

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Bromobenzenesulfonamido)-2phenylacetic acid monohydrate

Muhammad Nadeem Arshad,^a Islam Ullah Khan,^a Mehmet Akkurt^{b*} and Muhammad Shafig^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 17 July 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.014 Å; R factor = 0.057; wR factor = 0.180; data-to-parameter ratio = 16.1.

In the title compound, $C_{14}H_{12}BrNO_4S \cdot H_2O$, the phenyl and benzene rings are inclined at a dihedral angle of $39.5 (5)^\circ$. The crystal packing is stabilized by N-H···O, C-H···O and O-H...O hydrogen-bonding interactions.

Related literature

For background to sulfonamide derivatives, see: Sheppard et al. (2006). For similar structures, see: Arshad et al. (2009); Asiri et al. (2009); Sethu Sankar et al. (2002); Wijeyesakere et al. (2008). For background to our study of the synthesis and structures of thiazine-related heterocycles, see: Arshad et al. (2008). A related derivative has gained interest as a ligand in complex formation (Han et al., 2006) and for its biological activity (Cama et al., 2003; Dankwardt et al., 2002). For the synthesis, see: Deng & Mani (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C14H12BrNO4S·H2O $M_r = 388.23$

a = 5.5654 (13) Å

b = 16.230 (4) Å

c = 17.597 (4) Å

Orthorhombic, P212121

V = 1589.5 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.74 \text{ mm}^{-1}$ T = 296 K $0.32\,\times\,0.11\,\times\,0.09$ mm 9588 measured reflections

Flack parameter: 0.02 (3)

 $R_{\rm int} = 0.083$

3315 independent reflections

1227 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker Kappa APEXII CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker 2007)
  T_{\min} = 0.474, T_{\max} = 0.791
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of
$wR(F^2) = 0.180$	independent and constrained
S = 0.93	refinement
3315 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
206 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
3 restraints	Absolute structure: Flack (1983),
	1246 Freidel pairs

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O4^{i}$ $O5 - HW1 \cdots O1^{ii}$ $O5 - HW2 \cdots O3^{iii}$ $O5 - HW2 \cdots O2^{iv}$ $O4 - H4 \cdots O5$ $C6 - H6 \cdots O2$ $C7 - H7 \cdots O1^{iii}$ $C7 - H7 \cdots O2$	0.86 0.85 (11) 0.85 (2) 0.85 (2) 0.82 0.93 0.98 0.98	2.47 2.56 (11) 2.34 (10) 2.28 (12) 1.78 2.51 2.44 2.48	3.113 (9) 3.027 (8) 2.956 (9) 2.868 (8) 2.562 (8) 2.897 (10) 3.377 (10) 2.958 (9)	132 116 (10) 131 (12) 127 (12) 160 105 160 109
Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}.$	x - 1, y, z; (i	i) $-x, y + \frac{1}{2}, -z$	$\frac{2.936}{x+\frac{3}{2}}$; (iii) $x+$	1, y, z; (iv)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under the Indiginous 5000 PhD fellowship Programme (No. 042-120607-PS2-183).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5013).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, 0940.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.
- Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.
- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc. 125, 13052-13057.

- Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). *Bioorg. Med. Chem. Lett.* 12, 1233–1235.
- Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Han, Z., Da, C. Qiu, L., Ni, M., Zhou, Y. & Wang, R. (2006). *Lett. Org. Chem.* **3**, 143–148.
- Sethu Sankar, K., Velmurugan, D., Thirumamagal, B. T. S., Shanmuga Sundara Raj, S., Fun, H.-K. & Moon, J.-K. (2002). Acta Cryst. C58, 0257–0259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheppard, G. S., Wang, J., Kawai, M., Fidanze, S. D., Bamaung, N. Y., Erickson, S. A., Barnes, D. M., Tedrow, J. S., Kolaczkowski, L., Vasudevan, A., Park, D. C., Wang, G. T., Sanders, W. J., Mantei, R. A., Palazzo, F., Tucker-Garcia, L., Lou, P. P., Zhang, Q., Park, C. H., Kim, K. H., Petros, A., Olejniczak, E., Nettesheim, D., Hajduk, P., Henkin, J., Lesniewski, R., Davidsen, S. K. & Bell, R. L. (2006). J. Med. Chem. 49, 3832–3849.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wijeyesakere, S. J., Nasser, F. A., Kampf, J. W., Aksinenko, A. Y., Sokolov, V. B., Malygin, V. V., Makhaeva, G. F. & Richardson, R. J. (2008). Acta Cryst. E64, 01425.

