

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 3-(2-Chloroethyl)-2-methyl-4*H*-pyrido-[1,2-*a*]pyrimidin-4-one

## Jerry P. Jasinski,<sup>a</sup> Ray J. Butcher,<sup>b</sup>\* Q. N. M. Hakim Al-Arique,<sup>c</sup> H. S. Yathirajan<sup>c</sup> and B. Narayana<sup>d</sup>

<sup>a</sup>Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, <sup>b</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, <sup>c</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and <sup>d</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: rbutcher99@yahoo.com

Received 11 June 2009; accepted 13 July 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.065; wR factor = 0.181; data-to-parameter ratio = 22.4.

In the title molecule,  $C_{11}H_{11}ClN_2O$ , the pyrido[1,2-a]pyrimidine ring system is planar (maximum deviation = 0.0148 Å) and the methyl C and carbonyl O atoms are nearly coplanar to it. The chloroethyl side chain is in a synclinal conformation, nearly orthogonal to the pyrimidine ring, with a dihedral angle between the chloroethyl side chain and the pyrimidine ring of 88.5 (1)°. Weak intermolecular  $C-H\cdots N$  and  $C-H\cdots Cl$  hydrogen bonds along with  $\pi-\pi$  interactions between the pyrimidine rings [centroid–centroid distance is 3.538 (2) Å] form a three-dimensional network. The crystal is a racemic twin with a 0.68 (12):0.32 (12) domain ratio. MOPAC AM1 and density functional theory (DFT) theoretical calculations at the B3-LYP/6–311+G(d,p) level support these observations.

#### **Related literature**

For related structures, see: Blaton *et al.* (1995); Chen & He (2006); Elotmani *et al.* (2002); Jottier *et al.* (1992); Koval'chukova *et al.* (2004); Peeters *et al.* (1993); Ravikumar & Sridhar, (2006); Yu *et al.* (2007). For general background to heterofused pyrimidines, see: Baraldi *et al.* (2002); Bookser *et al.* (2005); Chen *et al.* (2004); La Motta *et al.* (2007); Gabbert & Giannini (1997); Goodacre *et al.* (2006); Hossain *et al.* (1997); Joseph & Burke (1993); Nikitin & Smirnov (1994); Sabnis & Rangnekar (1990); Wang *et al.* (2004); White *et al.* (2004). For the synthesis, see: Toche *et al.* (2008). For *GAUSSIAN03* theoretical calculations, see: Becke (1988, 1993); Frisch *et al.* (2004); Hehre *et al.* (1986); Lee *et al.* (1988); Schmidt & Polik (2007).



#### Experimental

Crystal data  $C_{11}H_{11}CIN_2O$   $M_r = 222.67$ Orthorhombic,  $P2_12_12_1$  a = 4.2546 (4) Å b = 11.6274 (10) Å c = 20.604 (2) Å

#### Data collection

Oxford Diffraction Gemini R CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007)  $T_{\rm min} = 0.835, T_{\rm max} = 0.959$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$   $wR(F^2) = 0.181$  S = 1.113089 reflections 138 parameters H-atom parameters constrained Z = 4Mo K $\alpha$  radiation  $\mu = 0.35 \text{ mm}^{-1}$ T = 110 K $0.51 \times 0.35 \times 0.12 \text{ mm}$ 

 $V = 1019.27 (17) \text{ Å}^3$ 

4613 measured reflections 3089 independent reflections 2607 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.054$ 

 $\begin{array}{l} \Delta\rho_{\rm max}=0.99~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.52~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 1103~{\rm Friedel~pairs}\\ {\rm Flack~parameter:~0.32~(12)} \end{array}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdots A$ |  |
|-----------------------------------------------------------------------------------------------------------------|--------------|-------------------------|------------------------|------------------|--|
| $C5-H5A\cdots N2^{i}$ $C2-H2A\cdots Cl^{ii}$                                                                    | 0.95<br>0.95 | 2.50<br>2.90            | 3.394 (3)<br>3.559 (3) | 157<br>128       |  |
| Symmetry codes: (i) $x - \frac{1}{2} - y + \frac{3}{2} - z + 1$ ; (ii) $-x + y + \frac{1}{2} - z + \frac{1}{2}$ |              |                         |                        |                  |  |

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2827).

