

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-2-(2-Nitroethenyl)furan

Pedro Valerga,^a* M. Carmen Puerta,^a Zenaida Rodríguez Negrín,^b Nilo Castañedo Cancio^b and Miguel Palma Lovillo^c

^aDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain, ^bCentro de Bioactivos Químicos, Universidad Central Marta Abreu de Las, Villas, Cuba, and ^cDepartamento de Química Analítica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain Correspondence e-mail: pedro.valerga@uca.es

Received 10 July 2009; accepted 20 July 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.107; data-to-parameter ratio = 15.2.

The title compound, $C_6H_5NO_3$, was synthesized *via* condensation of furfural with nitromethane in the presence of isobutylamine. The compound crystallizes exclusively as the *E* isomer. The angle between the mean planes of the furan ring and the nitroalkenyl group is 1.3 (2)°.

Related literature

For general background, see: Wang *et al.* (2009); An *et al.* (2007); Rastogi *et al.* (2006); Rao *et al.* (2005); Negrín *et al.* (2002, 2003); Vallejosa *et al.* (2005). For related structures, see: Martínez-Bescos *et al.* (2008); Novoa-de-Armas *et al.* (1997); Pomes *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{6}H_{5}\text{NO}_{3} \\ M_{r} = 139.11 \\ \text{Monoclinic, } P2_{1}/n \\ a = 9.0374 \ (18) \text{ Å} \\ b = 5.2012 \ (10) \text{ Å} \\ c = 13.027 \ (3) \text{ Å} \\ \beta = 97.58 \ (3)^{\circ} \end{array}$

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
T<sub>min</sub> = 0.916, T<sub>max</sub> = 0.980
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.061387 reflections 4852 measured reflections 1387 independent reflections 1317 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

91 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.28$ e Å⁻³

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

We thank the SCCYT (Universidad de Cádiz) for the X-ray data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía, for financial support. ZRN thanks the AUIP and Aula Iberoamericana for the stay at UCA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2237).

References

- An, L.-T., Zou, J.-P., Zhang, L.-L. & Zhang, Y. (2007). Tetrahedron Lett. 48, 4297-4300.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Martínez-Bescos, P., Cagide-Fagin, F., Roa, L. F., Ortiz-Lara, J. C., Kierus, K., Ozores-Viturro, L., Fernández-González, M. & Alonso, R. (2008). J. Org. Chem. 73, 3745–3753.
- Negrín, Z. R., Martínez, B. N. H., Meseguer, G. P., Placeres, E. G. & Molina, M. I. D. (2003). *Centro Azúcar*, **30**, 30–34.
- Negrín, Z. R., Placeres, E. G., Martínez, B. N. H., Meseguer, G. P. & Montenegro, O. N. (2002). Centro Azúcar, 29, 79–86.
- Novoa-de-Armas, H., Pomes-Hernández, R., Duque-Rodríguez, J. & Toscano, R. A. (1997). Z. Kristallogr. 212, 63–63.
- Pomés, R., Duque, J., Novoa, H., Castañedo, N. & Toscano, A. (1995). Acta Cryst. C51, 1368–1369.
- Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2005). *Tetrahedron Lett.* 46, 8141–8143.
- Rastogi, N., Mohan, R., Panda, D., Mobin, S. M., Namboothiri, I. N. N., Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2006). Org. Biomolec. Chem. 4, 3211–3214.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vallejosa, G., Fierroa, A., Rezendea, M. C., Sepúlveda-Bozab, S. & Reyes-Paradab, M. (2005). *Bioorg. Med. Chem.* 14, 4450–4457.
- Wang, W.-J., Cheng, W.-P., Shao, L.-L., Liu, C.-H. & Yang, J.-G. (2009). Kinetics Catal. 50, 186–191.

supporting information

Acta Cryst. (2009). E65, o1979 [doi:10.1107/S160053680902861X]