supporting information

Acta Cryst. (2009). E65, o1953-o1954 [doi:10.1107/S160053680902830X]

2-(4-Bromobenzenesulfonamido)-2-phenylacetic acid monohydrate

Muhammad Nadeem Arshad, Islam Ullah Khan, Mehmet Akkurt and Muhammad Shafiq

S1. Comment

The title compound was synthesized *via* condensation reaction between 4-bromo benzene sulfonylchloride and phenylglycine, an amino acid. The related derivative has gained interest as a ligand in complexation (Han *et al.*, 2006) and biological activities (Dankwardt *et al.*, 2002, Cama *et al.*, 2003). It is the halogenated analogue of previously reported sulfonamide derivative of phenylglycine (Arshad *et al.*, 2009) in continuation of synthesis and crystal structure studies of thiazine related heterocycles (Arshad *et al.*, 2008).

In the title compound (Fig. 1), the Br—C and C—O distances are as expected. The *S*—C_{benzene} distance of 1.754 (8) Å is shorter than the reported values of 1.763 (2)Å (Asiri *et al.*, 2009) and 1.763 (9) Å (Allen *et al.*, 1987). The S1—N1 distance of 1.617 (6) is shorter than the literature values of 1.6213 (18) Å (Asiri *et al.*, 2009) and 1.6458 (11) Å (Wijeyesakere *et al.*, 2008). The mean S=O distance of 1.439 (5) Å is comparable with the reported value of 1.436 (2) Å (Sethu Sankar *et al.*, 2002). The interplanar angle between the phenyl (C9–C14) and benzene (C1–C6) rings in (I) is 39.5 (5) °. These rings orient to the carbonyl group (C7/C8/O3/O4) with angles of 41.5 (5) and 77.1 (5) °, respectively. The crystal packing is stabilized by N—H···O, C—H···O and O—H···O hydrogen bonding interactions (Table 1, Fig. 2).

S2. Experimental

The title compound was prepared in accordance with the literature method (Deng & Mani, 2006). Phenylglycine (1 g, 6.6 mmol) was dissolved in distilled water (10 ml) using 1M, Na₂CO₃ solution at pH 8–9. 4-Bromo benzene sulfonyl chloride (1.68 g, 6.6 mmol) was then added to the solution, which was stirred at room temperature until all the 4-bromobenzene sulfonyl chloride had been consumed. On completion of the reaction the pH was adjusted to 1–2, using 1 N HCl with stirring. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol for X-ray diffraction studies.

S3. Refinement

The H atoms of the water molecule were found from a difference Fourier map and refined with distance restraints of O— H = 0.85 (1) Å and H···H = 1.39 (1) Å. The other H atoms were positioned geometrically and treated as riding, with C— H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 30% probability level.

Figure 2

View of the crystal packing and hydrogen bonding (dashed lines) of the title compound, down the *a*-axis. H atoms not involved in the hydrogen bonding have been omitted for clarity.

