metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Acetylacetonato- $\kappa^2 O, O'$) aqua[2-(2nitrophenoxy)-N'-(2-oxidobenzylidene- κO) acetohydrazidato- $\kappa^2 O, N'$]manganese(III)

Zi-Jing Xiao

College of Materials Science & Engineering, Huaqiao University, Quanzhou 362021, People's Republic of China Correspondence e-mail: xzj@hqu.edu.cn

Received 30 May 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.086; data-to-parameter ratio = 16.2.

In the title complex, $[Mn(C_{15}H_{11}N_3O_5)(C_5H_7O_2)(H_2O)]$, the Mn^{III} ion has a distorted octahedral coordination geometry. It is coordinated by a phenoxy O atom, a hydrazine N atom and a carbonyl O atom of the 2-(2-nitrophenoxy)-N'-(2-oxidobenzylidene- κO)acetohydrazidate dianion, by two O atoms of the acetylacetonate anion and by the O atom of a coordinated water molecule. In the crystal structure, complex molecules are linked into centrosymmetric dimeric units through four intermolecular $O-H\cdots O$ hydrogen bonds involving both H atoms of the coordinated water molecule.

Related literature

For the biological activity and chemical versatility of hydrazone complexes, see: Liu & Gao (1998); Iskander *et al.* (2001); Cariati *et al.* (2002); Sreekanth *et al.* (2004); Bai *et al.* (2006); Mondal *et al.* (2008). For phenoxyacetylhydrazone complexes, see: Chen & Liu (2004); Sun *et al.* (2005); Chen & Liu (2006).

Experimental

Crystal data $[Mn(C_{15}H_{11}N_3O_5)(C_5H_7O_2)(H_2O)]$ $M_r = 485.33$

Monoclinic, $P2_1/c$ *a* = 8.5217 (6) Å b = 13.9263 (10) Å c = 17.6311 (10) Å $\beta = 92.725 (3)^{\circ}$ $V = 2090.0 (2) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer Absorption correction: multi-scan (*TEXRAY*; Molecular Structure Corporation, 1999) $T_{\min} = 0.766, T_{\max} = 0.832$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 2 restraints $wR(F^2) = 0.086$ H-atom parameters constrainedS = 0.88 $\Delta \rho_{max} = 0.41 \text{ e } \text{ Å}^{-3}$ 4735 reflections $\Delta \rho_{min} = -0.26 \text{ e } \text{ Å}^{-3}$ 293 parameters293 parameters

Mo $K\alpha$ radiation $\mu = 0.69 \text{ mm}^{-1}$

 $0.58 \times 0.32 \times 0.27 \text{ mm}$

4921 measured reflections

4735 independent reflections

3155 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.046$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O1W-H01\cdots O4^{i}$ 0.882.162.955 (2)150 $O1W-H02\cdots O2^{i}$ 0.881.962.829 (2)169

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *TEXRAY* (Molecular Structure Corporation, 1999); cell refinement: *TEXRAY*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SHELXS98* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL98* (Sheldrick, 2008); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

We are grateful for financial support from the Natural Science Foundation of Fujian Province of China (No. E0640006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2221).

References

- Bai, Y., Dang, D.-B., Cao, X., Duan, C.-Y. & Meng, Q.-J. (2006). Inorg. Chem. Commun. 9, 86–89.
- Cariati, F., Caruso, U., Centore, R., Marcolli, W., De Maria, A., Panunzi, B., Roviello, A. & Tuzi, A. (2002). *Inorg. Chem.* 41, 6597–6603.
- Chen, X.-H. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 33-37.
- Chen, X.-H. & Liu, S.-X. (2006). Acta Cryst. E62, m2869-m2871.
- Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). *Polyhedron*, **20**, 2787–2798.
- Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81-84.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Molecular Structure Corporation (1999). *TEXRAY* and *TEXSAN*. MSC, The Woodlands, Texas, USA.
- Mondal, B., Drew, M. G. B., Banerjee, R. & Ghosh, T. (2008). *Polyhedron*, **27**, 3197–3206.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). *Polyhedron*, 23, 41–47.