#### References

- Baraldi, P. G., Cacciari, B., Romagnoli, R., Spalluto, G., Monopoli, A., Ongini, E., Varani, K. & Borea, P. A. (2002). J. Med. Chem. 45, 115–126.
- Becke, A. D. (1988). Phys. Rev. A38, 3098-100.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533– 535.
- Bookser, B. C., Ugarkar, B. G., Matelich, M. C., Lemus, R. H., Alla, M., Tsuchiya, M., Nakane, M., Nagahisa, A., Wiesner, J. B. & Erion, M. D. (2005). J. Med. Chem. 48, 7808–7820.
- Chen, C., Chen, C., Wilcoxen, K. M., Huang, C. Q., Xie, Y.-F., McCarthy, J. R., Webb, T. R., Zhu, Y.-F., Saunders, J., Liu, X.-J., Chen, T.-K., Bozigian, H. & Grigoriadis, D. E. (2004). *J. Med. Chem.* 47, 4787–4798.
- Chen, H.-L. & He, H.-W. (2006). Acta Cryst. E62, 01226–01227.
- Elotmani, B., Elmahi, M., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, 0388–0389.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT 06492, USA.
- Gabbert, J. F. & Giannini, A. J. (1997). Am. J. Ther. 4, 159-164.
- Goodacre, S. C., Street, L. J., Hallett, D., Crawforth, J. M., Kelly, S., Owens, A. P., Blackaby, W. P., Lewis, R. T., Stanley, J., Smith, A. J., Ferris, P., Sohal, B., Cook, S. M., Pike, A., Brown, N., Wafford, K. A., Marshall, G., Castro, J. L. & Atack, J. R. (2006). *J. Med. Chem.* **49**, 35–38.
- Hehre, W. J., Random, L., von Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.
- Hossain, N., Rozenski, J., De Clercq, E. & Herdewijn, P. (1997). J. Org. Chem. 62, 2442–2447.

- Joseph, S. & Burke, J. M. (1993). J. Biol. Chem. 268, 24515-24518.
- Jottier, W. I., De Winter, H. L., Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1992). Acta Cryst. C48, 1827–1830.
- Koval'chukova, O. V., Mordovina, N. I., Kuz'mina, N. E., Nikitin, S. V., Zaitsev, B. E., Strashnova, S. B. & Palkina, K. K. (2004). *Crystallogr. Rep.* 49, 792– 797.
- La Motta, C., Sartinit, S., Mugnaini, L., Simorini, F., Taliani, S., Salerno, S., Marini, A. M., Da Settimo, F., Lavecchia, A., Novellino, E., Cantore, M., Failli, P. & Ciuffi, M. (2007). J. Med. Chem. 50, 4917–4927.
- Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.
- Nikitin, S. V. & Smirnov, L. D. (1994). Chem. Heter. Copm. 30, 507-522.
- Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698– 1700.
- Ravikumar, K. & Sridhar, B. (2006). Acta Cryst. E62, 03730-03731.
- Sabnis, R. W. & Rangnekar, D. W. (1990). *Indian J. Technol.* 28, 54–58. Schmidt, J. R. & Polik, W. F. (2007). *WebMO Pro*. WebMO, LLC: Holland, MI,
- USA. URL: http://www.webmo.net.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Toche, R. B., Ghotekar, B. K., Kazi, M. A., Patil, S. P. & Jachak, M. N. (2008). Schol. Res. Exch. doi:10.3814/2008/434329, 1–5.
- Wang, S., Folkes, A., Chuckowree, I., Cockcroft, X., Sohal, S., Miller, W., Milton, J., Wren, S. P., Vicker, N., Depledge, P., Scott, J., Smith, L., Jones, H., Mistry, P., Faint, R., Thompson, D. & Cocks, S. (2004). J. Med. Chem. 47, 1329–1338.
- White, D. C., Greenwood, D. C., Downey, A. L., Bloomquis, J. R. & Wolfe, J. F. (2004). *Bioorg. Med. Chem.* 12, 5711–5717.
- Yu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, 03186.

