Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,4-Diazoniabicyclo[2.2.2]octane diaquadichlorido(oxalato- $\kappa^2 O, O'$ )iron(III) chloride

#### Ying Cai

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: cyik@163.com

Received 24 June 2009; accepted 2 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; *R* factor = 0.020; w*R* factor = 0.049; data-to-parameter ratio = 17.1.

In the title compound,  $(C_6H_{14}N_2)[Fe(C_2O_4)Cl_2(H_2O)_2]Cl$ , all ions are situated on twofold rotational axes. The Fe<sup>III</sup> ion is coordinated by two O atoms from a chelating oxalate ligand, two water molecules and two chloride anions in a distorted octahedral geometry. Intermolecular N-H···O, O-H···O and O-H···Cl hydrogen bonds form an extensive threedimensional network which consolidates the crystal packing.

### **Related literature**

For the crystal structures of related compounds, see: Fu *et al.* (2002); Keene *et al.* (2004); Sukhendu & Srinivasan (2007); Zhao & Xu (2008); Lee & Wang (1999).



### Experimental

| Crystal data                                                                  |                                                                          |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $(C_6H_{14}N_2)[Fe(C_2O_4)Cl_2(H_2O)_2]Cl$<br>$M_r = 400.44$<br>Monoclinic C2 | b = 9.6636 (19)  Å<br>c = 8.4268 (17)  Å<br>$\beta = 109.57 (3)^{\circ}$ |
| a = 9.872 (2)  Å                                                              | V = 757.4 (3) Å <sup>3</sup>                                             |