Sun, M.-M., Li, W.-P. & Liu, S.-X. (2005). Acta Cryst. E61, m1818-m1820.

supporting information

Acta Cryst. (2009). E65, m986 [doi:10.1107/S1600536809028177]

(Acetylacetonato- $\kappa^2 O$, O') aqua[2-(2-nitrophenoxy)-N'-(2-oxidobenzylidene- κO) acetohydrazidato- $\kappa^2 O$, N'] manganese(III)

Zi-Jing Xiao

S1. Comment

The design and construction of hydrazone complexes are of great interest due to their various structures and their biological activities and chemical versatility (Liu & Gao, 1998; Iskander *et al.*, 2001; Cariati *et al.*, 2002; Sreekanth *et al.*, 2004; Bai *et al.*, 2006; Mondal *et al.*, 2008). Relatively speaking, only a few crystal structures of phenoxyacetyl-hydrazone complexes have been studied (Chen & Liu, 2004; Sun *et al.*, 2005; Chen & Liu, 2006).

As shown in Fig. 1, the Mn^{III} ion in (I) is octahedrally coordinated by phenol atom O1, hydrazine atom N1 and carbonyl atom O2 from the phenoxyacetylhydrazone ligand L^2 , two oxygen atoms (O6 and O7) from an acac⁻ ligand, and O1W atom from coordinated water molecule. Atoms O1, N1, O2 and O7 form the equatorial plane, while the atoms O6 and O1W occupy the two axial positions. The bond distance of Mn1—O6(acac⁻) (2.130 (2) Å) is much longer than the one of Mn1—O7(acac⁻) (1.921 (1) Å) due to the Jahn-Teller effect of Mn(III) ion.

In most of phenoxyacetylhydrazone complexes, the phenoxy oxygen atom is not coordinated to metal atom. This structural phenomenon is found in the title complex (I) and was also found in several known complexes (Chen & Liu, 2004; Sun *et al.*, 2005; Chen & Liu, 2006).

The complex $Co(C_2H_3O_2)(C_4H_9NO)_2(C_{15}H_{11}N_3O_5)$ (II) (Sun *et al.*, 2005) and the title complex $Mn(C_{15}H_{11}N_3O_5)(C_5H_7O_2)$ (H₂O) (I) have the same *N*-salicylaldehyde-N'– (*o*-nitrophenoxyacyl) hydrazone ligand. The dihedral angles between the two benzene rings of the phenoxyacyl hydrazone ligand in complex (I) is 89.48 (8)°, while the corresponding one in (II) is 44.1 (1)°. This big difference of the two dihedral angles may come from the different sizes of the second ligands in the two complexes.

As shown in Fig. 2, two neighboring complex molecules are linked by four hydrogen bonds O—H(coordinated water molecule) $\cdots O($ carbonyl O or oxygen in *o*-nitrate group) to form a centrosymmetrical dimer.

S2. Experimental

The *N*-salicylaldehyde-*N'*- (*o*-nitrophenoxyacyl) hydrazone ligand, (H₂L) was prepared according the reference (Sun *et al.*, 2005). H₂L (0.05 mmol) and Mn(acac)₃ (0.05 mmol) were dissolved in a mixed solution of 10 ml 95% EtOH and 1 ml DMF. The mixture was stirred for 3 h. After one week, Dark-brown crystals of (I) were obtained.

S3. Refinement

The water H atoms (H01 and H02) were located from the difference Fourier map and refined isotropically, with O—H distance restraints of 0.88 Å. The other H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom numbering scheme.

Figure 2

Extended centrosymmetrical dimer structure of (I).

(Acetylacetonato- $\kappa^2 O, O'$)aqua[2-(2-nitrophenoxy)-N'- (2-oxidobenzylidene- κO)acetohydrazidato- $\kappa^2 O, N'$]manganese(III)

F(000) = 1000

 $\theta = 2.3 - 27.5^{\circ}$

 $\mu = 0.69 \text{ mm}^{-1}$ T = 293 K

Prism. red-black

 $0.58 \times 0.32 \times 0.27 \text{ mm}$

 $D_{\rm x} = 1.542 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4921 reflections