# supporting information

Acta Cryst. (2009). E65, o1987-o1988 [doi:10.1107/S1600536809027548]

## 3-(2-Chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one

## Jerry P. Jasinski, Ray J. Butcher, Q. N. M. Hakim Al-Arique, H. S. Yathirajan and B. Narayana

## S1. Comment

Heterofused pyrimidines exhibit promising antiviral (Hossain et al. 1997), antibacterial (Sabnis & Rangnekar, 1990), anti-AIDS (Joseph & Burke, 1993), and antinociceptive (Bookser et al. 2005) activities. Fused pyrimidines are extensively used in neurology, particularly in the treatment of neurodegenerative disorders such as Parkinson's disease (Baraldi et al. 2002), antianxiety disorders (Goodacre et al. 2006) and depression (Chen et al. 2004). Fused pyrimidines are selective inhibitors for multidrug resistance (MDR) (Wang et al. 2004). A review on the synthesis, chemical and biological properties of pyrido[1,2-a]pyrimidines is described (Nikitin & Smirnov, 1994). Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity has been reported (La Motta et al. 2007). The synthesis and anticonvulsant evaluation of some new 2-substituted-3-arylpyrido[2,3-d]pyrimidinones have also been reported (White et al. 2004). The crystal structures of 3-{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidino]ethyl}-6,7,8,9- tetrahydro-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (risperidone) (Peeters et al. 1993), 3-{2-[4-(4fluorobenzoyl)piperidino]ethyl}-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (Pirenperone) (Blaton et al. 1995), 5methyl-2-morpholino-3-p-tolyl-8,9,10,11-tetrahydro-2-benzothieno[2', 3':6,5]pyrido[4,3-d]pyrimidin-4(3H)-one (Chen & He, 2006), 3-{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl}-2,9- dimethyl-4H-pyrido[1,2-a]pyrimidin-4-one (Ocaperidone) (Jottier et al. 1992), 2-methyl-3-(3-methyl-1H-pyrazol-5-yl)pyrido[1,2-a]pyrimidin-4-one (Elotmani et al. 2002), 2-methyl-3-chloro-9-hydroxypyrido[1,2-a]pyrimidin-4-one and bis(2-methyl-3-chloro-9-hydroxypyrido[1,2a]pyrimidin-4-onium) perchlorate (Koval'chukova et al. 2004), 3-(2-chloroethyl)-2-methyl-4-oxo-6,7,8,9-tetrahydro-4Hpyrido[1,2-a] pyrimidin-1-ium chloride (Ravikumar & Sridhar, 2006) and 9-(4-methoxybenzoyl)-1,2,3,4-tetrahydro-6Hpyrido[1,2-a]pyrimidin-6-one (Yu et al. 2007) have also been reported.

The title compound, (I), is an intermediate in the synthesis of risperidone, which is a potent antipsychotic agent, especially useful for treating schizophrenia (Gabbert & Giannini, 1997). In view of the importance of (I), the present paper describes its crystal structure.

The overall molecular geometry of (I), including bond distances and angles, is in good agreement with related structures (Blaton *et al.* 1995; Jottier *et al.* 1992; Peeters *et al.* 1993; Ravikumar & Sridhar, 2006). It consists of a pyridine ring fused to a substituted pyrimidine ring creating a planar ring system (maximum deviation, C1, = -0.0148Å) with the methyl C and carbonyl O atoms nearly coplanar to the pyrimidine ring (Torsion angles C1-C9-C7-C8 = 177.6 (3)°; C2-N1-C1-O = -2.5 (4)° (Fig. 1). The sum of the angles around N1 is 360.0 (5)° indicating *sp*<sup>2</sup> hybridization. The chloro-ethyl side chain is in a synclinal (-*sc*) conformation (C1—C9—C10—C11 torsion angle = -86.6 (3)°), nearly orthogonal to the pyrimidine ring, with a dihedral angle separation between the C10/C11/Cl group and the pyrimidine ring of 88.5 (1)°.

