

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-*tert*-Butyl-5-(1*H*-1,2,4-triazol-1-yl)thiazol-2-amine

An-Yun Xie,^a Jiao Ye,^b Zhi Qin^b and Ai-Xi Hu^b*

^aHunan Warrant Pharmaceutical Co. Ltd, Changsha 410329, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 22 July 2009; accepted 28 July 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.089; data-to-parameter ratio = 17.7.

The dihedral angle between the triazole ring and the thiazole ring in the title compound, $C_9H_{13}N_5S$, is 64.35 (7)°. The crystal structure is stabilized by intermolecular N-H···N hydrogen bonds, which link the molecules into a two-dimensional network.

Related literature

For background and related structures, see: Zhou *et al.* (2007); Shao *et al.* (2008).

Experimental

Crystal data C₉H₁₃N₅S

 $M_r = 223.30$

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.47 \times 0.43 \times 0.37 \text{ mm}$

 $\mu = 0.26 \text{ mm}^{-1}$

T = 173 K

Monoclinic, $P2_1/c$
$a = 7.7487 (4) \text{\AA}$
p = 14.2240 (8) Å
c = 10.2697 (5) Å
$\beta = 91.452 \ (1)^{\circ}$
$V = 1131.54 (10) \text{ Å}^3$

Data collection

Bruker SMART 1000 CCD	6167 measured reflections
diffractometer	2463 independent reflections
Absorption correction: multi-scan	2187 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.016$
$T_{\min} = 0.887, \ T_{\max} = 0.909$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	139 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
2463 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots N5^{i}$	0.88	2.22	3.0049 (16)	148
$N2-H2A\cdots N1^{ii}$	0.88	2.17	3.0392 (14)	168

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5018).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Shao, L., Zhou, X., Jin, Z. & Fang, J. X. (2008). Heteroat. Chem. 19, 2–6.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Zhou, X., Shao, L., Jin, Z., Liu, J. B., Dai, H. & Fang, J. X. (2007). Heteroatom

Zhou, X., Shao, L., Jin, Z., Liu, J. B., Dai, H. & Fang, J. X. (2007). *Heteroatom Chem.* **18**, 55–59.

supporting information

Acta Cryst. (2009). E65, o2057 [doi:10.1107/S1600536809029912]

4-tert-Butyl-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine

An-Yun Xie, Jiao Ye, Zhi Qin and Ai-Xi Hu

S1. Comment

Thiazole derivatives and 1,2,4-triazole derivatives have been found to be active compounds with diversely biological activities (Zhou *et al.*, 2007; Shao *et al.*, 2008). We herein report the synthesis and structures of the title compound, 4-*tert*-butyl-5-(1*H*-1,2,4-triazol-1-yl)thiazol-2-amine, which was incorporated 1*H*-1,2,4-triazole units into the novel thialoyl urea compounds in order to find novel leading compounds with potential anticancer activities.

The title compound (Fig. 1), contains two planar subunits: the thiazole ring and the triazole ring. The dihedral angles between them is 64.35 (7). The crystal structure (Fig. 2) is stabilized by intermolecular hydrogen bonds between the amino group and the nitrogen atoms of the thiazol ring and the triazole ring of the neighbouring molecules.

For related structures, see: Zhou et al. (2007), Shao et al. (2008).

S2. Experimental

1-bromo-3,3-dimethyl-1-(1*H*-1,2,4-triazol-1-yl)butan-2-one (0.01 mol) were refluxed with thiourea (0.01 mol) in ethanol (45 ml) for 1.5 h (monitored by TLC). Then the pH of the mixture was adjusted to 9 with ammonia and filtered to obtain white solid, 4-*tert*-butyl-5-(1*H*-1,2,4-triazol-1-yl) thiazol-2-amine. Yield 85.5%, m.p. 451 K.

Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

S3. Refinement

The H-atoms were positioned geometrically, with C—H = 0.98Å for methyl, C—H = 0.95Å for the triazole ring, C—H = 0.88Å for the amino group and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

Molecular structure showing 50% probability displacement ellipsoids.

Figure 2

A packing diagram for the title compound showing intermolecular hydrogen bonds as dashed lines. H atoms bonded to C omitted for clarity.

