organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-[(4-Butylphenyl)iminomethyl]benzene-1.2-diol

Zeynep Keleşoğlu,^a Orhan Büyükgüngör,^a* Çiğdem Albayrak^b and Mustafa Odabaşoğlu^c

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, ^bSinop University, Sinop Faculty of Education, Sinop, Turkey, and ^cPamukkale University, Denizli Technical Vocational School, Denizli, Turkey Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr

Received 21 July 2009; accepted 23 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.064; wR factor = 0.163; data-to-parameter ratio = 16.2.

The title compound, C₁₇H₁₉NO₂, exists as an enol-imine tautomer. The dihedral angle between the two benzene rings is $4.6(2)^{\circ}$. The molecular structure is stabilized by intramolecular $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds which generate S(5) and S(6) ring motifs, respectively. In the crystal, molecules are linked into centrosymmetric dimers by pairs of $O-H\cdots O$ hydrogen bonds. In addition, $C-H\cdots \pi$ interactions involving both benzene rings are observed.

Related literature

For general background to Schiff bases, see: Lozier et al. (1975); Calligaris et al. (1972); Maslen & Waters (1975); Steward & Lingafelter (1959). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis et al. (1987); Moustakali-Mavridis et al. (1980). For graph-set motifs, see: Bernstein et al. (1995). For related structures, see: Temel et al. (2007); Koşar et al. (2005).

Experimental

Crystal data

C17H19NO2 $M_r = 269.33$ Monoclinic, $P2_1/c$ a = 16.2774 (13) Å b = 6.0148 (6) Å c = 17.6166 (14) Å $\beta = 121.476 (5)^{\circ}$

V = 1471.0 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.50 \times 0.45 \times 0.03~\text{mm}$

8711 measured reflections

 $R_{\rm int} = 0.062$

3061 independent reflections

1643 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDSII diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.954, T_{\max} = 0.998$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.163$	independent and constrained
S = 1.07	refinement
3061 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
189 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 02 - H2 \cdots 01 \\ 02 - H2 \cdots 01^{i} \\ 01 - H1 \cdots N1 \\ 06 - H6 \cdots Cg2^{ii} \\ 010 - H10 \cdots Cg1^{ii} \end{array}$	0.86 (2) 0.86 (2) 0.88 (2) 0.93 0.93	2.21 (3) 2.08 (3) 1.74 (2) 2.85 2.80	2.728 (2) 2.802 (3) 2.555 (2) 3.645 (3) 3.491 (3)	118 (3) 141 (3) 155 (3) 144 132

Symmetry codes: (i) -x + 1, -y + 3, -z; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2863).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345-1360
- Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2109-o2111.

Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962. Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.

- Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steward, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.

supporting information

Acta Cryst. (2009). E65, o2022 [doi:10.1107/S1600536809029316]

(E)-3-[(4-Butylphenyl)iminomethyl]benzene-1,2-diol

Zeynep Keleşoğlu, Orhan Büyükgüngör, Çiğdem Albayrak and Mustafa Odabaşoğlu

S1. Comment

Schiff bases are widely used as ligands in the field of coordination chemistry and they play an important role in various field of chemistry due to their biological activities (Lozier *et al.*, 1975). *o*-Hydroxy Schiff bases derived from the reaction of *o*-hydroxy aldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris *et al.*, 1972; Maslen & Waters, 1975). Some Schiff bases derived from salicylaldehyde have attracted the interest of chemists and physicists because they show thermochromism and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis, *et al.*, 1987). It has been proposed that molecules showing thermochromism are planar while those showing photochromism are non-planar (Moustakali-Mavridis *et al.*, 1980). There are two types of intramolecular hydrogen bonds in Schiff bases arising from the keto-amine (N—H…O) and enol-imine (N…H—O) tautomeric forms.

