inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The iron phosphate CaFe₃(PO₄)₃O

Mourad Hidouri* and Mongi Ben Amara

Faculté des Sciences de Monastir, 5019, Monastir, Tunisia. Correspondence e-mail: mourad_hidouri@yahoo.fr

Received 6 May 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (P–O) = 0.003 Å; R factor = 0.031; wR factor = 0.088; data-to-parameter ratio = 13.2.

A new iron phosphate, calcium triiron(III) tris(phosphate) oxide, CaFe₃(PO₄)₃O, has been isolated and shown to exhibit a three-dimensional structure built by FeO₆ octahedra, FeO₅ trigonal bipyramids and PO₄ tetrahedra. The FeO_x (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe₆O₂₈]_{∞} chains with branches running along [010]. Adjacent chains are connected by the phosphate groups *via* common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe₃(PO₄)₃O and Bi_{0.4}Fe₃(PO₄)₃O structures, in which the Ca²⁺ cations occupy a single symmetry non-equivalent cavity.

Related literature

The interest in iron phosphates has increased following the discovery of LiFePO₄ with olivine-type structure, which is the most promising electrode material for Li-ion batteries, see: Padhi *et al.* (1997). The title compound is isostructural to the iron phosphates $Bi_{0.4}Fe_3(PO_4)_3$ (Benabad *et al.*, 2000) and SrFe₃(PO₄)₃O (Morozov *et al.*, 2003). For ionic radii, see: Shannon (1976). For P–O distances in orthophosphate groups, see: Baur (1974). For Ca–O distances in hepta-coordinated Ca²⁺ ions in Ca₃(PO₄)₂, see: Mathew *et al.* (1977). For Fe–O distances for five-coordinated Fe³⁺ ions in NaCaFe₃(PO₄)₄, see: Hidouri *et al.* (2003).The valences of the cations were calculated using the Brown & Altermatt (1985) method.

Experimental

Crystal data CaFe₃(PO₄)₃O

 $M_r = 508.54$

Monoclinic, $P2_1/m$ a = 7.521 (2) Å b = 6.330 (2) Å c = 10.160 (2) Å $\beta = 100.03$ (2)° V = 476.3 (2) Å³

Data collection

Enraf-Nonius TurboCAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.193, T_{\max} = 0.293$ 2072 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.088$ S = 1.121493 reflections Z = 2Mo K\alpha radiation $\mu = 5.63 \text{ mm}^{-1}$ T = 293 K $0.36 \times 0.22 \times 0.22 \text{ mm}$

1493 independent reflections 1412 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ 2 standard reflections frequency: 120 min intensity decay: 6.0%

113 parameters $\Delta \rho_{\text{max}} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.59 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2067).

References

- Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
- Benabad, A., Bakhous, K., Cherkaoui, F. & Holt, E. M. (2000). Acta Cryst. C56, 1292–1293.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. & Amara, M. B. (2003). J. Alloys Compd, 358, 36–41.
- Mathew, M., Schroeder, L. W., Dickens, B. & Brown, W. E. (1977). Acta Cryst. B33, 1325–1333.
- Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. & Tendeloo, G. V. (2003). J Solid State Chem. 170, 411–417.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188–1194.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, i66 [doi:10.1107/S160053680902827X]

The iron phosphate CaFe₃(PO₄)₃O

Mourad Hidouri and Mongi Ben Amara

S1. Comment

Iron phosphates are extensively studied for their rich structural chemistry owing to the possible occurrence of both +2 and +3 oxidation states for iron and the tendecy of its coordination polyhedra to form with the phosphate groups a variety of frameworks. Such adaptative crystal chemistry provides new and exciting aventures in the exploration of the intrinsic relationship between structure and composition. The interest in these materials is further accentuated since the discovery of LiFePO₄ with olivine-type structure the most promising electrode material for Li-ion batteries (Padhi *et al.*, 1997).