Crystal data

[Mn(C₁₅H₁₁N₃O₅)(C₅H₇O₂)(H₂O)] $M_r = 485.33$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.5217 (6) Å b = 13.9263 (10) Å c = 17.6311 (10) Å $\beta = 92.725$ (3)° V = 2090.0 (2) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID Imaging Plate	4735 measured reflections
diffractometer	4735 independent reflections
Radiation source: fine-focus sealed tube	3155 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ωscans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 11$
(TEXRAY; Molecular Structure Corporation,	$k = 0 \rightarrow 18$
1999)	$l = -22 \rightarrow 22$
$T_{\min} = 0.766, T_{\max} = 0.832$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
<i>S</i> = 0.88	H-atom parameters constrained
4735 reflections	$w = 1/[\sigma^2(F_o^2) + (0.042P)^2]$
293 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn1	0.42210 (3)	0.18422 (2)	0.481380 (18)	0.03308 (10)	
N1	0.57698 (19)	0.27034 (12)	0.53316 (9)	0.0331 (4)	

N2	0.73611 (19)	0.24037 (13)	0.53073 (10)	0.0375 (4)
N3	0.8041 (2)	0.02849 (16)	0.26015 (12)	0.0533 (5)
01	0.25674 (16)	0.25554 (11)	0.52037 (9)	0.0418 (4)
02	0.61556 (15)	0.11671 (10)	0.46352 (8)	0.0378 (3)
O3	0.90604 (16)	0.07570 (10)	0.41027 (8)	0.0388 (3)
04	0.8243(2)	-0.04084(13)	0.30114(10)	0.0592 (5)
05	0.7271(3)	0.02349 (18)	0.20070(14)	0.1154(10)
06	0.44030(18)	0.2519(10) 0.26593(11)	0 38003 (9)	0.0456 (4)
07	0.29877 (16)	0.09269 (10)	0.30005(9) 0.42284(8)	0.0130(1)
01W	0.29896 (18)	0.07203(10)	0.57926 (8)	0.0378(3) 0.0445(4)
H01	0.3227	0.07903 (11)	0.57920 (8)	0.0443(4)
нот Пот	0.3227	0.0398	0.5720	0.034(10) 0.050(8)*
П02 С1	0.3983	0.0103	0.5720	$0.039(8)^{\circ}$
Cl	0.2398(2)	0.34313(13) 0.20(49(15))	0.54055(12)	0.0303(3)
C2	0.3993(2)	0.39648 (13)	0.50558 (11)	0.0356 (5)
03	0.3901 (3)	0.4915/(16)	0.59191 (12)	0.0447(6)
H3A	0.4822	0.5254	0.6036	0.054*
C4	0.2482 (3)	0.53520 (17)	0.60058 (14)	0.0545 (6)
H4A	0.2434	0.5984	0.6173	0.065*
C5	0.1116 (3)	0.48358 (19)	0.58401 (14)	0.0547 (7)
H5A	0.0149	0.5125	0.5907	0.066*
C6	0.1161 (3)	0.39072 (17)	0.55798 (13)	0.0474 (6)
H6A	0.0226	0.3576	0.5478	0.057*
C7	0.5521 (2)	0.35502 (15)	0.55894 (11)	0.0364 (5)
H7A	0.6389	0.3919	0.5743	0.044*
C8	0.7392 (2)	0.16010 (15)	0.49417 (12)	0.0342 (5)
C9	0.8935 (2)	0.10965 (16)	0.48634 (12)	0.0398 (5)
H9A	0.9791	0.1536	0.4990	0.048*
H9B	0.9013	0.0559	0.5213	0.048*
C10	0.9278 (2)	0.14196 (15)	0.35479 (12)	0.0361 (5)
C11	0.8798 (2)	0.11932 (16)	0.27964 (13)	0.0406 (5)
C12	0.9049 (3)	0.18249 (19)	0.22091 (14)	0.0531 (6)
H12A	0.8707	0.1669	0.1716	0.064*
C13	0.9798(3)	0.26774 (18)	0.23514 (16)	0.0570(7)
H13A	0.9990	0.3095	0.1955	0.068*
C14	1.0266 (3)	0 29151 (18)	0.30817 (16)	0.0552(7)
H14A	1.0773	0.3497	0.3177	0.066*
C15	0.9996(3)	0.3197 0.23052 (17)	0.36756 (13)	0.000
U15 Н15Л	1.0207	0.23032 (17)	0.4160	0.0457(0)
C16	0.4860 (4)	0.2400 0.28832(10)	$0.710^{-0.710}$	0.055
U16A	0.4550	0.2530	0.25042(10)	0.0082 (8)
LIIOA	0.4350	0.3539	0.2372	0.102*
	0.4391	0.2043	0.2030	0.102*
HIOC	0.3983	0.2848	0.2489	0.102^{*}
C17	0.4325(3)	0.22903(17)	0.31312(13)	0.0446 (5)
	0.3/4/(3)	0.13544 (18)	0.29967 (13)	0.04/9(6)
HI8A	0.3812	0.1129	0.2503	0.057*
C19	0.3099 (2)	0.07523 (16)	0.35096 (12)	0.0378 (5)
C20	0.2423 (3)	-0.01982 (16)	0.32597 (13)	0.0471 (6)
H20A	0.1363	-0.0249	0.3417	0.071*