X-ray analysis shows that compound (I) prefers the enol-imine tautomeric form with a strong intramolecular O—H···N hydrogen bond. A H atom is located on atom O1, thus the enol-imine tautomer is favoured over the keto-amine form, as indicated by the C2—O1 [1.333 (2) Å], C7—N1 [1.297 (2) Å], C1—C7 [1.433 (2) Å] and C1—C2 [1.406 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.333 (2) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.297 (2) Å indicates a high degree of double-bond character. Similar results were observed for (*E*)-3-[(2-fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel *et al.*, 2007].

The molecule of (I) is nearly planar, with a dihedral angle between the benzene rings A(C1-C6) and B(C8-C13) of 4.6 (2) Å. Intramolecular O—H···O and O—H···N hydrogen bonds generate S(5) and S(6) ring motifs, respectively (Bernstein *et al.*, 1995) (Fig. 1). The nearly planar S(6) ring forms dihedral angles of 2.3 (4)° and 2.5 (5)° with the rings A and B, respectively.

In the crystal, molecules of (I) are linked by intermolecular O—H···O hydrogen bonds forming centrosymmetric dimers (Fig.2). In addition, C6—H6···Cg2 and C10—H10···Cg1 interactions (Cg1 and Cg2 are the centroids of the C1—C6 and C8—C13 rings, respectively) are observed (Table 1).

S2. Experimental

Compound (I) was prepared by refluxing a mixture of 2,3-dihydroxy benzaldehyde (0.5 g, 0.0036 mol) in ethanol (20 ml) and 4-butilanilyne (0.54 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of (I) suitable for X-ray analysis were obtained from a methanol solution by slow evaporation (yield 85%; m.p. 363–364 K).

S3. Refinement

The hydroxyl H atoms were located in a difference Fourier map and were refined with a O-H distance restraint of 0.83 (2) Å. All other H-atoms were refined using a riding model with C-H = 0.93-0.96 Å ($U_{iso} = 1.2U_{eq}$ of the parent atom) for

aromatic and ethyl C atoms and C-H = 0.97 Å ($U_{iso} = 1.5U_{eq}$ of the parent atom) for methyl C atoms.

Figure 1

An *ORTEP* view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.

Figure 2

A packing diagram for (I), showing the formation of dimers through O—H…O hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity [symmetry code (i): 1-x, 3-y, -z].

(E)-3-[(4-Butylphenyl)iminomethyl]benzene-1,2-diol

Crystal data	
$C_{17}H_{19}NO_2$	c = 17.6166 (14) Å
$M_r = 269.33$	$\beta = 121.476 (5)^{\circ}$
Monoclinic, $P2_1/c$	V = 1471.0 (2) Å ³
Hall symbol: -P 2ybc	Z = 4
a = 16.2774 (13) Å	F(000) = 576
b = 6.0148 (6) Å	$D_{\rm x} = 1.216 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 8711 reflections $\theta = 1.4-27.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Dura concenton	
Stoe IPDSII diffractometer	8711 measured reflections 3061 independent reflections
Radiation source: fine-focus sealed tube	1643 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.062$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 26.5^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
rotation method scans	$h = -20 \rightarrow 20$
Absorption correction: integration	$k = -7 \rightarrow 7$
(X-RED32; Stoe & Cie, 2002)	$l = -22 \rightarrow 22$
$T_{\min} = 0.954, \ T_{\max} = 0.998$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of independe
$wR(F^2) = 0.163$	and constrained refinement
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.0507P]$

T = 296 K

Thin plate, red

 $0.50 \times 0.45 \times 0.03$ mm

S = 1.07 $w = 1/[\sigma^2(F)]$ 3061 reflectionswhere P189 parameters $(\Delta/\sigma)_{max} = 0$ 2 restraints $\Delta\rho_{max} = 0.12$ Primary atom site location: structure-invariant $\Delta\rho_{min} = -0.12$ direct methodsExtinction of the extinction of the