As a part of a systematic exploration of the A₂O—MO—Fe₂O₃—P₂O₅ (A = alkali metal, M = divalent cation) in a search of new iron phosphates with interesting structures and subsequently intriguing properties, we describe here the structure of CaFe₃(PO₄)₃O, extracted from a mixture of nominal composition LiCaFe₃(PO₄)₄. This compound is isostructural to the previously reported iron phosphates Bi_{0.4}Fe₃(PO₄)₃ (Benabad *et al.*, 2000) and SrFe₃(PO₄)₃O (Morozov *et al.*, 2003). Its structure, shown in figure 1, is built from a three-dimensional arrangement based on two crystallographically distinct FeO₆ octahedra, one symmetry non equivalent FeO₅ polyhedron and three symmetry distinct PO₄ tetrahedra. The Fe polyhedra form [Fe₆O₂₈]_∞ chains with branches running along the [010] direction. In such chains (Fig. 2), each Fe(1)O₆ octahedron shares two opposite edges with two equivalent octahedra, one of the equatorial oxo-ligands forming each of the common edges being also shared with one Fe(2)O₆ octahedron. The latter is corner-linked with one one Fe(2)O₅ polyhedron to form the branches of the chain. The conntection of these chains is ensured by the phosphate tetrahedra in such a way that each PO₄ connects two adjacent chains either by sharing one edge with one chain and one corner with the other (P(1)O₄) or by sharing three corners with a same chain and the fourth with the other (P(2)O₄ and P(3)O₄). The threedimensional framework constructed in this way delimits a single symmetry non equivalent cavity occupied by the Ca²⁺ cations.

The FeO₆ octahedra are both highly distorted as indicated by the Fe—O distances ranging from 1.986 (2) to 2.114 (2) Å for Fe(1)O₆ and from 1.870 (2) to 2.183 (3) Å for Fe(2)O₆ with average values of 2.037 (2) Å and 2.019 (3) Å, respectively, close to that 2.03 Å, predicted by Shannon for octahedral Fe³⁺ ions (Shannon, 1976). The FeO₅ polyhedron is also very distorted with Fe—O distances ranging from 1.872 (4) to 1.986 (2) Å. The mean distance of 1.940 (4) Å is consistent with those 1.946 Å and 1.956 Å, observed for five-coordinated Fe³⁺ ions in NaCaFe₃(PO₄)₄ (Hidouri *et al.*, 2003). The PO₄ tetrahedra have P—O distances in the range 1.513 (3)–1.561 (3) Å with an overall distance of 1.535 (3) Å, close to that 1.537 calculated for the monophosphate groups (Baur, 1974). The Ca²⁺ cations occupy a single non equivalent site delimited by the Fe/P/O network. Its environement (Fig.3) is consisted by seven oxygen atoms with four Ca—O distance of 2.462 (2) Å is in the range of those previously reported for heptacoordinated Ca²⁺ ions in Ca₃(PO₄)₂ (Mathew *et al.*, 1977). The valences of all the cations were calculated using the Brown & Altermatt method (Brown & Altermatt, 1985). The calculated values of 1.85, 2.86, 3.10, 3.09, 4.94, 5.03 and 5.02 for Ca, Fe(1), Fe(2), Fe(3), P(1), P(2) and P(3), respectively are consistent with their respective oxidation numbers of 2.0, 3.0, 3.0, 3.0, 5.0,

5.0 and 5.0.

The structural similarity between the title compound and the iron phosphates $SrFe_3(PO_4)_3O$ and $Bi_{0.4}Fe_3(PO_4)_3O$ shows the great flexibility of the $[Fe_3P_3O_{13}]_{\infty}$ framework which seems to accomodate various cations. Further invstigation of the chemical stability of this structural type by including other cations would be of interest.

