

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-{[1,1'-(Pyridinium-2,6-diyl)diethylidyne]diimino}diguanidinium pentachloridocadmate(II) monohydrate

Rui-jun Xu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: youyoubanzhen@126.com

Received 15 June 2009; accepted 10 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.068; data-to-parameter ratio = 20.1.

In the title organic–inorganic hybrid salt, $(C_{11}H_{20}N_9)$ -[CdCl₅]·H₂O, the crystal structure is stabilized by intermolecular hydrogen bonds between the organic cation, the complex inorganic anion and the uncoordinated water molecule, forming a three-dimensional network.

Related literature

For details of the synthesis, see: Valdes-Martinez et al. (2002).

Experimental

 Crystal data
 $(C_{11}H_{20}N_9)[CdCl_5]\cdot H_2O$ $V = 2162.3 (8) Å^3$
 $M_r = 586.03$ Z = 4

 Monoclinic, $P2_1/n$ Mo K α radiation

 a = 10.638 (2) Å $\mu = 1.65 \text{ mm}^{-1}$

 b = 13.700 (3) Å T = 298 K

 c = 14.839 (3) Å $0.25 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.681, T_{max} = 0.745$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 246 µ

 $wR(F^2) = 0.068$ H-at

 S = 1.10 $\Delta\rho_m$

 4947 reflections
 $\Delta\rho_m$

4947 independent reflections 4155 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

22228 measured reflections

246 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.45$ e Å⁻³ $\Delta \rho_{min} = -0.38$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1W$	0.86	2.42	3.194 (4)	151
$N4-H4A\cdots Cl5$	0.86	2.31	3.154 (3)	168
$N5-H5A\cdots Cl1$	0.86	2.49	3.256 (2)	149
$N8-H8B\cdots O1W$	0.86	2.03	2.854 (3)	160
$O1W-H1WB\cdots Cl4$	0.84	2.82	3.478 (3)	136
N3-H3···Cl2 ⁱ	0.86	2.56	3.196 (2)	132
$N5-H5B\cdots Cl2^{i}$	0.86	2.75	3.394 (3)	133
$N5-H5B\cdots Cl4^{i}$	0.86	2.60	3.313 (3)	140
N7-H7···Cl4 ⁱⁱ	0.86	2.56	3.367 (2)	156
N8–H8A···Cl1 ⁱⁱⁱ	0.86	2.40	3.247 (3)	168
N9−H9A···Cl2 ⁱⁱⁱ	0.86	2.41	3.227 (3)	160
N9−H9B···Cl4 ⁱⁱ	0.86	2.67	3.450 (3)	152
$O1W-H1WA\cdots Cl3^{iv}$	0.85	2.67	3.266 (3)	129

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 2, -y, -z + 1; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2466).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valdes-Martinez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Hernandez-Ortega, S., Espinosa-Perez, G., West, X. D. & Helfrich, B. (2002). *Polyhedron*, 21, 409–416.

supporting information

Acta Cryst. (2009). E65, m951 [doi:10.1107/S1600536809027196]

1,1'-{[1,1'-(Pyridinium-2,6-diyl)diethylidyne]diimino}diguanidinium pentachloridocadmate(II) monohydrate

Rui-jun Xu

S1. Comment

The asymmetric unit of the title compound (Fig 1) consists of pentachlorocadmium, a water molecule and H_3L , the latter resulting from protonation of the pyridyl nitrogen and the two guanyl N atoms. There are four intramolecular hydrogen bonds in the compound, *i.e.*, N4—H4···Cl5, N5—H5A···Cl1, N8—H8B···O1W and O1W—H1WB···Cl4 (table 1). The angle between the pyridine ring and the aminoguanidone moieties, N2—N3—C11—N4—N5 and N6—N7—C10—N8—N9, are 26.23 (2)° and 31.13 (1)° respectively. Additionally, there are also numerous hydrogen bonds among the terminal nitrogen atoms of the trication H_3L , the oxygen atom of the water molecule and the chloride atoms of pentachlorocadmium anion, leading to a complex three-dimensional network.