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.0507P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.044$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0060 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.57490 (18)	0.9538 (4)	0.13401 (17)	0.0578 (6)	
C2	0.57322 (18)	1.1547 (4)	0.09238 (17)	0.0572 (6)	
C3	0.64541 (18)	1.1943 (4)	0.07262 (18)	0.0613 (7)	
C4	0.71906 (19)	1.0448 (5)	0.0989 (2)	0.0690 (8)	
H4	0.7677	1.0749	0.0876	0.083*	
C5	0.7222 (2)	0.8493 (5)	0.1423 (2)	0.0733 (8)	
H5	0.7726	0.7496	0.1597	0.088*	
C6	0.65099 (19)	0.8032 (4)	0.15939 (18)	0.0666 (7)	
H6	0.6530	0.6715	0.1880	0.080*	
C7	0.49848 (19)	0.9019 (4)	0.14886 (18)	0.0621 (7)	

H7	0.4991	0.7663	0.1746	0.074*
C8	0.34786 (18)	0.9936 (4)	0.13574 (17)	0.0586 (6)
C9	0.3369 (2)	0.8029 (5)	0.1736 (2)	0.0760 (8)
Н9	0.3838	0.6926	0.1947	0.091*
C10	0.2569 (2)	0.7761 (5)	0.1801 (2)	0.0787 (9)
H10	0.2511	0.6477	0.2064	0.094*
C11	0.1851 (2)	0.9339 (5)	0.1489 (2)	0.0697 (8)
C12	0.1964 (2)	1.1213 (5)	0.1113 (2)	0.0789 (9)
H12	0.1490	1.2305	0.0898	0.095*
C13	0.2768 (2)	1.1527 (4)	0.1044 (2)	0.0732 (8)
H13	0.2826	1.2819	0.0785	0.088*
C14	0.0994 (2)	0.9044 (5)	0.1604 (3)	0.0939 (10)
H14A	0.1223	0.9125	0.2234	0.113*
H14B	0.0555	1.0278	0.1314	0.113*
C15	0.0450 (2)	0.6941 (6)	0.1246 (2)	0.0910 (10)
H15A	0.0880	0.5706	0.1557	0.109*
H15B	0.0247	0.6822	0.0623	0.109*
C16	-0.0432 (2)	0.6723 (6)	0.1326 (3)	0.0975 (11)
H16A	-0.0230	0.6826	0.1949	0.117*
H16B	-0.0862	0.7959	0.1018	0.117*
C17	-0.0972 (3)	0.4600 (6)	0.0956 (3)	0.1137 (13)
H17A	-0.1126	0.4420	0.0354	0.171*
H17B	-0.1555	0.4640	0.0967	0.171*
H17C	-0.0581	0.3375	0.1310	0.171*
N1	0.42843 (15)	1.0402 (3)	0.12717 (14)	0.0599 (6)
O1	0.50446 (13)	1.3071 (3)	0.06822 (13)	0.0666 (5)
O2	0.64235 (14)	1.3817 (3)	0.02744 (15)	0.0767 (6)
H1	0.466 (2)	1.247 (5)	0.083 (2)	0.115*
H2	0.5901 (17)	1.449 (5)	0.016 (2)	0.115*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0654 (15)	0.0468 (13)	0.0619 (17)	-0.0011 (12)	0.0337 (14)	0.0022 (12)
C2	0.0608 (15)	0.0481 (13)	0.0663 (17)	-0.0007 (12)	0.0355 (14)	-0.0042 (12)
C3	0.0708 (16)	0.0471 (13)	0.0725 (19)	-0.0035 (12)	0.0421 (15)	-0.0018 (13)
C4	0.0678 (16)	0.0638 (16)	0.083 (2)	-0.0022 (14)	0.0445 (16)	-0.0101 (16)
C5	0.0736 (18)	0.0612 (17)	0.088 (2)	0.0099 (14)	0.0442 (17)	-0.0008 (16)
C6	0.0732 (17)	0.0527 (14)	0.0730 (19)	0.0058 (13)	0.0375 (15)	0.0042 (14)
C7	0.0723 (17)	0.0512 (14)	0.0642 (18)	-0.0018 (13)	0.0367 (14)	0.0041 (13)
C8	0.0630 (15)	0.0535 (14)	0.0608 (17)	-0.0019 (12)	0.0335 (13)	-0.0001 (13)
C9	0.0702 (17)	0.0635 (16)	0.097 (2)	0.0085 (14)	0.0454 (17)	0.0242 (17)
C10	0.0731 (17)	0.0723 (18)	0.096 (2)	0.0003 (15)	0.0476 (17)	0.0199 (17)
C11	0.0681 (17)	0.0650 (17)	0.081 (2)	0.0001 (14)	0.0426 (16)	-0.0011 (16)
C12	0.0754 (19)	0.0657 (17)	0.103 (2)	0.0118 (15)	0.0521 (19)	0.0094 (17)
C13	0.0798 (18)	0.0568 (15)	0.091 (2)	0.0072 (14)	0.0504 (17)	0.0138 (16)
C14	0.087 (2)	0.084 (2)	0.129 (3)	-0.0094 (18)	0.069 (2)	-0.016 (2)
C15	0.0775 (19)	0.091 (2)	0.117 (3)	-0.0056 (18)	0.059 (2)	-0.007 (2)