S2. Experimental

Single crystals of the title compound were isolated during an attempt to crystallize LiCaFe₃(PO₄)₄ in a flux of lithium dimolybdate Li₂Mo₂O₇ in an atomic ratio, P: Mo = 8:1. Appropriate amounts of LiNO₃, CaCO₃, Fe(NO₃)₃.9H₂O, (NH₄)₂HPO₄ and MoO₃ were firstly dissolved in nitric acid and the solution obtained was dried for 24 h at 353 K. After grinding in an agate mortar to ensure its best homogeneity, the dry residue was heated in a platinum crucible to 673 K for 24 h in order to remove the decomposition products: NO₂, NH₃ and H₂O. The sample was then reground, melted at 1173 K for 1 h and subsequently cooled at a 10 °.h⁻¹ rate to 673 K after which the furnace was turned off. The final product was washed with warm water in order to dissolve the flux. From the mixture, dark brown and irregularely shaped crystals of CaFe₃(PO₄)₃O were extracted.

S3. Refinement

The Fe and Ca atoms were loctaed by direct methods and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined with anisotrop displacement parameterers.

Figure 1

The CaFe₃(PO₄)₃O structure as projected along the [010] direction.

Figure 2

A view of the $[Fe_6O_{28}]_{\infty}$ chain running along the [010] direction.

Figure 3

The environment of the Ca²⁺ cations showing the anisotropic atomic displacements.

calcium triiron(III) tris(phosphate) oxide

Crystal data	
CaFe ₃ (PO ₄) ₃ O $M_r = 508.54$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 7.521 (2) Å b = 6.330 (2) Å c = 10.160 (2) Å $\beta = 100.03$ (2)° V = 476.3 (2) Å ³ Z = 2	F(000) = 494 $D_x = 3.546 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8.9-12.5^{\circ}$ $\mu = 5.63 \text{ mm}^{-1}$ T = 293 K Prism, brown $0.36 \times 0.22 \times 0.22 \text{ mm}$
Data collection	
Enraf–Nonius TurboCAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$T_{\text{min}} = 0.193, T_{\text{max}} = 0.293$ 2072 measured reflections 1493 independent reflections 1412 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$ $\theta_{\text{max}} = 29.9^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$ $h = -1 \rightarrow 10$

$k = -1 \longrightarrow 8$ $l = -14 \longrightarrow 14$	2 standard reflections every 120 min intensity decay: 6.0%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.6592P]$
$wR(F^2) = 0.088$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
1493 reflections	$\Delta ho_{ m max} = 0.63 \ { m e} \ { m \AA}^{-3}$
113 parameters	$\Delta \rho_{\rm min} = -1.59 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.173 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Са	0.66161 (10)	-0.2500	0.19595 (7)	0.00891 (18)
Fe1	0.0000	-0.5000	0.0000	0.00627 (16)
Fe2	-0.64926 (7)	-0.7500	0.20179 (5)	0.00561 (16)
Fe3	-0.21388 (7)	-0.7500	0.43643 (5)	0.00684 (16)
P1	-0.31703 (11)	-0.7500	0.11247 (8)	0.0052 (2)
011	-0.5087 (3)	-0.7500	0.0310 (2)	0.0081 (5)
012	-0.3598 (3)	-0.7500	0.2566 (3)	0.0080 (5)
013	-0.2107 (2)	-0.5489 (3)	0.09386 (18)	0.0083 (3)
P2	0.26341 (12)	-0.2500	0.23940 (9)	0.0054 (2)
O21	0.0855 (3)	-0.2500	0.1340 (3)	0.0084 (5)
O22	0.2123 (4)	-0.2500	0.3770 (3)	0.0130 (5)
O23	0.3790 (2)	-0.4390 (3)	0.21363 (18)	0.0091 (3)
P3	0.21762 (12)	-0.7500	0.48890 (9)	0.0064 (2)
O31	0.0256 (4)	-0.7500	0.4084 (3)	0.0140 (5)
O32	0.3513 (4)	-0.7500	0.3933 (3)	0.0119 (5)
O33	-0.2479 (3)	-1.0599 (3)	0.41460 (18)	0.0116 (4)
0	-0.8765 (3)	-0.7500	0.0924 (2)	0.0070 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Ca	0.0108 (3)	0.0090 (3)	0.0072 (3)	0.000	0.0024 (2)	0.000
Fe1	0.0075 (2)	0.0054 (2)	0.0068 (3)	-0.00023 (16)	0.00379 (17)	0.00011 (17)