While no classic hydrogen bonds are observed, a weak intermolecular hydrogen bond interaction exists between atom C5 from the pyridine ring and N2 from a nearby pyrimidine ring (Table 1 and Fig. 2). In addition, a weak intermolecular interaction between atom C2 from the pyrimidine ring and Cl from the substituted pyrimidine group also occurs, each

influencing crystal packing and, therefore, resulting in a three-dimensional network (Fig. 2). In addition,  $\pi$ - $\pi$  interactions between N1/C1/C9/C7/N2/C6 (centroid Cg1) and N1/C2-C6 (centroid Cg2) rings of molecules at (x, y, z) and (1+x, y, z), with a Cg1…Cg2 distance of 3.538 (2) Å, provide additional stability to the crystal packing. The crystal is a racemic twin with domains of 0.68 (12) and 0.32 (12).

In support of these observations, a MOPAC AM1 (Schmidt & Polik, 2007) and density functional theory (DFT) geometry optimized theoretical calculation (Schmidt & Polik, 2007) with the *GAUSSIAN03* program package (Frisch *et al.* 2004) employing the B3-LYP (Becke 3 parameter Lee-Yang-Parr) exchange correlation functional, which combines the hybrid exchange functional of Becke (Becke, 1988, 1993) with the gradient-correlation functional of Lee, Yang and Parr (Lee *et al.* 1988) and the 6-311+G(d,p) basis set (Hehre *et al.* 1986), was performed on (I) utilizing starting geometries taken from the X-ray refinement data. In both calculations the resulting bond distances and angles remained relatively constant. However, the C9—C10—C11—Cl torsion angle decreased by 3.2 (1)° to 175.4 (3)° (MOPAC) and 0.07° to 178.5 (7)° (DFT) and the dihedral angle between the C10/C11/Cl group and the pyrimidine ring decreased by 2.3 (8)° to 86.1 (3)° (MOPAC) and by 8.3 (6)° to 80.1 (5)° (DFT), respectively.

In summary, it is clear that the collection of weak intermolecular hydrogen bond interactions and  $\pi$ - $\pi$  intermolecular interactions do play a role in stabilizing crystal packing of (I).

### **S2. Experimental**

The title compound was synthesized following the reported procedure (Toche *et al.* 2008). Pale yellow crystals of compound (I) were obtained by slow evaporation from ethyl acetate solution (m.p. 405–408 K). Analytical data: Found (calculated): C %: 59.28 (59.33); H%: 4.97 (4.98); N%: 12.54 (12.58).

### **S3. Refinement**

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95-0.99 Å, and with  $U_{iso}(H) = 1.18-1.50U_{eq}(C)$ .



## Figure 1

Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids.



## Figure 2

Packing diagram of (I), viewed down the *b* axis. Dashed lines indicate weak C5—H5A···N2 and C2—H2A···Cl intermolecular interactions.

## 3-(2-Chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one

| Crystal data                                         |                                                       |
|------------------------------------------------------|-------------------------------------------------------|
| $C_{11}H_{11}CIN_2O$                                 | F(000) = 464                                          |
| $M_r = 222.67$                                       | $D_{\rm x} = 1.451 {\rm ~Mg~m^{-3}}$                  |
| Orthorhombic, $P2_12_12_1$                           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab                               | Cell parameters from 2755 reflections                 |
| a = 4.2546 (4)  Å                                    | $\theta = 4.8 - 32.6^{\circ}$                         |
| b = 11.6274 (10)  Å                                  | $\mu = 0.35 \text{ mm}^{-1}$                          |
| c = 20.604 (2) Å                                     | T = 110  K                                            |
| $V = 1019.27 (17) Å^3$                               | Plate, colorless                                      |
| Z = 4                                                | $0.51 \times 0.35 \times 0.12 \text{ mm}$             |
| Data collection                                      |                                                       |
| Oxford Diffraction Gemini R CCD                      | Absorption correction: multi-scan                     |
| diffractometer                                       | ( <i>CrysAlis RED</i> ; Oxford Diffraction, 2007)     |
| Radiation source: Enhance (Mo) X-ray Source          | $T_{\rm min} = 0.835, T_{\rm max} = 0.959$            |
| Graphite monochromator                               | 4613 measured reflections                             |
| Detector resolution: 10.5081 pixels mm <sup>-1</sup> | 3089 independent reflections                          |
| $\varphi$ and $\omega$ scans                         | 2607 reflections with $I > 2\sigma(I)$                |
|                                                      | $R_{\rm int} = 0.054$                                 |

