

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(acetone 4-phenylthiosemicarbazonato- $\kappa^2 N^1$,S)zinc(II)

Kong Wai Tan,^a Chew Hee Ng,^b Mohd Jamil Maah^a* and Seik Weng Ng^a

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

Received 16 July 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.103; data-to-parameter ratio = 18.4.

The Zn^{II} atom in the title compound, $[Zn(C_{10}H_{12}N_3S)_2]$, is *N*,*S*-chelated by the deprotonated Schiff base in a tetrahedral environment. The metal atom lies on a twofold rotation axis that relates one anion to the other. The amino H atom forms an intermolecular N-H··· π interaction to an aromatic ring.

Related literature

For the two modifications of acetone 4-phenylthiosemicarbazone, see: Jian *et al.* (2005); Venkatraman *et al.* (2005).

Experimental

Crystal data
$[Zn(C_{10}H_{12}N_3S)_2]$
$M_r = 477.94$
Monoclinic, $C2/c$

a = 23.5203 (5) A
b = 7.2938 (2) Å
c = 15.1134(5) Å

 $\mu = 1.34 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.05 \text{ mm}$

6983 measured reflections

2488 independent reflections

1896 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 153 K

 $R_{\rm int} = 0.031$

135 parameters

 $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

 $\beta = 122.761 \ (2)^{\circ}$ $V = 2180.3 \ (1) \ \text{Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.690, T_{\rm max} = 0.936$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.103$ S = 1.102488 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3··· Cg^i	0.86	2.86	3.671 (3)	157

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Cg is the centroid of the aromatic ring.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (PJP FS316/2008 C) and MOSTI (ESc 02–02-11-SF0033) for supporting this study; KWT thanks the Ministry of Higher Education for a SLAI scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5011).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, 0653–0654.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Venkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914o3916.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m969 [doi:10.1107/S1600536809028244]

Bis(acetone 4-phenylthiosemicarbazonato- $\kappa^2 N^1$,S)zinc(II)

Kong Wai Tan, Chew Hee Ng, Mohd Jamil Maah and Seik Weng Ng

S1. Experimental

Zinc acetate monohydrate (0.22 g, 1 mmol) and 2,4-dihydroxybenzaldehyde 4-phenylthiosemicarbazone (0.29 g, 1 mmol) were heated in ethanol (50 ml) to form [1-(4-hydroxy-2-oxidobenzylidene)-4-phenylthiosemicarbazonato]zinc. The product was recrystallized from acetone, cleaved part of the anion.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$. The amino H-atom was similarly treated (N–H 0.88 Å).

Figure 1

Anisotropic displacement ellipsoid (Barbour, 2001) plot of $Zn(C_{10}H_{12}N_3S)_2$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Bis(acetone 4-phenylthiosemicarbazonato- $\kappa^2 N^1$,S)zinc(II)