supporting information

Fe2	0.0066 (3)	0.0050 (3)	0.0057 (2)	0.000	0.00243 (17)	0.000
Fe3	0.0111 (3)	0.0060 (3)	0.0036 (3)	0.000	0.00167 (18)	0.000
P1	0.0065 (4)	0.0052 (4)	0.0045 (4)	0.000	0.0028 (3)	0.000
011	0.0075 (11)	0.0106 (12)	0.0066 (11)	0.000	0.0019 (9)	0.000
012	0.0096 (11)	0.0097 (12)	0.0058 (10)	0.000	0.0042 (8)	0.000
013	0.0089 (7)	0.0075 (8)	0.0096 (8)	-0.0013 (6)	0.0048 (6)	0.0000 (6)
P2	0.0077 (4)	0.0049 (4)	0.0038 (4)	0.000	0.0019 (3)	0.000
O21	0.0099 (11)	0.0089 (11)	0.0065 (10)	0.000	0.0011 (9)	0.000
O22	0.0189 (13)	0.0164 (13)	0.0047 (11)	0.000	0.0050 (9)	0.000
O23	0.0106 (8)	0.0055 (7)	0.0114 (8)	0.0007 (6)	0.0028 (6)	-0.0005 (6)
P3	0.0103 (4)	0.0053 (4)	0.0044 (4)	0.000	0.0032 (3)	0.000
O31	0.0114 (12)	0.0208 (14)	0.0093 (12)	0.000	0.0005 (9)	0.000
O32	0.0135 (12)	0.0167 (13)	0.0070 (11)	0.000	0.0057 (9)	0.000
O33	0.0213 (9)	0.0059 (7)	0.0078 (8)	-0.0006 (7)	0.0031 (7)	0.0016 (6)
0	0.0065 (10)	0.0070 (11)	0.0068 (10)	0.000	-0.0005 (8)	0.000

Geometric parameters (Å, °)

Ca—O11 ⁱ	2.391 (3)	Fe3—O33	1.986 (2)
Ca—O13 ⁱⁱ	2.434 (2)	Fe3—O33 ^{xii}	1.986 (2)
Ca—O13 ⁱⁱⁱ	2.434 (2)	P1—O13	1.532 (2)
Ca—O23	2.473 (3)	P1—O13 ^{xii}	1.532 (2)
Ca—O23 ^{iv}	2.473 (3)	P1—O11	1.532 (3)
Ca—O33 ^v	2.514 (2)	P1—O12	1.554 (3)
Ca—O33 ^{vi}	2.514 (2)	P1—Ca ^{ix}	3.2878 (10)
Ca—P2	3.102 (4)	P1—Ca ^{xiii}	3.2878 (10)
Ca—P3 ^{vii}	3.1724 (16)	O11—Ca ⁱ	2.391 (3)
Ca—P1 ⁱⁱ	3.2878 (10)	O13—Ca ^{ix}	2.434 (2)
Ca—P1 ^v	3.2878 (10)	P2—O22	1.513 (3)
Fe1—O ^{viii}	1.9860 (17)	P2-023 ^{iv}	1.528 (2)
Fe1—O ⁱⁱ	1.9860 (17)	P2—O23	1.528 (2)
Fe1-013	2.011 (2)	P2—O21	1.561 (3)
Fe1—O13 ⁱ	2.011 (2)	O21—Fe1 ^{xiv}	2.1135 (18)
Fe1—O21 ⁱ	2.1135 (18)	O22—Fe3 ^{xi}	1.894 (3)
Fe1—O21	2.1135 (18)	O23—Fe2 ⁱⁱ	1.981 (2)
Fe2—O	1.870 (3)	P3—O32	1.515 (3)
Fe2—O32 ^{ix}	1.945 (3)	P3—O31	1.530 (3)
Fe2—O23 ^{ix}	1.981 (2)	P3—O33 ^{xv}	1.544 (2)
Fe2—O23 ^x	1.981 (2)	P3—O33 ^{xvi}	1.544 (2)
Fe2—O12	2.151 (4)	P3—Ca ^{vii}	3.1724 (16)
Fe2—O11	2.183 (3)	O32—Fe2 ⁱⁱ	1.945 (3)
Fe2—P1	2.803 (3)	O33—P3 ^{xvi}	1.544 (2)
Fe3—O31	1.872 (4)	O33—Ca ^{xiii}	2.514 (2)
Fe3—O22 ^{xi}	1.894 (3)	O—Fe1 ^{xvii}	1.9860 (17)
Fe3—O12	1.960 (3)	O—Fe1 ^{ix}	1.9860 (17)
O11 ⁱ —Ca—O13 ⁱⁱ	75.42 (7)	O—Fe2—P1	125.58 (10)
O11 ⁱ —Ca—O13 ⁱⁱⁱ	75.42 (7)	O32 ^{ix} —Fe2—P1	118.50 (10)