(E)-2-(2-Nitroethenyl)furan

Pedro Valerga, M. Carmen Puerta, Zenaida Rodríguez Negrín, Nilo Castañedo Cancio and Miguel Palma Lovillo

S1. Comment

Among the biological properties of (nitro-alkenyl)-furan compounds our interest is focused in their antibacterial and antifungal activities. In spite of the importance of the structure to explain physical and chemical properties, there are not reports on the structures of the more simple compounds in this family. We start with this study a series of structural reports about them. The structure of title compound, showing *trans* or *E* configuration, is shown in Fig. 1. Ring aromaticity is extended to the alkenyl group being C1—C5 bond length, 1.430 (2), significatively shorter than a single C —C bond. Alkenyl *sp*² carbons mantain coplanarity with furan ring as shown by an angle of 1.3 (2)° between ring plane and C5—C6—N1 plane. Crystal packing does not show hydrogen bonds nor N… π intermolecular interactions (Fig. 2).

S2. Experimental

2-(2-Nitro-ethenyl)-furan, also called G-0, was obtained by a variation of Knoevenagel's method: condensation of an aldehyde with substances containing an active α -hydrogen in the presence of a base (ammonia or amines) as catalyst. The Centro de Bioactivos Químicos (Cuba) has already patented this modified method using furfural, an aromatic compound from acid hydrolisis of sugar cane residuals (straw, sawdust, *etc.*) and nitromethane in the presence of isobutylamine. A yellow crystalline solid was obtained with purity higher than 98%, melting point 74.5°, scarcely soluble in water and very soluble in nitromethane, carbon tetrachloride, petroleum ether and ethanol.

S3. Refinement

All H atoms were positioned geometrically and treated as riding (C—H = 0.99Å for methylene and C—H = 0.93Å otherwise). $U_{iso}(H) = 1.2 U_{eq}(C)$ of the carrier atom.

Figure 1

ORTEP representation of the molecular structure of the title compound showing the atom labelling scheme (thermal ellipsoid probability 50%).

Figure 2

Packing diagram of the title compound.

(E)-2-(2-Nitroethenyl)furan

Crystal data

C₆H₅NO₃ $M_r = 139.11$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.0374 (18) Åb = 5.2012 (10) Åc = 13.027 (3) Å $\beta = 97.58 (3)^{\circ}$ V = 607.0 (2) Å³ Z = 4

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
1700 ω scan frames (0.3°, 10)
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min} = 0.916, \ T_{\max} = 0.980$

Refinement

Refinement on F^2 0 constraints Least-squares matrix: full H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.06 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ 1387 reflections 91 parameters $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$ 0 restraints

Special details

Experimental. Refinement of F^2 against unique set of reflections. The weighted *R*-factor wR and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 1$ 2sigma(F²) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against unique set of reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 1$ $\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	equivalent iso	otropic disp	olacement par	rameters (Ų)	ļ
	1	1	1 1	1		

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.67495 (10)	0.19614 (17)	0.08110 (7)	0.0206 (2)

F(000) = 288 $D_{\rm x} = 1.522 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2396 reflections $\theta = 2.6 - 27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.47 \times 0.17 \times 0.14$ mm

4852 measured reflections 1387 independent reflections 1317 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -6 \rightarrow 6$ $l = -16 \rightarrow 12$