4-tert-Butyl-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine

Crystal data

 $C_9H_{13}N_5S$ $M_r = 223.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.7487 (4) Å*b* = 14.2240 (8) Å c = 10.2697 (5) Å $\beta = 91.452 (1)^{\circ}$ $V = 1131.54 (10) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART 1000 CCD	6167 measured reflection
diffractometer	2463 independent reflecti
Radiation source: fine-focus sealed tube	2187 reflections with $I >$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 27.1^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 4$
(SADABS; Sheldrick, 2004)	$k = -18 \rightarrow 18$
$T_{\min} = 0.887, \ T_{\max} = 0.909$	$l = -13 \rightarrow 13$

F(000) = 472 $D_{\rm x} = 1.311 \text{ Mg m}^{-3}$ Melting point: 451 K Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4587 reflections $\theta = 2.5 - 27.1^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.47 \times 0.43 \times 0.37 \text{ mm}$

ıs ions $2\sigma(I)$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.089$ S = 1.07 2463 reflections	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.2785P]$
139 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. 1H NMR (CDCl₃, 400 MHz) δ: 1.11 (s, 9H, (CH₃)₃), 4.38 (s, 2H, NH₂), 8.06 (s, 1H, C₂H₂N₃ 3-H), 8.23 (s, 1H, C₂H₂N₃ 5-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.10734 (4)	0.36412 (2)	0.12795 (3)	0.02144 (11)	
C1	0.28446 (15)	0.42187 (8)	0.06301 (12)	0.0208 (2)	
C2	0.38251 (15)	0.27348 (8)	0.06564 (11)	0.0194 (2)	
C3	0.22378 (16)	0.25969 (8)	0.11582 (11)	0.0200 (2)	
C4	0.52048 (16)	0.19969 (9)	0.03942 (13)	0.0248 (3)	
C5	0.69774 (19)	0.24700 (11)	0.0350 (2)	0.0490 (5)	
H5A	0.6994	0.2911	-0.0382	0.073*	
H5B	0.7869	0.1990	0.0239	0.073*	
H5C	0.7203	0.2811	0.1166	0.073*	
C6	0.4799 (2)	0.15274 (11)	-0.09224 (15)	0.0392 (4)	
H6A	0.4739	0.2008	-0.1606	0.059*	
H6B	0.3689	0.1200	-0.0885	0.059*	
H6C	0.5711	0.1075	-0.1117	0.059*	
C7	0.5268 (2)	0.12361 (10)	0.14558 (16)	0.0368 (3)	
H7A	0.6247	0.0816	0.1312	0.055*	
H7B	0.4193	0.0873	0.1420	0.055*	
H7C	0.5404	0.1534	0.2313	0.055*	
C8	0.01671 (17)	0.04703 (9)	0.15964 (13)	0.0267 (3)	
H8	-0.0313	-0.0113	0.1318	0.032*	
C9	0.09146 (17)	0.15830 (9)	0.28121 (12)	0.0267 (3)	
Н9	0.1101	0.1985	0.3541	0.032*	
N1	0.41461 (13)	0.36685 (7)	0.03390 (10)	0.0210 (2)	
N2	0.27815 (14)	0.51513 (7)	0.04483 (12)	0.0285 (3)	

supporting information

H2A	0.3661	0.5445	0.0108	0.034*
H2B	0.1860	0.5469	0.0670	0.034*
N3	0.14376 (13)	0.17666 (7)	0.16036 (10)	0.0206 (2)
N4	0.09397 (14)	0.10478 (8)	0.07907 (10)	0.0254 (2)
N5	0.01069 (15)	0.07679 (8)	0.28504 (11)	0.0299 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.01973 (17)	0.01734 (17)	0.02758 (18)	-0.00120 (10)	0.00713 (12)	-0.00005 (10)
C1	0.0194 (6)	0.0182 (6)	0.0251 (6)	-0.0023 (4)	0.0045 (4)	0.0005 (4)
C2	0.0198 (6)	0.0165 (5)	0.0221 (5)	-0.0009 (4)	0.0003 (4)	0.0011 (4)
C3	0.0218 (6)	0.0155 (5)	0.0229 (5)	-0.0016 (4)	0.0023 (4)	0.0011 (4)
C4	0.0203 (6)	0.0167 (5)	0.0374 (7)	0.0019 (5)	0.0031 (5)	0.0018 (5)
C5	0.0202 (7)	0.0241 (7)	0.1029 (15)	0.0024 (6)	0.0083 (8)	0.0026 (8)
C6	0.0457 (9)	0.0356 (8)	0.0366 (8)	0.0134 (7)	0.0078 (6)	-0.0056 (6)
C7	0.0380 (8)	0.0275 (7)	0.0447 (8)	0.0103 (6)	-0.0008 (6)	0.0090 (6)
C8	0.0292 (6)	0.0194 (6)	0.0317 (6)	-0.0069 (5)	0.0017 (5)	0.0008 (5)
C9	0.0316 (7)	0.0254 (6)	0.0234 (6)	-0.0073 (5)	0.0042 (5)	0.0014 (5)
N1	0.0187 (5)	0.0164 (5)	0.0282 (5)	-0.0009 (4)	0.0043 (4)	0.0015 (4)
N2	0.0242 (5)	0.0149 (5)	0.0471 (7)	0.0002 (4)	0.0136 (5)	0.0022 (5)
N3	0.0222 (5)	0.0173 (5)	0.0223 (5)	-0.0038 (4)	0.0016 (4)	0.0008 (4)
N4	0.0294 (6)	0.0197 (5)	0.0271 (5)	-0.0062 (4)	0.0031 (4)	-0.0029 (4)
N5	0.0328 (6)	0.0277 (6)	0.0293 (6)	-0.0095 (5)	0.0052 (5)	0.0045 (4)