supporting information

H20B	0.3044	-0.0707	0.3486	0.071*
H20C	0.2430	-0.0246	0.2717	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.03206 (16)	0.03084 (17)	0.03640 (18)	0.00197 (14)	0.00244 (12)	-0.00560 (15)
N1	0.0330 (9)	0.0332 (10)	0.0331 (9)	0.0030 (7)	0.0021 (8)	-0.0026 (8)
N2	0.0315 (9)	0.0399 (11)	0.0413 (10)	0.0049 (8)	0.0021 (8)	-0.0051 (8)
N3	0.0568 (12)	0.0530 (14)	0.0498 (13)	-0.0075 (11)	-0.0001 (11)	-0.0056 (11)
01	0.0340 (8)	0.0387 (8)	0.0533 (9)	0.0027 (6)	0.0078 (7)	-0.0123 (7)
O2	0.0343 (7)	0.0318 (8)	0.0475 (9)	0.0009 (6)	0.0037 (7)	-0.0063 (7)
O3	0.0420 (8)	0.0379 (8)	0.0371 (8)	0.0071 (7)	0.0087 (7)	-0.0008 (7)
O4	0.0740 (12)	0.0437 (10)	0.0604 (11)	-0.0057 (9)	0.0091 (9)	-0.0050 (9)
05	0.158 (2)	0.0944 (18)	0.0865 (16)	-0.0486 (17)	-0.0697 (17)	0.0141 (13)
O6	0.0578 (10)	0.0365 (9)	0.0425 (9)	-0.0007 (7)	0.0016 (8)	0.0018 (7)
O7	0.0405 (8)	0.0375 (8)	0.0353 (8)	-0.0033 (6)	0.0028 (7)	-0.0057 (6)
O1W	0.0534 (9)	0.0368 (9)	0.0437 (9)	0.0019 (7)	0.0092 (8)	-0.0013 (7)
C1	0.0419 (11)	0.0358 (12)	0.0314 (11)	0.0069 (9)	0.0029 (9)	-0.0015 (9)
C2	0.0431 (12)	0.0333 (11)	0.0308 (11)	0.0058 (9)	0.0046 (9)	-0.0037 (9)
C3	0.0544 (14)	0.0377 (13)	0.0417 (13)	0.0053 (11)	0.0009 (11)	-0.0045 (10)
C4	0.0717 (17)	0.0369 (13)	0.0547 (15)	0.0181 (13)	0.0010 (13)	-0.0090 (11)
C5	0.0528 (15)	0.0583 (16)	0.0531 (15)	0.0241 (13)	0.0040 (12)	-0.0089 (13)
C6	0.0435 (12)	0.0493 (14)	0.0496 (14)	0.0105 (11)	0.0046 (11)	-0.0072 (12)
C7	0.0390 (11)	0.0357 (12)	0.0345 (12)	-0.0007 (9)	0.0009 (9)	-0.0056 (10)
C8	0.0368 (11)	0.0346 (12)	0.0317 (11)	0.0044 (9)	0.0055 (9)	0.0018 (9)
C9	0.0390 (11)	0.0450 (13)	0.0356 (11)	0.0108 (10)	0.0033 (10)	0.0003 (10)
C10	0.0312 (10)	0.0357 (12)	0.0418 (12)	0.0075 (9)	0.0060 (9)	0.0010 (10)
C11	0.0383 (11)	0.0377 (12)	0.0458 (13)	0.0023 (10)	0.0029 (10)	0.0002 (11)
C12	0.0585 (15)	0.0573 (16)	0.0432 (13)	0.0045 (13)	0.0004 (12)	0.0036 (12)
C13	0.0642 (16)	0.0482 (16)	0.0591 (17)	0.0034 (13)	0.0090 (14)	0.0146 (13)
C14	0.0601 (15)	0.0359 (13)	0.0701 (18)	-0.0029 (11)	0.0095 (14)	-0.0009 (12)
C15	0.0488 (13)	0.0409 (14)	0.0476 (14)	0.0043 (11)	0.0052 (11)	-0.0057 (11)
C16	0.096 (2)	0.0565 (17)	0.0538 (16)	0.0007 (16)	0.0162 (15)	0.0136 (14)
C17	0.0465 (13)	0.0467 (14)	0.0407 (13)	0.0076 (11)	0.0050 (11)	0.0033 (11)
C18	0.0598 (15)	0.0477 (14)	0.0368 (12)	0.0032 (12)	0.0082 (11)	-0.0041 (11)
C19	0.0361 (11)	0.0377 (12)	0.0394 (12)	0.0066 (9)	-0.0007 (10)	-0.0084 (10)
C20	0.0523 (14)	0.0431 (14)	0.0456 (13)	0.0005 (11)	0.0000 (11)	-0.0126 (11)