Z = 2Mo  $K\alpha$  radiation  $\mu = 1.55 \text{ mm}^{-1}$ 

#### Data collection

```
Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
T_{\rm min} = 0.638, T_{\rm max} = 0.734
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$   $wR(F^2) = 0.049$  S = 1.081729 reflections 101 parameters 1 restraint 
$$\begin{split} T &= 293 \text{ K} \\ 0.30 \times 0.30 \times 0.20 \text{ mm} \end{split}$$

| 3954 measured reflections              |
|----------------------------------------|
| 1729 independent reflections           |
| 1684 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.025$                  |
|                                        |

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 802 Friedel pairs Flack parameter: 0.016 (13)

# Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                               | $D-\mathrm{H}$               | $H \cdot \cdot \cdot A$      | $D \cdots A$                          | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------|
| $N1 - H1 \cdots O1^{i}$ $O2 - H2WA \cdots O3^{ii}$ $O2 - H2WB \cdots Cl2$ | 0.91<br>0.87 (3)<br>0.82 (3) | 1.93<br>1.86 (3)<br>2.23 (3) | 2.814 (2)<br>2.722 (2)<br>3.0359 (17) | 162<br>168 (2)<br>170 (3)            |
|                                                                           |                              |                              |                                       |                                      |

Symmetry codes: (i) x, y, z - 1; (ii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 2$ .

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2580).

#### References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, Y. L., Liu, Y. L., Shi, Z., Li, B. Z. & Pang, W. Q. (2002). J. Solid State Chem. 163, 427–435.
- Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378– m380.
- Lee, M. Y. & Wang, S. L. (1999). Chem. Mater. 11, 3588-3594.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sukhendu, M. & Srinivasan, N. (2007). Chem. Eur. J. 13, 968-977.
- Zhao, J. & Xu, L. (2008). Inorg. Chim. Acta, 361, 2385-2395.

# supporting information

Acta Cryst. (2009). E65, m877 [doi:10.1107/S1600536809025628]

# 1,4-Diazoniabicyclo[2.2.2]octane diaquadichlorido(oxalato- $\kappa^2 O, O'$ )iron(III) chloride

# **Ying Cai**

# S1. Comment

Oxalic acid is often used as bridging ligand, which can adopt different coordination modes according to the different geometric requirements of metal centers when forming metal complexes (Sukhendu & Srinivasan, 2007; Zhao & Xu, 2008). We report here the crystal structure of the title compound, (1).

The stucture of (1) is shown in Fig. 1. This yellow ionic compound crystallizes in the monoclinic space group C2. It contains  $[Fe(ox)(H_2O)_2Cl_2]^-$  (ox is oxalate,  $C_2O_4$ ) units, in which the Fe<sup>III</sup> ion is coordinated by two O atoms from a chelating oxalato ion, two O atoms from coordinated water molecules and two Cl anions, forming a distorted octahedron coordination geometry. The crystal packing is stabilized by N—H···O, O—H···O and O—H···Cl hydrogen bonds (Table 1, Fig. 2).

# S2. Experimental

A mixture of oxalic acid (0.01 mol 0.9 g) and iron(III) chloride (0.01 mol 1.62 g) and the 1,4-diaza-bicyclo[2.2.2]octane (dabco) (0.01 mol 1.12 g) in  $H_2O$  (20 ml) was stirred until clear. Adjust the pH value of the solution to 4 with 10% HCl solution. After slow evaporation, yellow plate crystals of the title compand suitable for X-ray analysis were obtained with about 65% yield (based on Fe).

# S3. Refinement

H atoms bound to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.97 and N—H = 0.91 Å, and with  $U_{iso}(H) = 1.2U_{eq}$ (parent atom). H atoms bound to O atoms were located in difference maps, but their O —H distances and H—O—H angles were restrained to the literature values.



## Figure 1

A view of (1) with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Symmetry codes: (A) -x, y, -z + 2; (B) -x + 1, y, -z + 1.



## Figure 2

The crystal packing viewed along the *a* axis. Hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

## 1,4-Diazoniabicyclo[2.2.2]octane diaquadichlorido(oxalato- $\kappa^2 O, O'$ )iron(III) chloride

F(000) = 410

 $\theta = 3.0 - 27.5^{\circ}$ 

 $\mu = 1.55 \text{ mm}^{-1}$ T = 293 K

Plate, yellow

 $0.30 \times 0.30 \times 0.20 \text{ mm}$ 

 $D_{\rm x} = 1.756 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3950 reflections

#### Crystal data

 $\begin{array}{l} (C_{6}H_{14}N_{2})[Fe(C_{2}O_{4})Cl_{2}(H_{2}O)_{2}]Cl\\ M_{r} = 400.44\\ \text{Monoclinic, } C2\\ \text{Hall symbol: } C \ 2y\\ a = 9.872\ (2)\ \text{\AA}\\ b = 9.6636\ (19)\ \text{\AA}\\ c = 8.4268\ (17)\ \text{\AA}\\ \beta = 109.57\ (3)^{\circ}\\ V = 757.4\ (3)\ \text{\AA}^{3}\\ Z = 2 \end{array}$ 