S2. Experimental

The ligand *L* was prepared according to reported method (Valdes-Martinez *et al.* 2002). The title compound was prepared by refluxing an 30 ml EtOH–HCl mixture solution (v:v = 3:1) containing an equimolar amount of *L* (1.096 g, 4 mmol) and CdCl₂ for 1 h. The resulting solution was filtered and stood still until crystals formed.

S3. Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(Caromatic or N)$ and $U_{iso}(H) = 1.5U_{eq}(Cmethyl)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last stage of structure refinement, they were treated as riding on their parent O atom.

Figure 1

Molecular structure of the title compound, with the atom labeling sche me. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.

1,1'-{[1,1'-(Pyridinium-2,6-diyl)diethylidyne]diimino}diguanidinium pentachloridocadmate(II) monohydrate

F(000) = 1168
$D_{\rm x} = 1.800 {\rm ~Mg} {\rm ~m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 19919 reflections
$\theta = 3.1 - 27.6^{\circ}$
$\mu = 1.65 \text{ mm}^{-1}$
T = 298 K
Prism, colourless
$0.25 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Rigaku Mercury2 (2× 2 bin mode) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ CCD_Profile_fitting scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.681, T_{max} = 0.745$	22228 measured reflections 4947 independent reflections 4155 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -17 \rightarrow 17$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.068$ S = 1.10 4947 reflections 246 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0222P)^2 + 1.3165P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.032$ $\Delta\rho_{max} = 0.45$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.91113 (2)	0.240737 (14)	0.143910 (13)	0.03119 (7)
Cl1	0.88183 (8)	0.41966 (5)	0.11166 (5)	0.04173 (18)
C12	0.68199 (7)	0.21144 (5)	0.06726 (5)	0.03978 (18)
C13	1.02297 (8)	0.14273 (6)	0.03080 (5)	0.0464 (2)
Cl4	0.82906 (7)	0.15219 (6)	0.28367 (5)	0.04094 (18)
C15	1.11659 (7)	0.27884 (6)	0.23687 (5)	0.04219 (19)
N1	0.89827 (19)	0.31005 (15)	0.68390 (14)	0.0238 (5)
H1	0.8938	0.2862	0.6304	0.029*
N2	0.8635 (2)	0.43124 (15)	0.54498 (14)	0.0252 (5)
N3	0.8349 (2)	0.48151 (16)	0.46731 (14)	0.0302 (5)
H3	0.7842	0.5304	0.4672	0.036*
N4	0.9582 (3)	0.37103 (17)	0.39331 (16)	0.0428 (6)
H4A	0.9939	0.3508	0.3452	0.051*
H4B	0.9673	0.3390	0.4428	0.051*
N5	0.8730 (2)	0.50235 (18)	0.31717 (15)	0.0354 (6)
H5A	0.9073	0.4842	0.2678	0.042*

