Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(3,4-Dihydroxybenzylidene)-4nitrobenzohydrazide

Feng Qiu,* Xiao-Jing He, Ya-Xin Sun and Xu Zhu

Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China

Correspondence e-mail: ydqiufeng@126.com

Received 22 July 2009; accepted 26 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.069; wR factor = 0.161; data-to-parameter ratio = 15.3.

In the title Schiff base compound, $C_{14}H_{11}N_3O_5$, the dihedral angle between the two benzene rings is $1.6 (1)^\circ$. The molecule displays an E configuration about the C—N bond. An intramolecular O-H···O hydrogen bond is observed. In the crystal, molecules are linked into layers parallel to (101) by $O-H \cdots O, N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds. One of the hydroxyl groups is disordered over two positions, with occupancies of 0.643 (5) and 0.357 (5).

Related literature

For the biological properties of Schiff base compounds, see: Kucukguzel et al. (2006); Khattab (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For bond-length data, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008); Qiu & Zhao (2008).

Experimental

Crystal data

C14H11N3O5 $M_r = 301.26$ Monoclinic, $P2_1/c$ a = 7.666 (1) Å b = 13.196 (2) Å c = 13.176 (2) Å $\beta = 95.361 \ (3)^{\circ}$

V = 1327.1 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.20 \times 0.18 \; \mathrm{mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.977, T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	2 restraints
$wR(F^2) = 0.161$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
3204 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
210 parameters	

8322 measured reflections

 $R_{\rm int} = 0.056$

3204 independent reflections

1364 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O3-H3A···O2	0.82	2.17	2.636 (4)	116
$O2-H2A\cdots O1^{i}$	0.82	1.91	2.722 (3)	171
$O3' - H3' \cdots O1^i$	0.82	1.84	2.548 (7)	144
$N2-H2B\cdots O4^{ii}$	0.90	2.26	3.121 (3)	158
C5-H5···O5 ⁱⁱ	0.93	2.48	3.210 (4)	135
C10−H10···O2 ⁱⁱⁱ	0.93	2.58	3.467 (3)	159
$C11-H11\cdots O1^{i}$	0.93	2.56	3.192 (4)	126
Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$) $-x + 1, y$	$-\frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + 2, y - 2$	$\frac{1}{2}, -z - \frac{1}{2};$ (iii)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2865).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470
- Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.

Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, 01128.

- Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.
- Khattab, S. N. (2005). Molecules, 10, 1218-1228.
- Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.
- Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
- Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.
- Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, D.-S. (2008). Acta Cryst. E64, o1759.

supporting information

Acta Cryst. (2009). E65, o2050 [doi:10.1107/S1600536809029705]

(E)-N'-(3,4-Dihydroxybenzylidene)-4-nitrobenzohydrazide

Feng Qiu, Xiao-Jing He, Ya-Xin Sun and Xu Zhu

S1. Comment

Hydrazones and Schiff bases have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel *et al.*, 2006; Khattab *et al.*, 2005; Karthikeyan *et al.*, 2006; Okabe *et al.*, 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan *et al.*, 2008; Fun *et al.*, 2008; Yang, 2008; Ma *et al.*, 2008; Diao *et al.*, 2008a,b; Ejsmont *et al.*, 2008). As part of the ongoing study (Qiu & Zhao, 2008), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond distances (Allen *et al.*, 1987) and angles are normal. The dihedral angle between the two benzene rings is $1.6 (1)^{\circ}$. The displays an *E* configuration about the C=N bond. The nitro group is almost coplanar with the attached benzene ring [O4—N1—C1—C6 = -3.5 (5)° and O5—N1—C1—C2 = -3.1 (5)°].

The molecules are linked into layers parallel to the (101) by O—H…O, N—H…O and C—H…O hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

3,4-Dihydroxybenzaldehyde (1.0 mmol, 138.1 mg) was dissolved in methanol (50 ml), then 4-nitrobenzohydrazide (1.0 mmol, 181.2 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 3 h. After the solution had cooled to room temperature colourless tiny crystals appeared. The tiny crystals were filtered and washed with methanol for three times. Recrystallization from an absolute methanol yielded block-shaped single crystals of the title compound.

S3. Refinement

One of the hydroxyl groups (O3) is disordered over two distinct sites, with occupancies of 0.643 (5) and 0.357 (5). The C —O distances of the two disorder components were restrained to 1.36 (1) Å. H atoms were placed in calculated positions [O-H = 0.82 Å, N-H = 0.90 Å and C-H = 0.93 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. Only the major disorder component of a hydroxyl group is shown.

Figure 2

Molecular packing as viewed along the *a* axis. O—H…O and N—H…O hydrogen bonds are shown as dashed lines.