| $\theta_{\text{max}} = 32.6^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$ | $k = -17 \rightarrow 16$                                 |
|---------------------------------------------------------------------------|----------------------------------------------------------|
| $h = -3 \rightarrow 6$                                                    | $l = -30 \rightarrow 27$                                 |
| Refinement                                                                |                                                          |
| Refinement on $F^2$                                                       | Hydrogen site location: inferred from                    |
| Least-squares matrix: full                                                | neighbouring sites                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.065$                                           | H-atom parameters constrained                            |
| $wR(F^2) = 0.181$                                                         | $w = 1/[\sigma^2(F_o^2) + (0.1108P)^2 + 0.2652P]$        |
| S = 1.11                                                                  | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 3089 reflections                                                          | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| 138 parameters                                                            | $\Delta \rho_{\rm max} = 0.99 \ { m e} \ { m \AA}^{-3}$  |
| 0 restraints                                                              | $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$ |
| Primary atom site location: structure-invariant                           | Absolute structure: Flack (1983), 1103 Friedel           |
| direct methods                                                            | pairs                                                    |
| Secondary atom site location: difference Fourier                          | Absolute structure parameter: 0.32 (12)                  |
| map                                                                       |                                                          |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| Cl  | 0.49448 (19) | 0.87358 (6)  | 0.12093 (3)  | 0.02056 (18)                |
| 0   | 0.1937 (6)   | 1.09071 (18) | 0.30555 (10) | 0.0240 (5)                  |
| N1  | -0.0403 (6)  | 0.9961 (2)   | 0.39118 (10) | 0.0150 (4)                  |
| N2  | 0.0097 (7)   | 0.79306 (19) | 0.40322 (11) | 0.0172 (4)                  |
| C1  | 0.1541 (7)   | 0.9982 (2)   | 0.33357 (13) | 0.0151 (5)                  |
| C2  | -0.1616 (9)  | 1.0994 (2)   | 0.41318 (14) | 0.0207 (6)                  |
| H2A | -0.1116      | 1.1685       | 0.3909       | 0.025*                      |
| C3  | -0.3506 (8)  | 1.1032 (3)   | 0.46596 (15) | 0.0231 (6)                  |
| H3A | -0.4354      | 1.1744       | 0.4803       | 0.028*                      |
| C4  | -0.4212 (7)  | 0.9999 (3)   | 0.49970 (14) | 0.0211 (6)                  |
| H4A | -0.5530      | 1.0019       | 0.5369       | 0.025*                      |
| C5  | -0.3006 (8)  | 0.8986 (2)   | 0.47886 (13) | 0.0191 (5)                  |
| H5A | -0.3477      | 0.8299       | 0.5019       | 0.023*                      |
| C6  | -0.1033 (7)  | 0.8935 (2)   | 0.42262 (13) | 0.0147 (5)                  |
| C7  | 0.1973 (8)   | 0.7917 (2)   | 0.34977 (13) | 0.0155 (5)                  |
| C8  | 0.3087 (9)   | 0.6735 (2)   | 0.33069 (16) | 0.0239 (6)                  |
| H8A | 0.2581       | 0.6188       | 0.3653       | 0.036*                      |
| H8B | 0.5366       | 0.6750       | 0.3238       | 0.036*                      |
| H8C | 0.2038       | 0.6499       | 0.2905       | 0.036*                      |
| С9  | 0.2748 (7)   | 0.8891 (2)   | 0.31499 (12) | 0.0146 (5)                  |
| C10 | 0.4766 (9)   | 0.8869 (2)   | 0.25437 (12) | 0.0182 (5)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