U5D	0 8276	0 5543	0 3182	0.042*
N6	0.0270	0.11265 (15)	0.5182	0.042
INU NIZ	0.9327(2)	0.11203(13) 0.01760(16)	0.00364(14)	0.0273(3)
IN /	0.9031 (2)	0.01700 (10)	0.04348 (13)	0.0334 (3)
H/	1.0230	-0.0113	0.6745	0.040*
N8	0.8182 (2)	0.01826 (18)	0.52850 (16)	0.0396 (6)
H8A	0.7755	-0.0119	0.48/5	0.048*
H8B	0.8094	0.0802	0.5353	0.048*
N9	0.9142 (3)	-0.12433 (18)	0.57366 (18)	0.0488 (7)
H9A	0.8735	-0.1574	0.5336	0.059*
H9B	0.9668	-0.1531	0.6094	0.059*
C1	0.9503 (2)	0.25487 (18)	0.74947 (17)	0.0248 (5)
C2	0.9574 (3)	0.2929 (2)	0.83576 (18)	0.0325 (6)
H2	0.9943	0.2568	0.8822	0.039*
C3	0.9094 (3)	0.3846 (2)	0.85289 (18)	0.0356 (7)
H3A	0.9125	0.4096	0.9112	0.043*
C4	0.8568 (3)	0.4394 (2)	0.78360 (17)	0.0306 (6)
H4	0.8246	0.5013	0.7949	0.037*
C5	0.8526 (2)	0.40094 (18)	0.69727 (17)	0.0234 (5)
C6	0.8104 (2)	0.45750 (18)	0.61734 (17)	0.0252 (6)
C7	0.7170 (3)	0.5381 (2)	0.62813 (19)	0.0353 (7)
H7A	0.7600	0.5968	0.6460	0.053*
H7B	0.6577	0.5204	0.6734	0.053*
H7C	0.6733	0.5488	0.5719	0.053*
C8	0.9938 (2)	0.15541 (18)	0.72746 (17)	0.0243 (5)
C9	1.1001 (3)	0.1131 (2)	0.7819 (2)	0.0387 (7)
H9C	1.0674	0.0701	0.8269	0.058*
H9D	1.1464	0.1649	0.8107	0.058*
H9E	1.1547	0.0773	0.7430	0.058*
C10	0.8962 (3)	-0.0298(2)	0.58035 (18)	0.0315 (6)
C11	0.8901 (3)	0.4506 (2)	0.39114 (18)	0.0296 (6)
O1W	0.7726 (3)	0.22202 (18)	0.5047 (2)	0.0695 (8)
H1WA	0.7156	0.2329	0.5427	0.104*
HIWB	0.7448	0.2212	0.4511	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03641 (12)	0.02847 (12)	0.02866 (11)	0.00307 (9)	-0.00053 (8)	-0.00175 (8)
C11	0.0584 (5)	0.0293 (4)	0.0371 (4)	0.0015 (3)	-0.0135 (3)	-0.0001 (3)
Cl2	0.0407 (4)	0.0323 (4)	0.0460 (4)	-0.0014 (3)	-0.0088 (3)	0.0055 (3)
C13	0.0526 (5)	0.0486 (5)	0.0379 (4)	0.0167 (4)	-0.0043 (4)	-0.0125 (3)
Cl4	0.0444 (4)	0.0433 (4)	0.0351 (4)	-0.0054 (3)	-0.0023 (3)	0.0066 (3)
C15	0.0293 (4)	0.0566 (5)	0.0405 (4)	0.0036 (3)	-0.0015 (3)	-0.0156 (3)
N1	0.0263 (12)	0.0259 (11)	0.0192 (10)	-0.0011 (9)	0.0021 (9)	-0.0031 (8)
N2	0.0288 (12)	0.0231 (11)	0.0236 (11)	0.0011 (9)	0.0001 (9)	0.0007 (9)
N3	0.0350 (13)	0.0292 (12)	0.0264 (12)	0.0093 (10)	0.0007 (10)	0.0007 (9)
N4	0.0649 (18)	0.0338 (14)	0.0300 (13)	0.0124 (13)	0.0137 (12)	-0.0029 (10)
N5	0.0345 (14)	0.0473 (15)	0.0243 (12)	0.0015 (11)	0.0008 (10)	0.0007 (10)