Geometric parameters (Å, °)

S1—C3	1.7441 (12)	С6—Н6В	0.9800
S1—C1	1.7464 (12)	С6—Н6С	0.9800
C1—N1	1.3169 (16)	С7—Н7А	0.9800
C1—N2	1.3403 (16)	С7—Н7В	0.9800
C2—C3	1.3598 (17)	С7—Н7С	0.9800
C2—N1	1.3914 (14)	C8—N4	1.3202 (16)
C2—C4	1.5270 (16)	C8—N5	1.3575 (18)
C3—N3	1.4153 (15)	C8—H8	0.9500
C4—C5	1.5312 (19)	C9—N5	1.3187 (17)
C4—C6	1.533 (2)	C9—N3	1.3410 (16)
C4—C7	1.5360 (18)	С9—Н9	0.9500
С5—Н5А	0.9800	N2—H2A	0.8800
С5—Н5В	0.9800	N2—H2B	0.8800
С5—Н5С	0.9800	N3—N4	1.3692 (14)
С6—Н6А	0.9800		
C3—S1—C1	87.73 (6)	C4—C6—H6C	109.5
N1-C1-N2	125.59 (11)	H6A—C6—H6C	109.5
N1-C1-S1	114.89 (9)	H6B—C6—H6C	109.5
N2-C1-S1	119.50 (9)	C4—C7—H7A	109.5
C3—C2—N1	113.28 (10)	C4—C7—H7B	109.5

C3—C2—C4	127.71 (10)	H7A—C7—H7B	109.5
N1—C2—C4	118.99 (10)	C4—C7—H7C	109.5
C2—C3—N3	130.61 (11)	H7A—C7—H7C	109.5
C2—C3—S1	112.26 (9)	H7B—C7—H7C	109.5
N3—C3—S1	117.12 (9)	N4—C8—N5	115.32 (11)
C2—C4—C5	109.61 (10)	N4—C8—H8	122.3
C2—C4—C6	109.04 (10)	N5—C8—H8	122.3
C5—C4—C6	109.23 (13)	N5-C9-N3	110.70 (11)
C2—C4—C7	111.65 (11)	N5—C9—H9	124.6
C5—C4—C7	108.55 (12)	N3—C9—H9	124.6
C6—C4—C7	108.73 (11)	C1—N1—C2	111.81 (10)
С4—С5—Н5А	109.5	C1—N2—H2A	120.0
С4—С5—Н5В	109.5	C1—N2—H2B	120.0
H5A—C5—H5B	109.5	H2A—N2—H2B	120.0
C4—C5—H5C	109.5	C9—N3—N4	109.38 (10)
H5A—C5—H5C	109.5	C9—N3—C3	127.35 (10)
H5B—C5—H5C	109.5	N4—N3—C3	123.03 (10)
С4—С6—Н6А	109.5	C8—N4—N3	101.98 (10)
С4—С6—Н6В	109.5	C9—N5—C8	102.60 (11)
H6A—C6—H6B	109.5		
C3—S1—C1—N1	1.03 (10)	S1—C1—N1—C2	-1.71 (13)
C3—S1—C1—N2	179.99 (11)	C3—C2—N1—C1	1.65 (15)
N1—C2—C3—N3	-179.45 (11)	C4-C2-N1-C1	-179.57 (10)
C4—C2—C3—N3	1.9 (2)	N5—C9—N3—N4	0.78 (15)
N1—C2—C3—S1	-0.87 (13)	N5—C9—N3—C3	175.29 (12)
C4—C2—C3—S1	-179.52 (10)	C2—C3—N3—C9	117.79 (16)
C1—S1—C3—C2	-0.05 (9)	S1—C3—N3—C9	-60.72 (15)
C1—S1—C3—N3	178.73 (10)	C2—C3—N3—N4	-68.38 (18)
C3—C2—C4—C5	-157.79 (14)	S1—C3—N3—N4	113.10 (11)
N1—C2—C4—C5	23.63 (17)	N5—C8—N4—N3	1.00 (15)
C3—C2—C4—C6	82.69 (16)	C9—N3—N4—C8	-1.03 (14)
N1-C2-C4-C6	-95.90 (13)	C3—N3—N4—C8	-175.83 (11)
C3—C2—C4—C7	-37.48 (17)	N3—C9—N5—C8	-0.16 (15)
N1-C2-C4-C7	143.94 (12)	N4—C8—N5—C9	-0.56 (16)
N2-C1-N1-C2	179.41 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>B</i> ···N5 ⁱ	0.88	2.22	3.0049 (16)	148
N2—H2A···N1 ⁱⁱ	0.88	2.17	3.0392 (14)	168

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, -y+1, -z.