (3)	0.0167 (3)	-0.0029 (3)
Si1	0.0433 (4)	0.0439 (4)	0.0383 (4)	0.0058 (3)	0.0177 (3)	0.0030 (3)
N1	0.0311 (9)	0.0327 (9)	0.0327 (10)	-0.0001 (7)	0.0102 (8)	-0.0018 (7)
N2	0.0481 (11)	0.0398 (10)	0.0331 (11)	0.0132 (8)	0.0156 (9)	0.0061 (8)
C1	0.0363 (12)	0.0312 (11)	0.0356 (12)	-0.0039 (9)	0.0123 (10)	-0.0017 (9)
C2	0.0403 (12)	0.0419 (12)	0.0334 (12)	0.0002 (10)	0.0117 (10)	0.0041 (10)
C3	0.0363 (12)	0.0412 (12)	0.0473 (15)	0.0044 (10)	0.0107 (11)	0.0063 (11)
C4	0.0353 (12)	0.0425 (12)	0.0484 (14)	0.0032 (10)	0.0168 (11)	-0.0012 (11)
C5	0.0330 (11)	0.0380 (11)	0.0398 (13)	-0.0046 (9)	0.0142 (10)	-0.0061 (10)
C6	0.0444 (13)	0.0660 (16)	0.0431 (14)	0.0052 (12)	0.0170 (11)	-0.0104 (12)
C7	0.0665 (18)	0.0831 (19)	0.0421 (16)	-0.0077 (15)	0.0243 (14)	-0.0082 (14)
C8	0.091 (2)	0.0630 (18)	0.094 (3)	-0.0211 (17)	0.0524 (19)	-0.0041 (17)
С9	0.088 (2)	0.102 (2)	0.071 (2)	0.049 (2)	0.0480 (18)	0.0261 (19)

Geometric parameters (Å, °)

Col-Nl ⁱ	2.0681 (17)	С3—НЗА	0.9300
Co1—N1	2.0681 (17)	C4—C5	1.369 (3)
Co1—Cl1	2.2701 (7)	C4—H4A	0.9300
Co1—Cl1 ⁱ	2.2701 (7)	C5—C6	1.503 (3)
Si1—N2	1.7512 (19)	C6—H6A	0.9600
Si1—C9	1.843 (3)	C6—H6B	0.9600
Sil—C8	1.843 (3)	C6—H6C	0.9600
Sil—C7	1.856 (3)	С7—Н7А	0.9600
N1-C1	1.361 (3)	С7—Н7В	0.9600
N1C5	1.375 (3)	C7—H7C	0.9600
N2—C1	1.370 (3)	C8—H8A	0.9600
N2—H2A	0.8600	C8—H8B	0.9600
C1—C2	1.406 (3)	C8—H8C	0.9600
C2—C3	1.364 (3)	С9—Н9А	0.9600
C2—H2B	0.9300	С9—Н9В	0.9600
C3—C4	1.389 (3)	С9—Н9С	0.9600
N1 ⁱ —Co1—N1	109.49 (9)	C3—C4—H4A	120.1

N1 ⁱ —Co1—Cl1	118.51 (5)	C4—C5—N1	121.7 (2)
N1—Co1—Cl1	102.78 (5)	C4—C5—C6	121.01 (19)
N1 ⁱ —Co1—Cl1 ⁱ	102.78 (5)	N1—C5—C6	117.33 (19)
N1—Co1—Cl1 ⁱ	118.51 (5)	С5—С6—Н6А	109.5
Cl1—Co1—Cl1 ⁱ	105.54 (4)	С5—С6—Н6В	109.5
N2—Si1—C9	103.38 (11)	H6A—C6—H6B	109.5
N2—Si1—C8	108.58 (12)	С5—С6—Н6С	109.5
C9—Si1—C8	112.25 (15)	H6A—C6—H6C	109.5
N2—Si1—C7	112.97 (11)	H6B—C6—H6C	109.5
C9—Si1—C7	109.78 (14)	Si1—C7—H7A	109.5
C8—Si1—C7	109.78 (14)	Si1—C7—H7B	109.5
C1—N1—C5	118.28 (17)	H7A—C7—H7B	109.5
C1—N1—Co1	123.35 (13)	Si1—C7—H7C	109.5
C5—N1—Co1	118.11 (14)	H7A—C7—H7C	109.5
C1—N2—Si1	129.45 (15)	H7B—C7—H7C	109.5
C1—N2—H2A	115.3	Si1—C8—H8A	109.5
Si1—N2—H2A	115.3	Si1—C8—H8B	109.5
N1—C1—N2	118.49 (19)	H8A—C8—H8B	109.5
N1—C1—C2	121.22 (19)	Si1—C8—H8C	109.5
N2—C1—C2	120.3 (2)	H8A—C8—H8C	109.5
C3—C2—C1	119.5 (2)	H8B—C8—H8C	109.5
С3—С2—Н2В	120.3	Si1—C9—H9A	109.5
C1—C2—H2B	120.3	Si1—C9—H9B	109.5
C2—C3—C4	119.5 (2)	H9A—C9—H9B	109.5
С2—С3—НЗА	120.3	Si1—C9—H9C	109.5
С4—С3—НЗА	120.3	Н9А—С9—Н9С	109.5
C5—C4—C3	119.9 (2)	Н9В—С9—Н9С	109.5
C5—C4—H4A	120.1		
N1 ⁱ —Co1—N1—C1	-123.88 (16)	Si1—N2—C1—N1	154.07 (16)
Cl1—Co1—N1—C1	109.30 (15)	Si1—N2—C1—C2	-25.8 (3)
Clli-Col-Nl-Cl	-6.54 (17)	N1—C1—C2—C3	-1.1 (3)
N1 ⁱ —Co1—N1—C5	62.03 (13)	N2—C1—C2—C3	178.84 (19)
Cl1—Co1—N1—C5	-64.80 (14)	C1—C2—C3—C4	-1.2 (3)
Cl1 ⁱ —Co1—N1—C5	179.37 (12)	C2—C3—C4—C5	1.8 (3)
C9—Si1—N2—C1	-172.5 (2)	C3—C4—C5—N1	-0.1 (3)
C8—Si1—N2—C1	-53.1 (2)	C3—C4—C5—C6	-178.9 (2)
C7—Si1—N2—C1	68.9 (2)	C1—N1—C5—C4	-2.0 (3)
C5—N1—C1—N2	-177.26 (17)	Co1—N1—C5—C4	172.35 (15)
Co1—N1—C1—N2	8.7 (2)	C1—N1—C5—C6	176.76 (19)
C5—N1—C1—C2	2.6 (3)	Co1—N1—C5—C6	-8.8 (2)
Co1—N1—C1—C2	-171.44 (14)		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

$$D$$
—H···A D —H H···A D ···A D —H···A

supporting information

N2—H2A····Cl1 ⁱ	0.86	2.48	3.284 (2)	155	

Symmetry code: (i) -x, y, -z+1/2.