2-(4-Bromobenzenesulfonamido)-2-phenylacetic acid monohydrate

Crystal data	
$C_{14}H_{12}BrNO_4S\cdot H_2O$	F(000) = 784
$M_r = 388.23$	$D_{\rm x} = 1.622 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 868 reflections
a = 5.5654 (13) Å	$\theta = 2.3 - 16.4^{\circ}$
b = 16.230 (4) Å	$\mu = 2.74 \text{ mm}^{-1}$
c = 17.597 (4) Å	T = 296 K
V = 1589.5 (6) Å ³	Rod like, white
Z=4	$0.32 \times 0.11 \times 0.09 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD area-detector	9588 measured reflections
diffractometer	3315 independent reflections
Radiation source: sealed tube	1227 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.083$
φ and ω scans	$\theta_{\rm max} = 27.2^\circ, \ \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 6$
(SADABS; Bruker 2007)	$k = -20 \rightarrow 17$
$T_{\min} = 0.474, \ T_{\max} = 0.791$	$l = -21 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of independent
$wR(F^2) = 0.180$	and constrained refinement
<i>S</i> = 0.93	$w = 1/[\sigma^2(F_o^2) + (0.0737P)^2]$
3315 reflections	where $P = (F_o^2 + 2F_c^2)/3$
206 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
3 restraints	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.40 \ m e \ m \AA^{-3}$
direct methods	Absolute structure: Flack (1983), 1246 Freidel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.02 (3)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.1150 (4)	0.40711 (9)	0.42252 (7)	0.1257 (7)	
S1	-0.1584 (4)	0.25772 (13)	0.74635 (12)	0.0429 (7)	
01	-0.4134 (9)	0.2431 (3)	0.7477 (3)	0.054 (2)	
O2	0.0026 (9)	0.1905 (3)	0.7619 (3)	0.051 (2)	
03	0.0588 (12)	0.4809 (4)	0.7664 (4)	0.068 (3)	
O4	0.4414 (11)	0.4403 (3)	0.7850 (3)	0.050(2)	
N1	-0.1125 (12)	0.3278 (4)	0.8100 (3)	0.042 (3)	
C1	-0.0790 (16)	0.2999 (5)	0.6581 (4)	0.041 (3)	
C2	-0.228 (2)	0.3582 (6)	0.6266 (6)	0.073 (5)	
C3	-0.168 (3)	0.3924 (6)	0.5550 (6)	0.096 (6)	
C4	0.041 (3)	0.3666 (6)	0.5191 (5)	0.068 (5)	
C5	0.183 (2)	0.3106 (7)	0.5510 (5)	0.076 (5)	
C6	0.1220 (18)	0.2760 (6)	0.6224 (5)	0.065 (4)	
C7	0.1364 (15)	0.3510 (5)	0.8293 (4)	0.041 (3)	
C8	0.2012 (18)	0.4313 (6)	0.7896 (5)	0.047 (4)	
C9	0.1756 (17)	0.3609 (5)	0.9138 (4)	0.041 (3)	
C10	0.3725 (17)	0.3299 (5)	0.9486 (5)	0.057 (4)	
C11	0.412 (2)	0.3415 (7)	1.0241 (6)	0.074 (5)	
C12	0.250 (2)	0.3862 (7)	1.0669 (6)	0.073 (5)	
C13	0.046 (2)	0.4141 (7)	1.0329 (6)	0.073 (4)	
C14	0.0096 (17)	0.4023 (6)	0.9574 (5)	0.060 (4)	
05	0.6162 (12)	0.5722 (4)	0.7272 (4)	0.064 (2)	
H1	-0.23170	0.35130	0.83230	0.0510*	