#### Data collection

| Rigaku Mercury CCD                       | 3954 measured reflections                                          |
|------------------------------------------|--------------------------------------------------------------------|
| diffractometer                           | 1729 independent reflections                                       |
| Radiation source: fine-focus sealed tube | 1684 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                   | $R_{\rm int} = 0.025$                                              |
| ωscans                                   | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 3.0^{\circ}$ |
| Absorption correction: multi-scan        | $h = -12 \rightarrow 12$                                           |
| (CrystalClear; Rigaku, 2005)             | $k = -12 \rightarrow 12$                                           |
| $T_{\min} = 0.638, \ T_{\max} = 0.734$   | $l = -10 \rightarrow 10$                                           |
|                                          |                                                                    |

### Refinement

| Refinement on $F^2$                                      | H atoms treated by a mixture of independent                |
|----------------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                               | and constrained refinement                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.020$                          | $w = 1/[\sigma^2(F_o^2) + (0.017P)^2]$                     |
| $wR(F^2) = 0.049$                                        | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.08                                                 | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 1729 reflections                                         | $\Delta  ho_{ m max} = 0.17 \  m e \  m \AA^{-3}$          |
| 101 parameters                                           | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
| 1 restraint                                              | Extinction correction: SHELXL97 (Sheldrick,                |
| Primary atom site location: structure-invariant          | 2008)                                                      |
| direct methods                                           | Extinction coefficient: 0.0476 (15)                        |
| Secondary atom site location: difference Fourier map     | Absolute structure: Flack (1983), 802 Friedel pairs        |
| Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.016 (13)                   |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x      | у           | Ζ      | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------|-------------|--------|-----------------------------|
| Fe1 | 0.0000 | 1.02078 (3) | 1.0000 | 0.02213 (11)                |

| C11  | 0.16532 (6)  | 1.17560 (5)  | 1.16036 (7)  | 0.03727 (16) |
|------|--------------|--------------|--------------|--------------|
| Cl2  | 0.0000       | 0.85379 (10) | 0.5000       | 0.0462 (2)   |
| N1   | 0.37619 (17) | 0.90236 (18) | 0.3965 (2)   | 0.0285 (4)   |
| H1   | 0.2853       | 0.9021       | 0.3207       | 0.034*       |
| C1   | 0.07314 (19) | 0.7358 (2)   | 1.0751 (2)   | 0.0242 (4)   |
| C2   | 0.3777 (2)   | 0.9825 (2)   | 0.5494 (2)   | 0.0377 (5)   |
| H2A  | 0.3047       | 0.9470       | 0.5922       | 0.045*       |
| H2B  | 0.3572       | 1.0792       | 0.5207       | 0.045*       |
| C3   | 0.4750 (2)   | 0.9679 (3)   | 0.3179 (3)   | 0.0393 (5)   |
| H3A  | 0.4386       | 1.0582       | 0.2735       | 0.047*       |
| H3B  | 0.4812       | 0.9111       | 0.2257       | 0.047*       |
| C4   | 0.4218 (3)   | 0.7572 (2)   | 0.4454 (3)   | 0.0464 (6)   |
| H4A  | 0.4088       | 0.7017       | 0.3454       | 0.056*       |
| H4B  | 0.3638       | 0.7176       | 0.5067       | 0.056*       |
| O1   | 0.11725 (13) | 0.85657 (14) | 1.13039 (16) | 0.0273 (3)   |
| O2   | 0.11176 (16) | 1.00290 (19) | 0.83598 (18) | 0.0354 (4)   |
| O3   | 0.13212 (14) | 0.62670 (16) | 1.1287 (2)   | 0.0375 (4)   |
| H2WA | 0.199 (3)    | 1.033 (3)    | 0.859 (3)    | 0.046 (7)*   |
| H2WB | 0.075 (3)    | 0.971 (4)    | 0.741 (4)    | 0.075 (10)*  |
|      |              |              |              |              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | U <sup>22</sup> | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|-----------------|--------------|--------------|--------------|--------------|
| Fe1 | 0.01824 (19) | 0.0248 (2)      | 0.01995 (18) | 0.000        | 0.00185 (14) | 0.000        |
| Cl1 | 0.0293 (3)   | 0.0348 (3)      | 0.0404 (3)   | -0.0041 (2)  | 0.0021 (2)   | -0.0136 (2)  |
| Cl2 | 0.0591 (5)   | 0.0447 (5)      | 0.0256 (4)   | 0.000        | 0.0019 (3)   | 0.000        |
| N1  | 0.0172 (8)   | 0.0399 (10)     | 0.0226 (8)   | -0.0024 (7)  | -0.0010 (7)  | 0.0007 (7)   |