| ) |
|---|
|   |
|   |
| ; |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl  | 0.0233 (3)  | 0.0253 (3)  | 0.0132 (3)  | -0.0031 (3)  | 0.0030 (3)   | -0.0001 (2)  |
| 0   | 0.0323 (13) | 0.0185 (9)  | 0.0214 (10) | -0.0029 (9)  | 0.0024 (10)  | 0.0048 (8)   |
| N1  | 0.0188 (11) | 0.0144 (8)  | 0.0118 (9)  | 0.0013 (9)   | -0.0009 (9)  | 0.0005 (7)   |
| N2  | 0.0200 (10) | 0.0157 (8)  | 0.0160 (10) | -0.0002 (12) | -0.0001 (11) | 0.0019 (7)   |
| C1  | 0.0168 (12) | 0.0163 (11) | 0.0122 (11) | -0.0028 (11) | -0.0005 (10) | 0.0002 (9)   |
| C2  | 0.0286 (15) | 0.0163 (11) | 0.0173 (13) | 0.0039 (12)  | 0.0000 (12)  | -0.0001 (9)  |
| C3  | 0.0259 (15) | 0.0235 (13) | 0.0198 (14) | 0.0058 (13)  | -0.0013 (12) | -0.0054 (10) |
| C4  | 0.0198 (14) | 0.0300 (14) | 0.0135 (12) | 0.0026 (12)  | 0.0017 (10)  | -0.0019 (10) |
| C5  | 0.0196 (13) | 0.0234 (12) | 0.0142 (12) | -0.0029 (12) | 0.0018 (11)  | 0.0028 (10)  |
| C6  | 0.0178 (11) | 0.0146 (11) | 0.0118 (11) | -0.0013 (9)  | -0.0029 (9)  | 0.0017 (8)   |
| C7  | 0.0194 (13) | 0.0125 (10) | 0.0146 (11) | 0.0001 (11)  | -0.0022 (11) | -0.0001 (9)  |
| C8  | 0.0282 (16) | 0.0167 (11) | 0.0267 (15) | 0.0015 (13)  | 0.0028 (14)  | -0.0022 (10) |
| C9  | 0.0133 (11) | 0.0183 (11) | 0.0124 (12) | -0.0020 (10) | -0.0004 (9)  | 0.0005 (9)   |
| C10 | 0.0164 (12) | 0.0245 (12) | 0.0138 (11) | -0.0008 (13) | 0.0011 (10)  | 0.0003 (9)   |
| C11 | 0.0178 (12) | 0.0305 (13) | 0.0119 (11) | -0.0035 (12) | 0.0019 (10)  | -0.0012 (11) |

Geometric parameters (Å, °)

| Cl-C11   | 1.805 (3) | С5—С6      | 1.432 (4) |  |
|----------|-----------|------------|-----------|--|
| 0—C1     | 1.232 (3) | C5—H5A     | 0.95      |  |
| N1—C2    | 1.383 (4) | C7—C9      | 1.381 (4) |  |
| N1—C6    | 1.384 (3) | C7—C8      | 1.505 (4) |  |
| N1—C1    | 1.447 (3) | C8—H8A     | 0.98      |  |
| N2—C6    | 1.325 (3) | C8—H8B     | 0.98      |  |
| N2—C7    | 1.360 (4) | C8—H8C     | 0.98      |  |
| C1—C9    | 1.421 (4) | C9—C10     | 1.516 (4) |  |
| C2—C3    | 1.353 (5) | C10-C11    | 1.523 (4) |  |
| C2—H2A   | 0.95      | C10—H10A   | 0.99      |  |
| C3—C4    | 1.420 (5) | C10—H10B   | 0.99      |  |
| С3—НЗА   | 0.95      | C11—H11A   | 0.99      |  |
| C4—C5    | 1.355 (4) | C11—H11B   | 0.99      |  |
| C4—H4A   | 0.95      |            |           |  |
| C2—N1—C6 | 121.5 (2) | N2—C7—C8   | 114.0 (2) |  |
| C2—N1—C1 | 117.9 (2) | C9—C7—C8   | 122.6 (3) |  |
| C6—N1—C1 | 120.6 (2) | C7—C8—H8A  | 109.5     |  |
| C6—N2—C7 | 117.9 (2) | C7—C8—H8B  | 109.5     |  |
| O—C1—C9  | 127.1 (3) | H8A—C8—H8B | 109.5     |  |
| O-C1-N1  | 118.5 (3) | C7—C8—H8C  | 109.5     |  |