 $w = 1/[\sigma^2(F_0^2) + (0.0569P)^2 + 0.266P]$

02	0.15283 (11)	0.49888 (19)	0.10417 (8)	0.0290 (3)
03	0.16242 (10)	0.13012 (19)	0.18291 (7)	0.0254 (3)
N1	0.21943 (12)	0.3007 (2)	0.13567 (8)	0.0205 (3)
C1	0.59854 (14)	0.0119 (2)	0.12894 (9)	0.0182 (3)
C2	0.68866 (14)	-0.1941 (2)	0.15531 (9)	0.0202 (3)
H2	0.6627	-0.3465	0.1890	0.024*
C3	0.82904 (14)	-0.1370 (3)	0.12270 (10)	0.0221 (3)
Н3	0.9152	-0.2435	0.1300	0.027*
C4	0.81535 (14)	0.0996 (3)	0.07909 (10)	0.0227 (3)
H4	0.8930	0.1870	0.0508	0.027*
C5	0.44755 (13)	0.0618 (2)	0.14455 (9)	0.0185 (3)
Н5	0.3974	-0.0667	0.1787	0.022*
C6	0.37162 (14)	0.2755 (3)	0.11477 (10)	0.0197 (3)
H6	0.4172	0.4090	0.0803	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0179 (4)	0.0200 (5)	0.0243 (5)	0.0009 (3)	0.0046 (3)	0.0019 (3)
02	0.0269 (5)	0.0301 (5)	0.0303 (5)	0.0112 (4)	0.0053 (4)	0.0047 (4)
03	0.0206 (5)	0.0269 (5)	0.0299 (5)	-0.0014 (4)	0.0074 (4)	0.0019 (4)
N1	0.0189 (5)	0.0244 (6)	0.0182 (5)	0.0026 (4)	0.0023 (4)	-0.0017 (4)
C1	0.0199 (6)	0.0185 (6)	0.0163 (6)	-0.0013 (4)	0.0027 (4)	-0.0017 (4)
C2	0.0221 (6)	0.0199 (6)	0.0186 (6)	0.0006 (5)	0.0019 (5)	-0.0010 (5)
C3	0.0201 (6)	0.0256 (6)	0.0204 (6)	0.0042 (5)	0.0016 (5)	-0.0025 (5)
C4	0.0164 (6)	0.0279 (7)	0.0242 (6)	0.0007 (5)	0.0040 (5)	-0.0011 (5)
C5	0.0185 (6)	0.0212 (6)	0.0159 (6)	-0.0021 (5)	0.0028 (4)	-0.0023 (4)
C6	0.0170 (6)	0.0236 (6)	0.0194 (6)	0.0002 (5)	0.0052 (4)	-0.0013 (5)

Geometric parameters (Å, °)

01—C4	1.3680 (15)	C2—H2	0.9500
01—C1	1.3772 (15)	C3—C4	1.3544 (19)
O2—N1	1.2361 (14)	С3—Н3	0.9500
O3—N1	1.2309 (15)	C4—H4	0.9500
N1C6	1.4428 (16)	C5—C6	1.3366 (18)
C1—C2	1.3623 (17)	С5—Н5	0.9500
C1—C5	1.4296 (17)	С6—Н6	0.9500
C2—C3	1.4214 (18)		
C4C1	105.97 (10)	С4—С3—Н3	126.9
O3—N1—O2	123.33 (11)	С2—С3—Н3	126.9
O3—N1—C6	120.08 (11)	C3—C4—O1	111.04 (12)
O2—N1—C6	116.59 (11)	C3—C4—H4	124.5
C2-C1-01	110.03 (11)	O1—C4—H4	124.5
C2—C1—C5	131.07 (12)	C6—C5—C1	124.94 (12)
01—C1—C5	118.89 (11)	С6—С5—Н5	117.5
C1—C2—C3	106.73 (11)	C1—C5—H5	117.5

С1—С2—Н2	126.6	C5—C6—N1	119.11 (12)	
С3—С2—Н2	126.6	С5—С6—Н6	120.4	
C4—C3—C2	106.23 (11)	N1—C6—H6	120.4	
C4—O1—C1—C2	-0.39 (13)	C1—O1—C4—C3	0.54 (14)	
C4—O1—C1—C5	178.58 (10)	C2—C1—C5—C6	179.68 (13)	
O1—C1—C2—C3	0.12 (14)	O1—C1—C5—C6	0.96 (18)	
C5—C1—C2—C3	-178.69 (12)	C1—C5—C6—N1	-179.91 (11)	
C1—C2—C3—C4	0.21 (14)	O3—N1—C6—C5	2.03 (17)	
C2—C3—C4—O1	-0.47 (14)	O2—N1—C6—C5	-178.15 (11)	