H2	-0.36690	0.37490	0.65180	0.0880*	
Н3	-0.26630	0.43160	0.53250	0.1150*	
H4	0.47300	0.48030	0.75840	0.0750*	
Н5	0.32320	0.29420	0.52640	0.0920*	
H6	0.22150	0.23670	0.64450	0.0770*	
H7	0.24430	0.30770	0.81070	0.0490*	
H10	0.48310	0.29990	0.92020	0.0680*	
H11	0.54870	0.31930	1.04690	0.0890*	
H12	0.27980	0.39700	1.11800	0.0870*	
H13	-0.06900	0.44150	1.06170	0.0880*	
H14	-0.12960	0.42250	0.93480	0.0720*	
HW1	0.556 (19)	0.606 (7)	0.696 (7)	0.1890*	
HW2	0.768 (2)	0.575 (9)	0.726 (7)	0.1890*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.2170 (18)	0.1032 (11)	0.0568 (7)	-0.0449 (12)	0.0187 (10)	0.0154 (7)
S 1	0.0355 (11)	0.0463 (14)	0.0470 (13)	-0.0002 (12)	0.0066 (11)	0.0011 (12)
O1	0.028 (3)	0.058 (4)	0.076 (4)	-0.011 (3)	0.004 (3)	-0.002 (4)
O2	0.043 (3)	0.045 (4)	0.066 (4)	0.013 (3)	0.008 (3)	0.005 (3)
O3	0.049 (4)	0.055 (4)	0.101 (5)	0.011 (3)	-0.003 (4)	0.028 (4)
O4	0.043 (4)	0.043 (4)	0.065 (4)	-0.003 (3)	0.013 (3)	0.014 (3)
N1	0.026 (4)	0.059 (5)	0.042 (4)	-0.001 (4)	0.013 (3)	-0.014 (3)
C1	0.035 (6)	0.045 (6)	0.043 (5)	-0.003 (5)	0.004 (4)	-0.001 (4)
C2	0.101 (10)	0.060(7)	0.059 (7)	0.034 (7)	0.007 (6)	0.007 (6)
C3	0.143 (13)	0.068 (8)	0.077 (9)	0.033 (9)	0.018 (9)	0.005 (7)
C4	0.122 (11)	0.042 (6)	0.041 (6)	-0.020(7)	0.005 (7)	0.001 (5)
C5	0.063 (8)	0.111 (10)	0.054 (7)	0.009 (7)	0.015 (6)	0.005 (7)
C6	0.052 (7)	0.089 (8)	0.053 (6)	-0.007 (6)	-0.002 (5)	0.005 (6)
C7	0.030 (5)	0.039 (5)	0.055 (6)	-0.002 (4)	0.006 (4)	-0.003 (4)
C8	0.038 (7)	0.046 (7)	0.056 (6)	-0.010 (5)	0.011 (5)	-0.014 (5)
C9	0.043 (6)	0.042 (5)	0.037 (5)	-0.008 (5)	0.000 (5)	0.008 (4)
C10	0.044 (7)	0.068 (7)	0.059 (7)	0.021 (5)	0.003 (5)	0.007 (5)
C11	0.058 (8)	0.091 (8)	0.073 (8)	0.007 (7)	-0.015 (7)	0.034 (7)
C12	0.079 (9)	0.098 (10)	0.042 (6)	0.010 (6)	-0.010 (6)	0.014 (6)
C13	0.076 (8)	0.089 (8)	0.054 (7)	0.017 (7)	-0.002 (6)	-0.013 (6)
C14	0.057 (7)	0.077 (8)	0.045 (6)	0.012 (6)	-0.011 (5)	0.003 (6)
O5	0.055 (4)	0.054 (4)	0.083 (4)	-0.010 (3)	-0.007 (4)	0.014 (3)

Geometric parameters (Å, °)

Br1—C4	1.868 (10)	С7—С8	1.522 (12)
S1—01	1.439 (5)	С7—С9	1.511 (10)
S1—O2	1.438 (5)	C9—C14	1.376 (13)
S1—N1	1.617 (6)	C9—C10	1.352 (13)
S1—C1	1.754 (8)	C10—C11	1.360 (14)
O3—C8	1.201 (12)	C11—C12	1.381 (16)