Geometric parameters (Å, °)

Mn1—O1	1.8806 (14)	C5—C6	1.373 (3)
Mn1—O7	1.9214 (14)	С5—Н5А	0.9300
Mn1—O2	1.9366 (13)	С6—Н6А	0.9300
Mn1—N1	1.9746 (16)	С7—Н7А	0.9300
Mn1—O6	2.1303 (15)	C8—C9	1.503 (3)
Mn1—O1W	2.2793 (15)	С9—Н9А	0.9700
N1—C7	1.285 (3)	С9—Н9В	0.9700

NI N2	1 421 (2)	C10 C15	1 200 (2)
N2 C9	1.421(2) 1 201(2)	$C_{10} = C_{13}$	1.390(3)
N2 05	1.291(3)		1.404(3)
N3-05	1.212(3)	$C_{11} - C_{12}$	1.365(3)
N2 C11	1.213(2)	C12 - C13	1.300 (4)
	1.434(3)	C12 - C14	0.9300
01-01	1.330(2)	C12 = U12 A	1.370 (4)
02 - C8	1.309 (2)	CI3—HI3A	0.9300
03-010	1.364 (2)		1.376(3)
03-09	1.431 (2)	CI4—HI4A	0.9300
06-017	1.253 (3)	CI5—HI5A	0.9300
0/	1.298 (2)	C16—C17	1.497 (3)
O1W—H01	0.8802	C16—H16A	0.9600
O1W—H02	0.8799	C16—H16B	0.9600
C1—C6	1.402 (3)	C16—H16C	0.9600
C1—C2	1.414 (3)	C17—C18	1.415 (3)
C2—C3	1.407 (3)	C18—C19	1.368 (3)
C2—C7	1.435 (3)	C18—H18A	0.9300
C3—C4	1.368 (3)	C19—C20	1.501 (3)
С3—НЗА	0.9300	C20—H20A	0.9600
C4—C5	1.387 (4)	C20—H20B	0.9600
C4—H4A	0.9300	C20—H20C	0.9600
O1—Mn1—O7	98.43 (6)	С2—С7—Н7А	117.8
O1—Mn1—O2	166.98 (7)	N2	124.81 (18)
O7—Mn1—O2	92.22 (6)	N2	119.28 (19)
O1—Mn1—N1	90.36 (7)	O2—C8—C9	115.90 (18)
O7—Mn1—N1	171.05 (6)	O3—C9—C8	110.20 (16)
O2—Mn1—N1	79.31 (6)	О3—С9—Н9А	109.6
O1—Mn1—O6	96.33 (7)	С8—С9—Н9А	109.6
O7—Mn1—O6	87.91 (6)	O3—C9—H9B	109.6
O2—Mn1—O6	91.51 (6)	С8—С9—Н9В	109.6
N1—Mn1—O6	89.40 (6)	H9A—C9—H9B	108.1
O1—Mn1—O1W	88.25 (6)	O3—C10—C15	123.9 (2)
O7—Mn1—O1W	85.15 (6)	O3—C10—C11	118.78 (19)
Ω_{2} —Mn1— $\Omega_{1}W$	85.19 (6)	C15-C10-C11	117.3 (2)
N1—Mn1—O1W	96.91 (6)	C12-C11-C10	121.0(2)
Ω_{6} Mn1 Ω_{1} W	172, 19 (6)	C12-C11-N3	1173(2)
C7—N1—N2	116.98(17)	C10-C11-N3	121.6(2)
C7 N1 Mp1	127.08(14)	C_{13} C_{12} C_{11}	121.0(2) 120.2(2)
$N_2 = N_1 = M_n I$	115 18 (12)	C_{13} C_{12} H_{12A}	119.9
$C_8 N_2 N_1$	108.13(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.0
$C_0 = N_2 = N_1$	100.13(10) 121.7(2)	$C_{12} = C_{12} = C_{14}$	119.9 110.7(2)
05 N3 C11	121.7(2) 1181(2)	$C_{12} = C_{13} = C_{14}$	119.7 (2)
$O_4 N_2 C_{11}$	110.1(2) 120.2(2)	C12 $C13$ $H12A$	120.2
$C_1 = 01 = M_{\rm P}^1$	120.2(2) 128.20(12)	$C_{14} = C_{15} = H_{15} = H_{15}$	120.2
$C_1 = O_1 = W_{1111}$	120.29(13)	$C_{13} = C_{14} = C_{13}$	120.9 (2)
$C_0 = 02 = 00$	112.33 (12)	C15 - C14 - H14A	119.5
C10 - C3 - C9	11/.88 (1/)	C13 - C14 - H14A	119.5
U1/—U6—Mn1	122.95 (15)	C14—C15—C10	120.8 (2)