N6	0.0329 (13)	0.0228 (11)	0.0269 (12)	0.0018 (9)	0.0009 (10)	-0.0020 (9)
N7	0.0373 (14)	0.0295 (12)	0.0332 (13)	0.0073 (10)	-0.0095 (11)	-0.0055 (10)
N8	0.0488 (16)	0.0329 (13)	0.0366 (14)	-0.0056 (12)	-0.0141 (12)	-0.0023 (11)
N9	0.0656 (19)	0.0311 (14)	0.0492 (16)	0.0037 (13)	-0.0145 (14)	-0.0112 (12)
C1	0.0216 (13)	0.0262 (13)	0.0265 (13)	-0.0032 (10)	0.0022 (10)	0.0007 (10)
C2	0.0357 (16)	0.0355 (15)	0.0263 (14)	-0.0001 (13)	-0.0041 (12)	0.0013 (12)
C3	0.0441 (18)	0.0384 (17)	0.0244 (14)	-0.0012 (13)	0.0018 (13)	-0.0063 (12)
C4	0.0327 (15)	0.0305 (15)	0.0288 (14)	0.0007 (12)	0.0063 (12)	-0.0044 (11)
C5	0.0201 (13)	0.0252 (13)	0.0250 (13)	-0.0026 (10)	0.0057 (10)	-0.0025 (10)
C6	0.0221 (13)	0.0263 (14)	0.0272 (14)	0.0003 (10)	0.0028 (11)	-0.0020 (10)
C7	0.0339 (16)	0.0368 (16)	0.0350 (16)	0.0122 (13)	-0.0005 (13)	-0.0068 (12)
C8	0.0237 (13)	0.0265 (14)	0.0228 (13)	-0.0003 (10)	0.0021 (11)	0.0014 (10)
C9	0.0335 (17)	0.0387 (17)	0.0436 (17)	0.0074 (13)	-0.0108 (14)	-0.0069 (13)
C10	0.0363 (16)	0.0318 (15)	0.0265 (14)	-0.0038 (12)	0.0028 (12)	-0.0032 (11)
C11	0.0303 (15)	0.0324 (15)	0.0260 (14)	-0.0064 (12)	-0.0016 (11)	-0.0056 (11)
O1W	0.0682 (18)	0.0488 (15)	0.091 (2)	0.0023 (13)	-0.0178 (16)	0.0015 (14)

Geometric parameters (Å, °)

Cd1—Cl3	2.4695 (9)	N8—H8B	0.8600
Cd1—Cl1	2.5160 (9)	N9—C10	1.313 (4)
Cd1—Cl4	2.5675 (9)	N9—H9A	0.8600
Cd1—C15	2.6188 (10)	N9—H9B	0.8600
Cd1—Cl2	2.7036 (10)	C1—C2	1.383 (4)
N1-C1	1.344 (3)	C1—C8	1.477 (3)
N1—C5	1.352 (3)	C2—C3	1.381 (4)
N1—H1	0.8600	C2—H2	0.9300
N2—C6	1.273 (3)	C3—C4	1.385 (4)
N2—N3	1.373 (3)	С3—НЗА	0.9300
N3—C11	1.350 (3)	C4—C5	1.385 (3)
N3—H3	0.8600	C4—H4	0.9300
N4—C11	1.309 (4)	C5—C6	1.481 (3)
N4—H4A	0.8600	C6—C7	1.496 (4)
N4—H4B	0.8600	С7—Н7А	0.9600
N5—C11	1.317 (3)	С7—Н7В	0.9600
N5—H5A	0.8600	C7—H7C	0.9600
N5—H5B	0.8600	C8—C9	1.496 (4)
N6—C8	1.280 (3)	С9—Н9С	0.9600
N6—N7	1.370 (3)	C9—H9D	0.9600
N7—C10	1.356 (3)	С9—Н9Е	0.9600
N7—H7	0.8600	O1W—H1WA	0.8473
N8—C10	1.301 (4)	O1W—H1WB	0.8446
N8—H8A	0.8600		
Cl3—Cd1—Cl1	117.39 (3)	C3—C2—H2	120.1
Cl3—Cd1—Cl4	117.76 (3)	C1—C2—H2	120.1
Cl1—Cd1—Cl4	124.84 (3)	C2—C3—C4	120.2 (3)
Cl3—Cd1—Cl5	93.40 (3)	С2—С3—НЗА	119.9