O4—C8	1.347 (12)	C12—C13	1.361 (16)
O4—H4	0.8200	C13—C14	1.358 (14)
O5—HW1	0.85 (11)	C2—H2	0.9300
O5—HW2	0.85 (2)	С3—Н3	0.9300
N1—C7	1.475 (11)	С5—Н5	0.9300
N1—H1	0.8600	С6—Н6	0.9300
C1—C2	1.375 (13)	С7—Н7	0.9800
C1—C6	1.340 (13)	C10—H10	0.9300
C2—C3	1.417 (15)	C11—H11	0.9300
C3—C4	1.39 (2)	C12—H12	0.9300
C4—C5	1.329 (17)	C13—H13	0.9300
C5—C6	1.418 (13)	C14—H14	0.9300
Br1…O4 ⁱ	3.477 (5)	C13····H3 ^{xii}	2.9500
Br1…C8 ⁱ	3.660 (10)	C13···HW1 ^v	2.94 (12)
O1…C7 ⁱⁱ	3.377 (10)	C14…H1	2.7100
O1…O5 ⁱⁱⁱ	3.027 (8)	H1…H14	2.2200
O2…O5 ^{iv}	2.868 (8)	H1…H10 ⁱⁱ	2.3700
O3…N1	2.770 (9)	H1···O4 ⁱⁱ	2.4700
O3…O5 ⁱⁱ	2.956 (9)	H1…C10 ⁱⁱ	3.0300
O4…O5	2.562 (8)	H1…O3	2.9000
O4…C10	3.413 (10)	H1…C14	2.7100
O4…Br1 ^v	3.477 (5)	HW1···C13 ⁱ	2.94 (12)
O4…N1 ^{vi}	3.113 (9)	HW1···H12 ⁱ	2.3200
O5…O3 ^{vi}	2.956 (9)	HW1…C12 ⁱ	2.84 (12)
O5…O2 ^{vii}	2.868 (8)	HW1…H4	2.3600
O5…O1 ^{viii}	3.027 (8)	HW1…O2 ^{vii}	2.91 (11)
O5…O4	2.562 (8)	HW1···H13 ⁱ	2.4900
O1…HW1 ⁱⁱⁱ	2.56 (11)	HW1…O1 ^{viii}	2.56 (11)
O1…H6 ⁱⁱ	2.7300	H2…O1	2.7400
O1…H7 ⁱⁱ	2.4400	H2···O4 ⁱⁱ	2.7900
O1…H2	2.7400	HW2····O3 ^{vi}	2.34 (10)
O2…H7	2.4800	HW2…O2 ^{vii}	2.28 (12)
O2…H6	2.5100	HW2…H4	2.3200
O2…HW1 ^{iv}	2.91 (11)	H3…H13 ^x	2.3100
O2…H12 ^{ix}	2.8300	H3…C13 ^x	2.9500
O2…HW2 ^{iv}	2.28 (12)	H4…HW2	2.3200
O3…HW2 ⁱⁱ	2.34 (10)	H4…O5	1.7800
O3…H1	2.9000	H4···HW1	2.3600
O4…H2 ^{vi}	2.7900	H5····C5 ^{xiii}	2.9600
O4…H1 ^{vi}	2.4700	H5····C4 ^{xiii}	2.9900
O5…H4	1.7800	H6…O1 ^{vi}	2.7300
N1…O4 ⁱⁱ	3.113 (9)	Н6…О2	2.5100
N1…O3	2.770 (9)	H7…O1 ^{vi}	2.4400
N1…H14	2.6800	Н7…О2	2.4800
C1…C8	3.512 (12)	H7…H10	2.3400
C7…O1 ^{vi}	3.377 (10)	$H10$ ···· $H1^{vi}$	2.3700
C8···Br1 ^v	3.660 (10)	H10…H7	2.3400