C19—O7—Mn1	125.80 (13)	C14—C15—H15A	119.6
Mn1—O1W—H01	116.9	C10-C15-H15A	119.6
Mn1—O1W—H02	121.7	C17—C16—H16A	109.5
H01—O1W—H02	105.0	C17—C16—H16B	109.5
O1—C1—C6	118.1 (2)	H16A—C16—H16B	109.5
O1—C1—C2	123.98 (18)	C17—C16—H16C	109.5
C6—C1—C2	117.85 (19)	H16A—C16—H16C	109.5
C3—C2—C1	119.68 (19)	H16B—C16—H16C	109.5
C3—C2—C7	118.1 (2)	O6—C17—C18	123.8 (2)
C1—C2—C7	122.25 (18)	O6—C17—C16	117.7 (2)
C4—C3—C2	121.2 (2)	C18—C17—C16	118.5 (2)
С4—С3—НЗА	119.4	C19—C18—C17	125.8 (2)
С2—С3—НЗА	119.4	C19—C18—H18A	117.1
C3—C4—C5	118.9 (2)	C17—C18—H18A	117.1
C3—C4—H4A	120.5	O7—C19—C18	125.5 (2)
C5—C4—H4A	120.5	O7—C19—C20	113.99 (19)
C6-C5-C4	121.5 (2)	C18—C19—C20	120.5 (2)
C6—C5—H5A	119.3	С19—С20—Н20А	109.5
C4—C5—H5A	119.3	С19—С20—Н20В	109.5
C5—C6—C1	120.8 (2)	H20A—C20—H20B	109.5
С5—С6—Н6А	119.6	С19—С20—Н20С	109.5
С1—С6—Н6А	119.6	H20A—C20—H20C	109.5
N1—C7—C2	124.32 (19)	H20B—C20—H20C	109.5
N1—C7—H7A	117.8		
O1—Mn1—N1—C7	-18.44 (18)	O1—C1—C6—C5	-179.2 (2)
O2—Mn1—N1—C7	169.54 (18)	C2-C1-C6-C5	2.5 (3)
O6—Mn1—N1—C7	77.89 (17)	N2—N1—C7—C2	-179.77 (19)
O1W—Mn1—N1—C7	-106.72 (17)	Mn1—N1—C7—C2	10.7 (3)
O1—Mn1—N1—N2	171.88 (14)	C3—C2—C7—N1	-177.42 (19)
O2—Mn1—N1—N2	-0.15 (13)	C1—C2—C7—N1	2.5 (3)
O6—Mn1—N1—N2	-91.80 (14)	N1—N2—C8—O2	1.6 (3)
O1W—Mn1—N1—N2	83.60 (13)	N1—N2—C8—C9	-177.13 (17)
C7—N1—N2—C8	-171.41 (17)	Mn1—O2—C8—N2	-1.8 (3)
Mn1—N1—N2—C8	-0.6 (2)	Mn1—O2—C8—C9	176.98 (14)
O7—Mn1—O1—C1	-157.85 (17)	C10—O3—C9—C8	71.6 (2)
O2—Mn1—O1—C1	57.6 (4)	N2-C8-C9-O3	-136.04 (19)
N1—Mn1—O1—C1	20.41 (17)	O2—C8—C9—O3	45.1 (2)
O6—Mn1—O1—C1	-69.03 (17)	C9—O3—C10—C15	27.0 (3)
O1W—Mn1—O1—C1	117.32 (17)	C9—O3—C10—C11	-155.01 (18)
O1—Mn1—O2—C8	-37.1 (3)	O3—C10—C11—C12	-177.42 (19)
O7—Mn1—O2—C8	177.99 (13)	C15—C10—C11—C12	0.7 (3)
N1—Mn1—O2—C8	0.91 (13)	O3—C10—C11—N3	1.6 (3)
O6—Mn1—O2—C8	90.02 (14)	C15—C10—C11—N3	179.81 (19)
O1W—Mn1—O2—C8	-97.07 (13)	O5—N3—C11—C12	-21.3 (4)
O1—Mn1—O6—C17	-125.31 (18)	O4—N3—C11—C12	155.4 (2)
O7—Mn1—O6—C17	-27.06 (18)	O5—N3—C11—C10	159.6 (2)
O2—Mn1—O6—C17	65.11 (18)	O4—N3—C11—C10	-23.7 (3)

