Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Chloro-4-hydroxyfuran-2(5H)-one

Na Zhang, ${ }^{\text {a }}$ Zhen-Yi Wu, ${ }^{\text {a* }}$ Su-Yuan Xie, ${ }^{\text {a }}$ Rong-Bin Huang ${ }^{\text {a }}$ and Lan-Sun Zheng ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,
People's Republic of China
Correspondence e-mail: zywu@xmu.edu.cn
Received 12 July 2009; accepted 20 July 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.026 ; w R$ factor $=0.067$; data-to-parameter ratio $=10.2$.

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{ClO}_{3}$, molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into an infinite chain with graphset motif $C(6)$ along the c axis.

Related literature

4-Hydroxy-5H-furan-2-one (tetronic acid) forms a subclass of β-hydroxybutenolides with a generic structure, see: Haynes \& Plimmer (1960). A great number of these compounds and their metabolites are found in many natural products and exhibit a wide array of biological properties, see: Sodeoka et al. (2001). For related structures, see: Ma et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{ClO}_{3}$

$$
M_{r}=134.51
$$

Orthorhombic, Pnma
$a=12.0437$ (6) £
$Z=4$
$b=6.5453$ (4) \AA
Mo $K \alpha$ radiation
$c=6.3886$ (4) A
$V=503.61(5) \AA^{3}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.50 \times 0.50 \times 0.30 \mathrm{~mm}$
Data collection
Oxford Gemini S Ultra diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.736, T_{\text {max }}=0.828$
1932 measured reflections 531 independent reflections 500 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.17$
531 reflections
52 parameters
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.80(3)$	$1.85(3)$	$2.647(2)$	$171(3)$

Symmetry code: (i) $x, y, z-1$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2226).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Haynes, L. J. \& Plimmer, J. R. (1960). Q. Rev. Chem. Soc. 14, 292-315.
Ma, S. M., Wu, B. \& Shi, Z. J. (2004). J. Org. Chem. 69, 1429-1431.
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sodeoka, M., Sampe, R., Kojima, S., Baba, Y., Usui, T., Ueda, K. \& Osada, H. (2001). J. Med. Chem. 44, 3216-3222.

Westrip, S. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o1977 [doi:10.1107/S1600536809028724]

3-Chloro-4-hydroxyfuran-2(5H)-one

Na Zhang, Zhen-Yi Wu, Su-Yuan Xie, Rong-Bin Huang and Lan-Sun Zheng

S1. Comment

4-hydroxy-5 H -furan-2-one (Tetronic acid) form a subclass of β-hydroxybutenolides with the generic structure (Haynes \& Plimmer, 1960). The best known members of this family are vitamin C (ascorbic acid) and pennicillic acid. A great number of these compounds and their metabolites are found in many natural products, which exhibit a wide array of biological properties (Sodeoka et al., 2001). In the present study, the title comound (I) has been determined as product of double-molecular ring closure of monochloroacetic acid which is halo-substituted tetronic acid.
The molecular structure is depicted in Fig. 1. Bond lengths and angles are in good agreement with previous reported for similar compounds (Ma et al., 2004). The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and the molecules are linked in an infinite chain along the c axis, with graph-set motifs $\mathrm{C}(6)$ through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Bernstein et al., 1995) (Fig. 2, Table 1).

S2. Experimental

All reagents and solvents were used as obtained commercially without further purification. To a stirred solution of monochloroacetic $\operatorname{acid}(2 \mathrm{mmol}, 137 \mu L)$ in 5 mL dry THF is added sodium $(1 \mathrm{mmol}, 23 \mathrm{mg})$ under N_{2}. After the solution has been stirred at room temperature for 24 h , the resulting pale yellow solution was kept in darkness for four days, yellow well formed block-shaped crystals were obtained.

S3. Refinement

The aromatic H atoms were generated geometrically ($\mathrm{C}-\mathrm{H} 0.93 \AA$) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The position and $U_{\text {eq }}$ of the hydroxyl H atom were refined with $\mathrm{O}-\mathrm{H}$ distance restrained to $0.85 \AA$.