(E)-N'-(3,4-Dihydroxybenzylidene)-4-nitrobenzohydrazide

Crystal data $C_{14}H_{11}N_3O_5$ c = 13.176 (2) Å $M_r = 301.26$ $\beta = 95.361 (3)^{\circ}$ Monoclinic, $P2_1/c$ $V = 1327.1 (3) \text{ Å}^3$ Hall symbol: -P 2ybcZ = 4a = 7.666 (1) ÅF(000) = 624b = 13.196 (2) Å $D_x = 1.508 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1038 reflections $\theta = 2.5-24.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	8322 measured reflections
diffractometer	3204 independent reflections
Radiation source: fine-focus sealed tube	1364 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2001)	$k = -16 \rightarrow 17$
$T_{\min} = 0.977, \ T_{\max} = 0.979$	$l = -17 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: different

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from
$wR(F^2) = 0.161$	neighbouring sites
S = 1.02	H-atom parameters constrained
3204 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0491P)^2 + 0.4176P]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.17$ e Å ⁻³
direct methods	$\Delta ho_{ m min} = -0.23 \mathrm{e} \mathrm{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

T = 298 K

Block, colourless

 $0.20 \times 0.20 \times 0.18 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.6818 (3)	1.15446 (15)	0.09056 (17)	0.0606 (6)	
02	0.5123 (3)	0.56081 (15)	0.27427 (16)	0.0661 (7)	
H2A	0.4520	0.5825	0.3177	0.099*	
03	0.6235 (5)	0.5128 (2)	0.0971 (3)	0.0814 (15)	0.643 (5)
H3A	0.6013	0.4782	0.1460	0.122*	0.643 (5)
04	1.0449 (3)	1.43595 (18)	-0.3087 (2)	0.0749 (7)	
05	0.9668 (4)	1.5401 (2)	-0.1968 (2)	0.1037 (10)	
N1	0.9797 (4)	1.4543 (2)	-0.2301 (2)	0.0648 (8)	
N2	0.7625 (3)	1.03529 (18)	-0.01803 (18)	0.0508 (7)	
H2B	0.7895	1.0090	-0.0778	0.061*	
N3	0.7082 (3)	0.9614 (2)	0.04686 (19)	0.0524 (7)	
C1	0.9174 (4)	1.3697 (2)	-0.1705 (2)	0.0513 (8)	