N1-Mn1-O6-C17 $O1-Mn1-O7-C19$ $O2-Mn1-O7-C19$ $O6-Mn1-O7-C19$ $O1W-Mn1-O7-C19$ $Mn1-O1-C1-C6$ $Mn1-O1-C1-C2$ $O1-C1-C2-C3$ $C6-C1-C2-C3$ $O1-C1-C2-C7$ $C6-C1-C2-C7$ $C6-C1-C2-C7$ $C1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$	144.40 (18) $125.06 (16)$ $-62.46 (16)$ $28.97 (16)$ $-147.44 (16)$ $166.84 (16)$ $-15.0 (3)$ $179.15 (19)$ $-2.6 (3)$ $-0.8 (3)$ $177.4 (2)$ $1.0 (3)$ $-179.1 (2)$ $1.0 (4)$ $-1.1 (4)$	C10—C11—C12—C13 N3—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C10 O3—C10—C15—C14 C11—C10—C15—C14 Mn1—O6—C17—C18 Mn1—O6—C17—C18 O6—C17—C18—C19 C16—C17—C18—C19 Mn1—O7—C19—C18 Mn1—O7—C19—C20 C17—C18—C19—O7 C17—C18—C19—C20	1.1 (4) -178.0 (2) -1.6 (4) 0.2 (4) 1.7 (4) 175.9 (2) -2.2 (3) 15.6 (3) -165.12 (17) 4.8 (4) -174.5 (2) -20.4 (3) 160.21 (14) -3.8 (4) 175.6 (2)
C3-C4-C5-C6 C4-C5-C6-C1	-1.1(4) -0.6(4)	C17—C18—C19—C20	175.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	<i>D</i> —H…A
O1 <i>W</i> —H01…O4 ⁱ	0.88	2.16	2.955 (2)	150
O1 <i>W</i> —H02····O2 ⁱ	0.88	1.96	2.829 (2)	169

Symmetry code: (i) -x+1, -y, -z+1.