| C1  | 0.0175 (9)   | 0.0296 (10)     | 0.0273 (9)   | 0.0010 (7)   | 0.0099 (8)   | 0.0025 (7)   |
| C2  | 0.0249 (10)  | 0.0499 (15)     | 0.0397 (11)  | 0.0031 (9)   | 0.0125 (9)   | -0.0086 (10) |
| C3  | 0.0269 (10)  | 0.0608 (14)     | 0.0304 (10)  | 0.0065 (9)   | 0.0098 (9)   | 0.0190 (10)  |
| C4  | 0.0521 (15)  | 0.0290 (13)     | 0.0477 (15)  | -0.0115 (11) | 0.0030 (13)  | -0.0061 (11) |
| O1  | 0.0207 (7)   | 0.0276 (7)      | 0.0262 (7)   | 0.0018 (6)   | -0.0019 (5)  | 0.0003 (6)   |
| O2  | 0.0291 (8)   | 0.0488 (10)     | 0.0300 (7)   | -0.0128 (7)  | 0.0122 (6)   | -0.0117 (8)  |
| 03  | 0.0294 (7)   | 0.0313 (8)      | 0.0520 (10)  | 0.0096 (6)   | 0.0139 (7)   | 0.0145 (7)   |
|     |              |                 |              |              |              |              |

Geometric parameters (Å, °)

| Fe1—O2 <sup>i</sup>  | 2.0443 (14) | C1—C1 <sup>i</sup>  | 1.569 (4) |
|----------------------|-------------|---------------------|-----------|
| Fe1—O2               | 2.0443 (14) | C2—C3 <sup>ii</sup> | 1.515 (3) |
| Fe1—O1 <sup>i</sup>  | 2.0526 (14) | C2—H2A              | 0.9700    |
| Fe1—O1               | 2.0526 (14) | C2—H2B              | 0.9700    |
| Fe1—Cl1              | 2.2913 (8)  | C3—C2 <sup>ii</sup> | 1.515 (3) |
| Fe1—Cl1 <sup>i</sup> | 2.2913 (8)  | С3—НЗА              | 0.9700    |
| N1-C4                | 1.489 (2)   | С3—Н3В              | 0.9700    |
| N1—C3                | 1.491 (3)   | C4—C4 <sup>ii</sup> | 1.509 (5) |
| N1—C2                | 1.499 (2)   | C4—H4A              | 0.9700    |
| N1—H1                | 0.9100      | C4—H4B              | 0.9700    |
| C1—O3                | 1.216 (2)   | O2—H2WA             | 0.87 (3)  |
|                      |             |                     |           |

# supporting information

| C1—01                                 | 1.278 (2)   | O2—H2WB                  | 0.82 (3)    |
|---------------------------------------|-------------|--------------------------|-------------|
| O2 <sup>i</sup> —Fe1—O2               | 170.30 (10) | 01-C1-C1 <sup>i</sup>    | 113.78 (10) |
| O2 <sup>i</sup> —Fe1—O1 <sup>i</sup>  | 87.78 (6)   | N1—C2—C3 <sup>ii</sup>   | 108.47 (16) |
| O2—Fe1—O1 <sup>i</sup>                | 84.72 (6)   | N1—C2—H2A                | 110.0       |
| O2 <sup>i</sup> —Fe1—O1               | 84.72 (6)   | C3 <sup>ii</sup> —C2—H2A | 110.0       |
| O2—Fe1—O1                             | 87.78 (6)   | N1—C2—H2B                | 110.0       |
| Ol <sup>i</sup> —Fel—Ol               | 78.73 (8)   | C3 <sup>ii</sup> —C2—H2B | 110.0       |
| O2 <sup>i</sup> —Fe1—Cl1              | 95.48 (5)   | H2A—C2—H2B               | 108.4       |
| O2—Fe1—Cl1                            | 90.85 (5)   | N1—C3—C2 <sup>ii</sup>   | 108.72 (15) |
| Ol <sup>i</sup> —Fe1—Cl1              | 169.42 (4)  | N1—C3—H3A                | 109.9       |
| O1—Fe1—Cl1                            | 91.53 (5)   | C2 <sup>ii</sup> —C3—H3A | 109.9       |
| O2 <sup>i</sup> —Fe1—Cl1 <sup>i</sup> | 90.85 (5)   | N1—C3—H3B                | 109.9       |
| O2—Fe1—Cl1 <sup>i</sup>               | 95.48 (5)   | C2 <sup>ii</sup> —C3—H3B | 109.9       |
| O1 <sup>i</sup> —Fe1—Cl1 <sup>i</sup> | 91.53 (5)   | H3A—C3—H3B               | 108.3       |
| O1—Fe1—Cl1 <sup>i</sup>               | 169.42 (4)  | N1-C4-C4 <sup>ii</sup>   | 108.77 (11) |
| Cl1—Fe1—Cl1 <sup>i</sup>              | 98.47 (4)   | N1—C4—H4A                | 109.9       |
| C4—N1—C3                              | 109.93 (18) | C4 <sup>ii</sup> —C4—H4A | 109.9       |
| C4—N1—C2                              | 109.49 (17) | N1—C4—H4B                | 109.9       |
| C3—N1—C2                              | 110.04 (18) | C4 <sup>ii</sup> —C4—H4B | 109.9       |
| C4—N1—H1                              | 109.1       | H4A—C4—H4B               | 108.3       |
| C3—N1—H1                              | 109.1       | C1—O1—Fe1                | 116.67 (12) |
| C2—N1—H1                              | 109.1       | Fe1—O2—H2WA              | 122.9 (15)  |
| O3—C1—O1                              | 126.47 (18) | Fe1—O2—H2WB              | 122 (2)     |
| O3—C1—C1 <sup>i</sup>                 | 119.75 (12) | H2WA—O2—H2WB             | 115 (3)     |

Symmetry codes: (i) -*x*, *y*, -*z*+2; (ii) -*x*+1, *y*, -*z*+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H      | H…A      | D····A      | D—H··· $A$ |  |
|-------------------------------------|----------|----------|-------------|------------|--|
| N1—H1···O1 <sup>iii</sup>           | 0.91     | 1.93     | 2.814 (2)   | 162        |  |
| O2—H2 <i>WA</i> ···O3 <sup>iv</sup> | 0.87 (3) | 1.86 (3) | 2.722 (2)   | 168 (2)    |  |
| O2—H2 <i>WB</i> ···Cl2              | 0.82 (3) | 2.23 (3) | 3.0359 (17) | 170 (3)    |  |

Symmetry codes: (iii) *x*, *y*, *z*-1; (iv) –*x*+1/2, *y*+1/2, –*z*+2.