O13 ⁱⁱ —Ca—O13 ⁱⁱⁱ	102.03 (10)	O23 ^{ix} —Fe2—P1	85.83 (5)
O11 ⁱ —Ca—O23	78.17 (9)	O23 ^x —Fe2—P1	85.83 (5)
O13 ⁱⁱ —Ca—O23	93.59 (8)	O31—Fe3—O22 ^{xi}	108.28 (14)
O13 ⁱⁱⁱ —Ca—O23	144.58 (7)	O31—Fe3—O12	104.83 (13)
O11 ⁱ —Ca—O23 ^{iv}	78.17 (9)	O22 ^{xi} —Fe3—O12	146.89 (12)
O13 ⁱⁱ —Ca—O23 ^{iv}	144.58 (7)	O31—Fe3—O33	95.26 (6)
O13 ⁱⁱⁱ —Ca—O23 ^{iv}	93.59 (8)	O22 ^{xi} —Fe3—O33	95.17 (6)
O23—Ca—O23 ^{iv}	57.88 (11)	O12—Fe3—O33	81.70 (6)
O11 ⁱ —Ca—O33 ^v	149.65 (5)	O31—Fe3—O33 ^{xii}	95.26 (6)
O13 ⁱⁱ —Ca—O33 ^v	133.04 (8)	O22 ^{xi} —Fe3—O33 ^{xii}	95.17 (6)
O13 ⁱⁱⁱ —Ca—O33 ^v	86.46 (7)	O12—Fe3—O33 ^{xii}	81.70 (6)
O23—Ca—O33 ^v	105.74 (8)	O33—Fe3—O33 ^{xii}	162.15 (12)
O23 ^{iv} —Ca—O33 ^v	78.93 (9)	O13—P1—O13 ^{xii}	112.33 (16)
O11 ⁱ —Ca—O33 ^{vi}	149.65 (5)	O13—P1—O11	113.29 (9)
O13 ⁱⁱ —Ca—O33 ^{vi}	86.46 (7)	O13 ^{xii} —P1—O11	113.29 (9)
O13 ⁱⁱⁱ —Ca—O33 ^{vi}	133.04 (8)	O13—P1—O12	108.34 (9)
O23—Ca—O33 ^{vi}	78.93 (9)	O13 ^{xii} —P1—O12	108.34 (9)
O23 ^{iv} —Ca—O33 ^{vi}	105.74 (8)	O11—P1—O12	100.34 (15)
O33 ^v —Ca—O33 ^{vi}	57.20 (9)	O13—P1—Fe2	123.62 (8)
O11 ⁱ —Ca—P2	79.81 (9)	O13 ^{xii} —P1—Fe2	123.62 (8)
O13 ⁱⁱ —Ca—P2	121.53 (5)	O11—P1—Fe2	50.73 (11)
O13 ⁱⁱⁱ —Ca—P2	121.53 (5)	O12—P1—Fe2	49.61 (11)
O33 ^v —Ca—P2	89.64 (8)	O13—P1—Ca ^{ix}	44.13 (8)
O33 ^{vi} —Ca—P2	89.64 (8)	O13 ^{xii} —P1—Ca ^{ix}	151.82 (9)