supporting information

C16	0.084 (2)	0.107 (3)	0.121 (3)	-0.0090 (19)	0.066 (2)	-0.008 (2)
C17	0.106 (3)	0.095 (3)	0.161 (4)	-0.010 (2)	0.085 (3)	-0.002 (3)
N1	0.0647 (12)	0.0532 (12)	0.0649 (15)	-0.0010 (11)	0.0361 (11)	0.0026 (11)
01	0.0737 (12)	0.0515 (10)	0.0877 (14)	0.0050 (9)	0.0512 (11)	0.0095 (10)
O2	0.0887 (14)	0.0557 (11)	0.1117 (17)	0.0022 (10)	0.0704 (14)	0.0086 (11)

Geometric parameters (Å, °)

C1—C6	1.406 (3)	C10—H10	0.93	
C1—C2	1.406 (3)	C11—C12	1.367 (4)	
C1—C7	1.433 (3)	C11—C14	1.520 (4)	
C2—O1	1.333 (3)	C12—C13	1.389 (4)	
C2—C3	1.409 (3)	C12—H12	0.93	
C3—O2	1.365 (3)	C13—H13	0.93	
C3—C4	1.371 (4)	C14—C15	1.483 (4)	
C4—C5	1.389 (4)	C14—H14A	0.97	
C4—H4	0.93	C14—H14B	0.97	
С5—С6	1.370 (4)	C15—C16	1.519 (4)	
С5—Н5	0.93	C15—H15A	0.97	
С6—Н6	0.93	C15—H15B	0.97	
C7—N1	1.297 (3)	C16—C17	1.493 (5)	
С7—Н7	0.93	C16—H16A	0.97	
C8—C13	1.375 (3)	C16—H16B	0.97	
C8—C9	1.384 (3)	C17—H17A	0.96	
C8—N1	1.424 (3)	C17—H17B	0.96	
C9—C10	1.375 (4)	C17—H17C	0.96	
С9—Н9	0.93	O1—H1	0.88 (2)	
C10—C11	1.379 (4)	O2—H2	0.86 (2)	
C6—C1—C2	119.6 (2)	C11—C12—C13	121.7 (3)	
C6—C1—C7	120.4 (2)	C11—C12—H12	119.1	
C2C1C7	120.0 (2)	C13—C12—H12	119.1	
01—C2—C1	122.8 (2)	C8—C13—C12	120.2 (3)	
O1—C2—C3	118.3 (2)	C8—C13—H13	119.9	
C1—C2—C3	118.9 (2)	C12—C13—H13	119.9	
O2—C3—C4	119.8 (2)	C15—C14—C11	115.4 (3)	
O2—C3—C2	120.2 (2)	C15—C14—H14A	108.4	
C4—C3—C2	120.0 (2)	C11—C14—H14A	108.4	
C3—C4—C5	121.1 (2)	C15—C14—H14B	108.4	
C3—C4—H4	119.5	C11—C14—H14B	108.4	
C5—C4—H4	119.5	H14A—C14—H14B	107.5	
C6—C5—C4	120.0 (3)	C14—C15—C16	114.7 (3)	
С6—С5—Н5	120.0	C14—C15—H15A	108.6	
C4—C5—H5	120.0	C16—C15—H15A	108.6	
C5—C6—C1	120.4 (3)	C14—C15—H15B	108.6	
С5—С6—Н6	119.8	C16—C15—H15B	108.6	
С1—С6—Н6	119.8	H15A—C15—H15B	107.6	
N1	121.3 (2)	C17—C16—C15	113.8 (3)	