Figure 1

A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability label and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Partial packing view showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines) and the formation of a chain parallel to the caxis.

3-Chloro-4-hydroxyfuran-2(5H)-one

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{ClO}_{3}$
$M_{r}=134.51$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=12.0437$ (6) \AA

$$
\begin{aligned}
& b=6.5453(4) \AA \\
& c=6.3886(4) \AA \\
& V=503.61(5) \AA^{3} \\
& Z=4 \\
& F(000)=272
\end{aligned}
$$

$D_{\mathrm{x}}=1.774 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1627 reflections
$\theta=3.1-28.9^{\circ}$

Data collection

Oxford Gemini S Ultra
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 16.1903 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.736, T_{\text {max }}=0.828$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.17$
531 reflections
52 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \mu=0.65 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.50 \times 0.50 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 1932 \text { measured reflections } \\
& 531 \text { independent reflections } \\
& 500 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.012 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=3.4^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-7 \rightarrow 8 \\
& l=-7 \rightarrow 7
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0374 P)^{2}+0.1215 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C11	$0.34253(4)$	0.7500	$0.60829(9)$	$0.0400(2)$	
O1	$0.10530(15)$	0.7500	$0.8246(3)$	$0.0531(5)$	
O2	$0.24683(15)$	0.7500	$0.1417(2)$	$0.0409(4)$	
O3	$0.02339(12)$	0.7500	$0.5138(2)$	$0.0410(4)$	
C1	$0.05689(17)$	0.7500	$0.2974(3)$	$0.0348(5)$	
H1A	0.0295	0.8706	0.2259	0.042^{*}	0.50
H1B	0.0295	0.6294	0.2259	0.042^{*}	0.50
C2	$0.18096(17)$	0.7500	$0.3064(3)$	$0.0288(4)$	
C3	$0.21185(17)$	0.7500	$0.5069(3)$	$0.0289(4)$	
C4	$0.11471(18)$	0.7500	$0.6361(3)$	$0.0335(5)$	
H2	$0.210(3)$	0.7500	$0.037(5)$	$0.059(9)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0274(3)$	$0.0523(4)$	$0.0403(3)$	0.000	$-0.0084(2)$	0.000
O1	$0.0421(9)$	$0.0940(14)$	$0.0231(8)$	0.000	$0.0033(6)$	0.000
O2	$0.0376(8)$	$0.0614(11)$	$0.0238(8)$	0.000	$0.0062(7)$	0.000
O3	$0.0260(8)$	$0.0679(10)$	$0.0292(9)$	0.000	$0.0011(6)$	0.000
C1	$0.0308(10)$	$0.0487(12)$	$0.0249(11)$	0.000	$-0.0042(8)$	0.000
C2	$0.0284(10)$	$0.0337(10)$	$0.0241(10)$	0.000	$0.0019(8)$	0.000
C3	$0.0251(10)$	$0.0355(10)$	$0.0261(11)$	0.000	$-0.0006(7)$	0.000
C4	$0.0299(10)$	$0.0460(12)$	$0.0247(11)$	0.000	$0.0006(8)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 3$	$1.702(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.495(3)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.210(3)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700
$\mathrm{O} 2-\mathrm{C} 2$	$1.318(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9700
$\mathrm{O} 2-\mathrm{H} 2$	$0.80(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.334(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.349(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.431(3)$
$\mathrm{O} 3-\mathrm{C} 1$	$1.440(3)$		$124.82(18)$
			$108.38(17)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{H} 2$	$109(2)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$109.00(19)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 1$	$109.11(16)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$128.55(17)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	$104.08(16)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.45(15)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl1}$	$120.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl1}$	$130.6(2)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 3$	$109.43(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 3$	
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.0		
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$126.8(2)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.80(3)$	$1.85(3)$	$2.647(2)$	$171(3)$

Symmetry code: (i) $x, y, z-1$.