O11 ⁱ —Ca—P3 ^{vii}	168.11 (7)	O11—P1—Ca ^{ix}	93.19 (4)
O13 ⁱⁱ —Ca—P3 ^{vii}	111.42 (6)	O12—P1—Ca ^{ix}	74.294 (19)
O13 ⁱⁱⁱ —Ca—P3 ^{vii}	111.42 (6)	Fe2—P1—Ca ^{ix}	80.22 (2)
O23—Ca—P3 ^{vii}	91.45 (7)	O13—P1—Ca ^{xiii}	151.82 (9)
O23 ^{iv} —Ca—P3 ^{vii}	91.45 (7)	O13 ^{xii} —P1—Ca ^{xiii}	44.13 (8)
P2—Ca—P3 ^{vii}	88.29 (7)	O11—P1—Ca ^{xiii}	93.19 (4)
O11 ⁱ —Ca—P1 ⁱⁱ	77.77 (2)	O12—P1—Ca ^{xiii}	74.294 (19)
O13 ⁱⁱ —Ca—P1 ⁱⁱ	25.99 (5)	Fe2—P1—Ca ^{xiii}	80.22 (2)
O13 ⁱⁱⁱ —Ca—P1 ⁱⁱ	126.71 (6)	Ca ^{ix} —P1—Ca ^{xiii}	148.58 (4)
O23—Ca—P1 ⁱⁱ	68.54 (6)	P1	96.36 (14)
O23 ^{iv} —Ca—P1 ⁱⁱ	124.46 (6)	P1-O11-Ca ⁱ	140.38 (15)
O33 ^v —Ca—P1 ⁱⁱ	132.14 (5)	Fe2—O11—Ca ⁱ	123.26 (13)
O33 ^{vi} —Ca—P1 ⁱⁱ	75.48 (5)	P1	134.77 (17)
P2—Ca—P1 ⁱⁱ	97.38 (2)	P1	97.02 (14)
P3 ^{vii} —Ca—P1 ⁱⁱ	104.01 (2)	Fe3—O12—Fe2	128.22 (14)
O11 ⁱ —Ca—P1 ^v	77.77 (2)	P1-013-Fe1	131.13 (12)
O13 ⁱⁱ —Ca—P1 ^v	126.71 (6)	P1—O13—Ca ^{ix}	109.88 (10)
O23—Ca—P1 ^v	124.46 (6)	Fe1—O13—Ca ^{ix}	118.97 (9)
$O23^{iv}$ —Ca—P1 ^v	68.54 (6)	O22—P2—O23 ^{iv}	113.70 (10)
O33 ^v —Ca—P1 ^v	75.48 (5)	O22—P2—O23	113.70 (10)
O33 ^{vi} —Ca—P1 ^v	132.14 (5)	O23 ^{iv} —P2—O23	103.06 (16)
P2—Ca—P1 ^v	97.38 (2)	O22—P2—O21	107.95 (17)
P3 ^{vii} —Ca—P1 ^v	104.01 (2)	O23 ^{iv} —P2—O21	109.13 (10)
P1 ⁱⁱ —Ca—P1 ^v	148.58 (4)	O23—P2—O21	109.13 (10)