C8…C1	3.512 (12)	H11····C9 ^{xiv}	3.0900
C10…O4	3.413 (10)	H11····C10 ^{xiv}	3.0200
C3…H13 ^x	3.0700	H12···HW1 ^v	2.3200
C4…H5 ^{xi}	2.9900	H12····O2 ^{xiv}	2.8300
C5····H5 ^{xi}	2.9600	H13····C3 ^{xii}	3.0700
C9…H11 ^{ix}	3.0900	H13…HW1 ^v	2.4900
C10…H1 ^{vi}	3.0300	H13····H3 ^{xii}	2.3100
C10…H11 ^{ix}	3.0200	H14…N1	2.6800
C12···HW1 ^v	2.84 (12)	H14…H1	2.2200
	× ,		
O1—S1—O2	119.1 (3)	C7—C9—C14	120.2 (8)
O1—S1—N1	105.1 (3)	C10-C9-C14	118.2 (7)
O1—S1—C1	109.1 (4)	C9—C10—C11	121.5 (9)
O2—S1—N1	107.7 (3)	C10-C11-C12	120.0 (10)
O2—S1—C1	107.9 (4)	C11—C12—C13	118.7 (10)
N1—S1—C1	107.4 (4)	C12—C13—C14	120.5 (10)
C8—O4—H4	109.00	C9—C14—C13	121.0 (9)
HW1—O5—HW2	110 (12)	C3—C2—H2	120.00
S1—N1—C7	119.2 (5)	C1—C2—H2	121.00
C7—N1—H1	120.00	С2—С3—Н3	121.00
S1—N1—H1	120.00	С4—С3—Н3	120.00
S1—C1—C6	120.8 (7)	С4—С5—Н5	120.00
\$1—C1—C2	118.3 (7)	С6—С5—Н5	120.00
C2—C1—C6	120.9 (8)	С5—С6—Н6	120.00
C1—C2—C3	119.1 (10)	С1—С6—Н6	120.00
C2—C3—C4	119.0 (11)	С8—С7—Н7	108.00
Br1—C4—C5	119.6 (10)	С9—С7—Н7	108.00
C3—C4—C5	120.8 (9)	N1—C7—H7	108.00
Br1—C4—C3	119.5 (9)	C11—C10—H10	119.00
C4—C5—C6	120.2 (10)	C9—C10—H10	119.00
C1—C6—C5	120.1 (9)	C10—C11—H11	120.00
N1—C7—C9	112.9 (6)	C12—C11—H11	120.00
C8—C7—C9	109.1 (7)	C13—C12—H12	121.00
N1—C7—C8	109.6 (7)	C11—C12—H12	121.00
O3—C8—O4	124.2 (9)	С12—С13—Н13	120.00
O3—C8—C7	125.0 (9)	C14—C13—H13	120.00
O4—C8—C7	110.8 (7)	C9—C14—H14	120.00
C7—C9—C10	121.5 (8)	C13—C14—H14	120.00
O1—S1—N1—C7	173.4 (5)	C3—C4—C5—C6	0.3 (17)
O2—S1—N1—C7	45.5 (6)	C4—C5—C6—C1	-0.2 (16)
C1—S1—N1—C7	-70.5 (6)	N1—C7—C8—O3	21.3 (12)
O1—S1—C1—C2	40.8 (8)	N1	-159.8 (6)
O2—S1—C1—C2	171.6 (7)	C9—C7—C8—O3	-102.8 (10)
N1—S1—C1—C2	-72.6 (8)	C9—C7—C8—O4	76.1 (9)
O1—S1—C1—C6	-139.3 (7)	N1—C7—C9—C10	136.2 (8)
O2—S1—C1—C6	-8.6 (8)	N1—C7—C9—C14	-43.9 (11)
N1—S1—C1—C6	107.3 (8)	C8—C7—C9—C10	-101.7 (9)

Symmetry codes: (i) -x+1/2, -y+1, z-1/2; (ii) x-1, y, z; (iii) -x, y-1/2, -z+3/2; (iv) -x+1, y-1/2, -z+3/2; (v) -x+1/2, -y+1, z+1/2; (vi) x+1, y, z; (vii) -x+1, y+1/2, -z+3/2; (viii) -x, y+1/2, -z+3/2; (ix) x-1/2, -y+1/2, -z+3/2; (iii) -x-1/2, -y+1/2, -z+3/2; (iii) -x-1/2, -y+1/2, -z+1; (iii) -x-1/2, -y+1/2, -z+1; (iv) x+1/2, -z+1/2; (iv) x+1/2, -z+1/2; (iv) x+1/2, -z+1/2; (iv) x+1/2, -z+1/2; (iv) x+1/2; (iv

Hydrogen-bond geometry (Å, °)

HA	D—H	H···A	D···· A	D—H···A
N1—H1····O4 ⁱⁱ	0.86	2.47	3.113 (9)	132
O5—HW1…O1 ^{viii}	0.85 (11)	2.56 (11)	3.027 (8)	116 (10)
O5—H <i>W</i> 2···O3 ^{vi}	0.85 (2)	2.34 (10)	2.956 (9)	131 (12)
O5—HW2···O2 ^{vii}	0.85 (2)	2.28 (12)	2.868 (8)	127 (12)
O4—H4…O5	0.82	1.78	2.562 (8)	160
С6—Н6…О2	0.93	2.51	2.897 (10)	105
C7—H7···O1 ^{vi}	0.98	2.44	3.377 (10)	160
С7—Н7…О2	0.98	2.48	2.958 (9)	109

Symmetry codes: (ii) x-1, y, z; (vi) x+1, y, z; (vii) -x+1, y+1/2, -z+3/2; (viii) -x, y+1/2, -z+3/2.