Cl1—Cd1—Cl5	90.34 (3)	C4—C3—H3A	119.9
Cl4—Cd1—Cl5	87.73 (3)	C3—C4—C5	119.1 (3)
Cl3—Cd1—Cl2	94.25 (3)	С3—С4—Н4	120.4
Cl1—Cd1—Cl2	87.50 (3)	С5—С4—Н4	120.4
Cl4—Cd1—Cl2	87.36 (3)	N1C5C4	118.7 (2)
Cl5—Cd1—Cl2	172.19 (2)	N1C5C6	118.0 (2)
C1—N1—C5	123.8 (2)	C4—C5—C6	123.1 (2)
C1—N1—H1	118.1	N2	113.2 (2)
C5—N1—H1	118.1	N2	127.1 (2)
C6—N2—N3	118.1 (2)	C5—C6—C7	119.6 (2)
C11—N3—N2	116.9 (2)	С6—С7—Н7А	109.5
C11—N3—H3	121.6	С6—С7—Н7В	109.5
N2—N3—H3	121.6	H7A—C7—H7B	109.5
C11—N4—H4A	120.0	С6—С7—Н7С	109.5
C11—N4—H4B	120.0	H7A—C7—H7C	109.5
H4A—N4—H4B	120.0	H7B—C7—H7C	109.5
C11—N5—H5A	120.0	N6-C8-C1	115.3 (2)
C11—N5—H5B	120.0	N6—C8—C9	126.3 (2)
H5A—N5—H5B	120.0	C1—C8—C9	118.3 (2)
C8—N6—N7	117.6 (2)	С8—С9—Н9С	109.5
C10—N7—N6	118.3 (2)	C8—C9—H9D	109.5
C10—N7—H7	120.9	H9C—C9—H9D	109.5
N6—N7—H7	120.9	С8—С9—Н9Е	109.5
C10—N8—H8A	120.0	Н9С—С9—Н9Е	109.5
C10—N8—H8B	120.0	H9D—C9—H9E	109.5
H8A—N8—H8B	120.0	N8—C10—N9	123.1 (3)
C10—N9—H9A	120.0	N8—C10—N7	120.1 (3)
C10—N9—H9B	120.0	N9—C10—N7	116.8 (3)
H9A—N9—H9B	120.0	N4—C11—N5	122.5 (3)
N1—C1—C2	118.3 (2)	N4—C11—N3	119.3 (2)
N1—C1—C8	119.0 (2)	N5-C11-N3	118.2 (3)
C2—C1—C8	122.6 (2)	H1WA—O1W—H1WB	112.7
C3—C2—C1	119.9 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1…O1W	0.86	2.42	3.194 (4)	151
N4—H4 <i>A</i> …Cl5	0.86	2.31	3.154 (3)	168
N5—H5A…Cl1	0.86	2.49	3.256 (2)	149
N8—H8 <i>B</i> ···O1 <i>W</i>	0.86	2.03	2.854 (3)	160
O1 <i>W</i> —H1 <i>WB</i> ···Cl4	0.84	2.82	3.478 (3)	136
N3—H3···Cl2 ⁱ	0.86	2.56	3.196 (2)	132
N5—H5 <i>B</i> ···Cl2 ⁱ	0.86	2.75	3.394 (3)	133
N5—H5 <i>B</i> ···Cl4 ⁱ	0.86	2.60	3.313 (3)	140
N7—H7····Cl4 ⁱⁱ	0.86	2.56	3.367 (2)	156
N8—H8A····Cl1 ⁱⁱⁱ	0.86	2.40	3.247 (3)	168
N9—H9A····Cl2 ⁱⁱⁱ	0.86	2.41	3.227 (3)	160

N9—H9B···Cl4ⁱⁱ 0.86 2.67 3.450 (3) 152 01W—H1WA···Cl3^{iv} 0.85 2.67 3.266 (3) 129

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) -x+2, -y, -z+1; (iii) -x+3/2, y-1/2, -z+1/2; (iv) x-1/2, -y+1/2, z+1/2.