O ^{viii} —Fe1—O ⁱⁱ	180.0	O22—P2—Ca	122.57 (13)
O ^{viii} —Fe1—O13	90.27 (10)	O23 ^{iv} —P2—Ca	51.94 (8)
O ⁱⁱ —Fe1—O13	89.73 (10)	O23—P2—Ca	51.94 (8)
O ^{viii} —Fe1—O13 ⁱ	89.73 (10)	O21—P2—Ca	129.47 (12)
O ⁱⁱ —Fe1—O13 ⁱ	90.27 (10)	P2-O21-Fe1	124.75 (8)
O13—Fe1—O13 ⁱ	180.0	P2—O21—Fe1 ^{xiv}	124.75 (8)
O ^{viii} —Fe1—O21 ⁱ	103.14 (9)	Fe1—O21—Fe1 ^{xiv}	96.97 (11)
O ⁱⁱ —Fe1—O21 ⁱ	76.86 (9)	P2—O22—Fe3 ^{xi}	165.2 (2)
O13—Fe1—O21 ⁱ	90.79 (9)	P2—O23—Fe2 ⁱⁱ	136.88 (12)
$O13^{i}$ —Fe1— $O21^{i}$	89.21 (9)	Р2—О23—Са	98.94 (11)
O ^{viii} —Fe1—O21	76.86 (9)	Fe2 ⁱⁱ —O23—Ca	124.12 (9)
O ⁱⁱ —Fe1—O21	103.14 (9)	O32—P3—O31	109.09 (17)
O13—Fe1—O21	89.21 (9)	O32—P3—O33 ^{xv}	111.49 (11)
O13 ⁱ —Fe1—O21	90.79 (9)	O31—P3—O33 ^{xv}	111.12 (11)
O21 ⁱ —Fe1—O21	180.0	O32—P3—O33 ^{xvi}	111.49 (11)
O—Fe2—O32 ^{ix}	115.92 (13)	O31—P3—O33 ^{xvi}	111.12 (11)
O—Fe2—O23 ^{ix}	96.52 (5)	O33 ^{xv} —P3—O33 ^{xvi}	102.43 (16)
O32 ^{ix} —Fe2—O23 ^{ix}	87.58 (6)	O32—P3—Ca ^{vii}	122.83 (13)
O—Fe2—O23 ^x	96.52 (5)	O31—P3—Ca ^{vii}	128.08 (12)
$O32^{ix}$ —Fe2— $O23^{x}$	87.58 (6)	O33 ^{xv} —P3—Ca ^{vii}	51.28 (8)
O23 ^{ix} —Fe2—O23 ^x	166.93 (11)	O33 ^{xvi} —P3—Ca ^{vii}	51.28 (8)
O—Fe2—O12	158.95 (11)	P3—O31—Fe3	139.66 (19)
O32 ^{ix} —Fe2—O12	85.13 (12)	P3—O32—Fe2 ⁱⁱ	139.08 (19)
O23 ^{ix} —Fe2—O12	83.75 (5)	P3 ^{xvi} —O33—Fe3	134.20 (12)
O23 ^x —Fe2—O12	83.75 (5)	P3 ^{xvi} —O33—Ca ^{xiii}	100.10 (10)
O—Fe2—O11	92.67 (12)	Fe3—O33—Ca ^{xiii}	125.55 (9)
O32 ^{ix} —Fe2—O11	151.41 (11)	Fe2—O—Fe1 ^{xvii}	125.79 (7)
O23 ^{ix} —Fe2—O11	89.23 (6)	Fe2—O—Fe1 ^{ix}	125.79 (7)
O23 ^x —Fe2—O11	89.23 (6)	Fe1 ^{xvii} —O—Fe1 ^{ix}	105.66 (12)
O12—Fe2—O11	66.28 (11)		

Symmetry codes: (i) -x, -y-1, -z; (ii) x+1, y, z; (iii) x+1, -y-1/2, z; (iv) x, -y-1/2, z; (v) x+1, y+1, z; (vi) x+1, -y-3/2, z; (vii) -x+1, -y-1, -z+1; (viii) -x-1, -y-1, -z; (ix) x-1, y, z; (x) x-1, -y-3/2, z; (xi) x, -y-3/2, z; (xiii) x-1, y-1/2, -z; (xv) -x, y+1/2, -z; (xv) -x, y+1/2, -z+1; (xvi) -x, -y-2, -z+1; (xvii) -x-1, y-1/2, -z.