| C9—C1—N1    | 114.4 (2)  | H8A—C8—H8C    | 109.5      |
|-------------|------------|---------------|------------|
| C3—C2—N1    | 120.9 (3)  | H8B—C8—H8C    | 109.5      |
| C3—C2—H2A   | 119.5      | C7—C9—C1      | 120.4 (2)  |
| N1—C2—H2A   | 119.5      | C7—C9—C10     | 123.3 (2)  |
| C2—C3—C4    | 119.4 (3)  | C1—C9—C10     | 116.3 (2)  |
| С2—С3—НЗА   | 120.3      | C9—C10—C11    | 109.5 (3)  |
| C4—C3—H3A   | 120.3      | C9—C10—H10A   | 109.8      |
| C5—C4—C3    | 120.0 (3)  | C11—C10—H10A  | 109.8      |
| C5—C4—H4A   | 120.0      | C9—C10—H10B   | 109.8      |
| C3—C4—H4A   | 120.0      | C11—C10—H10B  | 109.8      |
| C4—C5—C6    | 120.9 (3)  | H10A-C10-H10B | 108.2      |
| C4—C5—H5A   | 119.5      | C10—C11—Cl    | 111.4 (2)  |
| С6—С5—Н5А   | 119.5      | C10-C11-H11A  | 109.3      |
| N2—C6—N1    | 123.3 (2)  | Cl—C11—H11A   | 109.3      |
| N2—C6—C5    | 119.6 (2)  | C10-C11-H11B  | 109.3      |
| N1—C6—C5    | 117.2 (2)  | Cl—C11—H11B   | 109.3      |
| N2—C7—C9    | 123.4 (2)  | H11A—C11—H11B | 108.0      |
|             |            |               |            |
| C2—N1—C1—O  | -2.5 (4)   | C4—C5—C6—N2   | -179.6 (3) |
| C6—N1—C1—O  | 177.1 (3)  | C4—C5—C6—N1   | 0.5 (4)    |
| C2—N1—C1—C9 | 178.7 (3)  | C6—N2—C7—C9   | -0.1 (4)   |
| C6—N1—C1—C9 | -1.8 (4)   | C6—N2—C7—C8   | -178.8 (3) |
| C6—N1—C2—C3 | -0.9 (5)   | N2—C7—C9—C1   | -1.0 (4)   |
| C1—N1—C2—C3 | 178.6 (3)  | C8—C7—C9—C1   | 177.6 (3)  |
| N1—C2—C3—C4 | 1.0 (5)    | N2-C7-C9-C10  | -178.2 (3) |
| C2—C3—C4—C5 | -0.3 (5)   | C8—C7—C9—C10  | 0.4 (5)    |
| C3—C4—C5—C6 | -0.5 (5)   | O-C1-C9-C7    | -176.9 (3) |
| C7—N2—C6—N1 | 0.2 (4)    | N1—C1—C9—C7   | 1.8 (4)    |
| C7—N2—C6—C5 | -179.7 (3) | O-C1-C9-C10   | 0.6 (4)    |
| C2—N1—C6—N2 | -179.7 (3) | N1—C1—C9—C10  | 179.3 (2)  |
| C1—N1—C6—N2 | 0.8 (4)    | C7—C9—C10—C11 | 90.7 (3)   |
| C2—N1—C6—C5 | 0.2 (4)    | C1—C9—C10—C11 | -86.6 (3)  |
| C1—N1—C6—C5 | -179.3 (3) | C9—C10—C11—Cl | 178.6 (2)  |

## *Hydrogen-bond geometry (Å, °)*

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |  |
|----------------------------|-------------|-------|--------------|------------|--|
| C5—H5A····N2 <sup>i</sup>  | 0.95        | 2.50  | 3.394 (3)    | 157        |  |
| C2—H2A····Cl <sup>ii</sup> | 0.95        | 2.90  | 3.559 (3)    | 128        |  |

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) -x, y+1/2, -z+1/2.