N1—C7—H7	119.3	C17—C16—H16A	108.8
C1—C7—H7	119.3	C15—C16—H16A	108.8
C13—C8—C9	118.5 (2)	C17—C16—H16B	108.8
C13—C8—N1	116.7 (2)	C15—C16—H16B	108.8
C9—C8—N1	124.8 (2)	H16A—C16—H16B	107.7
C10—C9—C8	120.2 (3)	С16—С17—Н17А	109.5
С10—С9—Н9	119.9	С16—С17—Н17В	109.5
С8—С9—Н9	119.9	H17A—C17—H17B	109.5
C9—C10—C11	121.9 (3)	С16—С17—Н17С	109.5
С9—С10—Н10	119.0	H17A—C17—H17C	109.5
C11—C10—H10	119.0	H17B—C17—H17C	109.5
C12—C11—C10	117.4 (2)	C7—N1—C8	124.0 (2)
C12—C11—C14	121.7 (3)	C2	104 (2)
C10—C11—C14	120.8 (3)	С3—О2—Н2	105 (2)
C6-C1-C2-O1	-178.6 (2)	N1-C8-C9-C10	178.8 (3)
C7—C1—C2—O1	2.6 (4)	C8—C9—C10—C11	0.8 (5)
C6-C1-C2-C3	3.5 (4)	C9—C10—C11—C12	-0.5 (5)
C7—C1—C2—C3	-175.4 (2)	C9-C10-C11-C14	-177.4 (3)
O1—C2—C3—O2	-2.0 (4)	C10-C11-C12-C13	0.1 (5)
C1—C2—C3—O2	176.0 (2)	C14—C11—C12—C13	177.0 (3)
O1—C2—C3—C4	177.9 (2)	C9—C8—C13—C12	0.3 (4)
C1—C2—C3—C4	-4.1 (4)	N1-C8-C13-C12	-179.2 (2)
O2—C3—C4—C5	-177.8 (3)	C11—C12—C13—C8	0.0 (5)
C2—C3—C4—C5	2.4 (4)	C12-C11-C14-C15	128.0 (4)
C3—C4—C5—C6	0.0 (4)	C10-C11-C14-C15	-55.2 (4)
C4—C5—C6—C1	-0.6 (4)	C11-C14-C15-C16	-177.2 (3)
C2-C1-C6-C5	-1.2 (4)	C14—C15—C16—C17	179.6 (3)
C7—C1—C6—C5	177.6 (3)	C1—C7—N1—C8	176.5 (2)
C6-C1-C7-N1	178.9 (3)	C13—C8—N1—C7	-176.0 (3)
C2-C1-C7-N1	-2.2 (4)	C9—C8—N1—C7	4.6 (4)
C13—C8—C9—C10	-0.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
02—H2…O1	0.86 (2)	2.21 (3)	2.728 (2)	118 (3)
O2—H2···O1 ⁱ	0.86 (2)	2.08 (3)	2.802 (3)	141 (3)
01—H1…N1	0.88 (2)	1.74 (2)	2.555 (2)	155 (3)
$C6-H6\cdots Cg2^{ii}$	0.93	2.85	3.645 (3)	144
C10—H10···· $Cg1^{ii}$	0.93	2.80	3.491 (3)	132

Symmetry codes: (i) -x+1, -y+3, -z; (ii) -x+1, y-1/2, -z+1/2.