C2	0.8561 (4)	1.3914 (2)	-0.0783 (3)	0.0601 (9)	
H2	0.8517	1.4579	-0.0552	0.072*	
C3	0.8013 (4)	1.3123 (2)	-0.0209 (2)	0.0572 (9)	
Н3	0.7599	1.3255	0.0419	0.069*	
C4	0.8072 (4)	1.2134 (2)	-0.0558 (2)	0.0438 (7)	
C5	0.8690 (4)	1.1948 (2)	-0.1500 (2)	0.0521 (8)	
Н5	0.8723	1.1288	-0.1745	0.063*	
C6	0.9252 (4)	1.2736 (2)	-0.2070 (2)	0.0558 (9)	
H6	0.9679	1.2613	-0.2696	0.067*	
C7	0.7446 (4)	1.1325 (2)	0.0104 (2)	0.0475 (8)	
C8	0.7224 (4)	0.8695 (2)	0.0199 (2)	0.0501 (8)	
H8	0.7655	0.8536	-0.0418	0.060*	
С9	0.6702 (4)	0.7893 (2)	0.0869 (2)	0.0468 (8)	
C10	0.6126 (4)	0.8135 (2)	0.1810 (2)	0.0522 (9)	
H10	0.6094	0.8811	0.2008	0.063*	
C11	0.5601 (4)	0.7403 (2)	0.2447 (2)	0.0544 (9)	
H11	0.5232	0.7582	0.3076	0.065*	0.643 (5)
C12	0.5617 (4)	0.6395 (2)	0.2157 (2)	0.0480 (8)	
C13	0.6193 (4)	0.6140 (2)	0.1230 (2)	0.0532 (8)	
H13	0.6224	0.5464	0.1034	0.064*	0.357 (5)
C14	0.6724 (4)	0.6884 (2)	0.0591 (2)	0.0522 (9)	
H14	0.7103	0.6705	-0.0034	0.063*	
O3′	0.5167 (10)	0.7811 (5)	0.3302 (5)	0.076 (3)	0.357 (5)
H3′	0.4225	0.7579	0.3439	0.115*	0.357 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0805 (16)	0.0506 (14)	0.0549 (14)	0.0031 (12)	0.0283 (12)	-0.0007 (11)
O2	0.0902 (17)	0.0484 (14)	0.0645 (15)	0.0031 (12)	0.0320 (13)	0.0033 (11)
O3	0.140 (4)	0.037 (2)	0.073 (3)	0.005 (2)	0.046 (2)	-0.0088 (18)
O4	0.0773 (17)	0.0780 (18)	0.0740 (18)	-0.0035 (14)	0.0315 (14)	0.0168 (14)
05	0.155 (3)	0.0525 (17)	0.111 (2)	-0.0188 (18)	0.056 (2)	0.0086 (16)
N1	0.072 (2)	0.052 (2)	0.072 (2)	-0.0078 (16)	0.0208 (17)	0.0113 (17)
N2	0.0662 (18)	0.0403 (16)	0.0484 (16)	-0.0003 (13)	0.0187 (14)	-0.0016 (13)
N3	0.0616 (17)	0.0433 (16)	0.0541 (16)	-0.0017 (13)	0.0149 (14)	0.0068 (13)
C1	0.052 (2)	0.051 (2)	0.053 (2)	0.0002 (16)	0.0145 (17)	0.0112 (16)
C2	0.072 (2)	0.043 (2)	0.068 (2)	0.0001 (17)	0.022 (2)	-0.0005 (18)
C3	0.067 (2)	0.051 (2)	0.056 (2)	0.0041 (18)	0.0228 (18)	-0.0038 (17)
C4	0.0455 (18)	0.0404 (19)	0.0466 (19)	0.0010 (14)	0.0104 (15)	0.0028 (15)
C5	0.066 (2)	0.0407 (19)	0.053 (2)	0.0041 (16)	0.0205 (17)	0.0017 (15)
C6	0.062 (2)	0.056 (2)	0.052 (2)	0.0038 (17)	0.0179 (17)	0.0021 (17)
C7	0.0461 (19)	0.049 (2)	0.048 (2)	0.0023 (15)	0.0087 (16)	-0.0006 (16)
C8	0.054 (2)	0.047 (2)	0.051 (2)	0.0012 (16)	0.0123 (16)	0.0010 (16)
C9	0.0479 (19)	0.0414 (19)	0.052 (2)	-0.0001 (15)	0.0093 (16)	0.0005 (16)
C10	0.064 (2)	0.0330 (18)	0.062 (2)	-0.0018 (15)	0.0148 (18)	-0.0035 (15)
C11	0.066 (2)	0.047 (2)	0.052 (2)	0.0009 (17)	0.0120 (18)	-0.0043 (17)
C12	0.056 (2)	0.0382 (19)	0.052 (2)	-0.0007 (15)	0.0152 (17)	0.0068 (15)

supporting information

C13	0.062 (2)	0.0387 (19)	0.060 (2)	0.0011 (16)	0.0156 (18)	-0.0049 (17)
C14	0.057 (2)	0.050 (2)	0.052 (2)	0.0006 (16)	0.0160 (17)	-0.0035 (16)
O3′	0.116 (7)	0.066 (5)	0.053 (4)	-0.018 (4)	0.040 (4)	-0.011 (3)

Geometric parameters (A, °)	r parameters (Å, °)
-----------------------------	---------------------

01—C7	1.236 (3)	C4—C7	1.487 (4)	
O2—C12	1.367 (3)	C5—C6	1.375 (4)	
O2—H2A	0.82	С5—Н5	0.93	
O3—C13	1.379 (4)	С6—Н6	0.93	
O3—H3A	0.82	C8—C9	1.458 (4)	
O4—N1	1.216 (3)	C8—H8	0.93	
O5—N1	1.221 (3)	C9—C14	1.382 (4)	
N1—C1	1.469 (4)	C9—C10	1.390 (4)	
N2-C7	1.346 (4)	C10—C11	1.365 (4)	
N2—N3	1.386 (3)	C10—H10	0.93	
N2—H2B	0.90	C11—O3′	1.319 (5)	
N3—C8	1.271 (3)	C11—C12	1.385 (4)	
C1—C6	1.360 (4)	C11—H11	0.93	
C1—C2	1.373 (4)	C12—C13	1.380 (4)	
С2—С3	1.377 (4)	C13—C14	1.379 (4)	
С2—Н2	0.93	C13—H13	0.93	
C3—C4	1.387 (4)	C14—H14	0.93	
С3—Н3	0.93	O3'—H3'	0.82	
C4—C5	1.390 (4)			
C12—O2—H2A	109.5	O1—C7—C4	120.4 (3)	
С13—О3—НЗА	109.5	N2	118.3 (3)	
04—N1—O5	123.0 (3)	N3	119.2 (3)	
O4—N1—C1	118.9 (3)	N3—C8—H8	120.4	
O5—N1—C1	118.1 (3)	C9—C8—H8	120.4	
C7—N2—N3	117.0 (2)	C14—C9—C10	118.1 (3)	
C7—N2—H2B	130.3	C14—C9—C8	121.8 (3)	
N3—N2—H2B	112.0	C10—C9—C8	120.1 (3)	
C8—N3—N2	117.4 (3)	C11—C10—C9	121.5 (3)	
C6—C1—C2	122.4 (3)	C11—C10—H10	119.2	
C6-C1-N1	119.5 (3)	C9—C10—H10	119.2	
C2-C1-N1	118.0 (3)	O3′—C11—C10	110.5 (4)	
C1—C2—C3	118.4 (3)	O3′—C11—C12	129.6 (4)	
C1—C2—H2	120.8	C10-C11-C12	119.9 (3)	
С3—С2—Н2	120.8	C10-C11-H11	120.0	
C2—C3—C4	120.7 (3)	C12—C11—H11	120.0	
С2—С3—Н3	119.7	O2—C12—C13	116.3 (3)	
С4—С3—Н3	119.7	O2—C12—C11	124.3 (3)	
C3—C4—C5	119.1 (3)	C13—C12—C11	119.4 (3)	
C3—C4—C7	117.4 (3)	C14—C13—O3	121.6 (3)	
C5—C4—C7	123.5 (3)	C14—C13—C12	120.3 (3)	
C6—C5—C4	120.3 (3)	O3—C13—C12	118.1 (3)	

С6—С5—Н5	119.9	C14_C13_H13	119.8
C_4 C_5 H_5	110.0	C_{12} C_{13} H_{13}	110.8
$C_{4} - C_{5} - C_{5}$	119.9	$C_{12} = C_{13} = 1113$	119.8
C1 = C0 = C3	119.1 (5)	C_{13} C_{14} C	120.8 (5)
	120.4	C13—C14—H14	119.6
С5—С6—Н6	120.4	C9—C14—H14	119.5
O1—C7—N2	121.3 (3)	C11—O3'—H3'	109.5
C7—N2—N3—C8	179.0 (3)	C5—C4—C7—N2	5.9 (4)
O4—N1—C1—C6	-3.5 (5)	N2—N3—C8—C9	178.7 (3)
O5—N1—C1—C6	178.1 (3)	N3-C8-C9-C14	176.0 (3)
O4—N1—C1—C2	175.3 (3)	N3-C8-C9-C10	-2.7 (5)
O5—N1—C1—C2	-3.1 (5)	C14—C9—C10—C11	0.2 (5)
C6—C1—C2—C3	0.2 (5)	C8—C9—C10—C11	178.9 (3)
N1—C1—C2—C3	-178.5 (3)	C9—C10—C11—O3'	178.0 (4)
C1—C2—C3—C4	-0.3 (5)	C9-C10-C11-C12	-0.7 (5)
C2—C3—C4—C5	-0.2 (5)	O3'—C11—C12—O2	1.3 (7)
C2—C3—C4—C7	-179.6 (3)	C10-C11-C12-O2	179.7 (3)
C3—C4—C5—C6	0.7 (5)	O3'-C11-C12-C13	-177.4 (5)
C7—C4—C5—C6	-179.8 (3)	C10-C11-C12-C13	1.1 (5)
C2-C1-C6-C5	0.3 (5)	O2-C12-C13-C14	-179.8 (3)
N1—C1—C6—C5	179.1 (3)	C11—C12—C13—C14	-1.0 (5)
C4—C5—C6—C1	-0.8 (5)	O2—C12—C13—O3	-0.3 (5)
N3—N2—C7—O1	-0.3 (4)	C11—C12—C13—O3	178.5 (3)
N3—N2—C7—C4	178.0 (2)	O3—C13—C14—C9	-178.9 (3)
C3—C4—C7—O1	3.6 (4)	C12—C13—C14—C9	0.5 (5)
C5—C4—C7—O1	-175.8 (3)	C10—C9—C14—C13	-0.1 (5)
C3—C4—C7—N2	-174.6 (3)	C8—C9—C14—C13	-178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A…O2	0.82	2.17	2.636 (4)	116
O2—H2A···O1 ⁱ	0.82	1.91	2.722 (3)	171
O3'—H3'…O1 ⁱ	0.82	1.84	2.548 (7)	144
N2—H2 <i>B</i> ····O4 ⁱⁱ	0.90	2.26	3.121 (3)	158
C5—H5…O5 ⁱⁱ	0.93	2.48	3.210 (4)	135
C10—H10…O2 ⁱⁱⁱ	0.93	2.58	3.467 (3)	159
C11—H11…O1 ⁱ	0.93	2.56	3.192 (4)	126

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+2, y-1/2, -z-1/2; (iii) -x+1, y+1/2, -z+1/2.