Crystal data	
$[Zn(C_{10}H_{12}N_3S)_2]$	F(000) = 992
$M_r = 477.94$	$D_{\rm x} = 1.456 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2390 reflections
a = 23.5203 (5) Å	$\theta = 3.8 - 28.0^{\circ}$
b = 7.2938 (2) Å	$\mu = 1.34 \text{ mm}^{-1}$
c = 15.1134 (5) Å	T = 153 K
$\beta = 122.761 \ (2)^{\circ}$	Wedge, brown
$V = 2180.3 (1) Å^3$	$0.30 \times 0.20 \times 0.05 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.690, T_{max} = 0.936$ <i>Refinement</i>	6983 measured reflections 2488 independent reflections 1896 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -30 \rightarrow 30$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 19$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.10	H-atom parameters constrained
2488 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 4.48P]$
135 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.40$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.45$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.5000	0.30141 (7)	0.2500	0.03064 (17)
S1	0.55393 (4)	0.14771 (13)	0.18550 (8)	0.0501 (3)
N1	0.58756 (10)	0.4440 (3)	0.34189 (19)	0.0245 (5)
N2	0.64335 (10)	0.3888 (3)	0.33788 (19)	0.0253 (5)
N3	0.68276 (11)	0.1943 (4)	0.2634 (2)	0.0336 (6)
Н3	0.6712	0.1130	0.2154	0.040*
C1	0.75216 (12)	0.2404 (4)	0.3216 (2)	0.0255 (6)
C2	0.78857 (13)	0.1872 (4)	0.2775 (2)	0.0296 (6)
H2	0.7662	0.1268	0.2113	0.035*
C3	0.85719 (14)	0.2225 (4)	0.3300 (3)	0.0348 (7)
H3A	0.8816	0.1866	0.2993	0.042*
C4	0.89046 (13)	0.3090 (4)	0.4263 (3)	0.0332 (7)
H4	0.9376	0.3330	0.4620	0.040*
C5	0.85427 (13)	0.3606 (4)	0.4703 (2)	0.0289 (6)
Н5	0.8770	0.4194	0.5370	0.035*
C6	0.78518 (13)	0.3275 (4)	0.4181 (2)	0.0283 (6)
H6	0.7608	0.3646	0.4486	0.034*
C7	0.63093 (13)	0.2588 (4)	0.2715 (2)	0.0275 (6)
C8	0.59964 (13)	0.5716 (4)	0.4081 (2)	0.0302 (7)
С9	0.66790 (15)	0.6551 (5)	0.4773 (3)	0.0456 (9)
H9A	0.7007	0.5590	0.5196	0.068*
H9B	0.6663	0.7453	0.5241	0.068*
H9C	0.6815	0.7159	0.4338	0.068*
C10	0.54313 (16)	0.6384 (5)	0.4182 (3)	0.0451 (9)
H10A	0.5039	0.5575	0.3784	0.068*

supporting information

H10B	0.5307	0.7633	0.3903	0.068*
H10C	0.5578	0.6380	0.4925	0.068*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0144 (2)	0.0296 (3)	0.0436 (3)	0.000	0.0129 (2)	0.000
0.0171 (3)	0.0539 (6)	0.0665 (7)	-0.0064 (3)	0.0143 (4)	-0.0345 (5)
0.0156 (9)	0.0257 (12)	0.0320 (14)	0.0020 (9)	0.0128 (10)	0.0034 (11)
0.0148 (10)	0.0287 (12)	0.0321 (14)	0.0015 (9)	0.0124 (10)	-0.0009 (11)
0.0196 (11)	0.0373 (14)	0.0408 (16)	-0.0017 (10)	0.0143 (11)	-0.0158 (13)
0.0168 (11)	0.0235 (14)	0.0328 (16)	0.0030 (10)	0.0113 (12)	0.0006 (12)
0.0245 (13)	0.0303 (15)	0.0332 (17)	0.0041 (12)	0.0152 (13)	-0.0016 (14)
0.0241 (14)	0.0429 (18)	0.0432 (19)	0.0065 (13)	0.0221 (14)	0.0041 (16)
0.0189 (12)	0.0373 (17)	0.0398 (18)	0.0023 (12)	0.0136 (13)	0.0086 (15)
0.0216 (13)	0.0264 (14)	0.0310 (17)	0.0007 (11)	0.0092 (12)	0.0040 (13)
0.0219 (13)	0.0307 (16)	0.0328 (17)	0.0034 (11)	0.0152 (13)	0.0004 (13)
0.0171 (12)	0.0299 (15)	0.0328 (17)	-0.0001 (11)	0.0116 (12)	-0.0030 (13)
0.0228 (13)	0.0258 (15)	0.0408 (18)	0.0015 (11)	0.0165 (13)	-0.0037 (14)
0.0297 (15)	0.0361 (19)	0.063 (2)	-0.0023 (13)	0.0197 (17)	-0.0213 (17)
0.0321 (16)	0.046(2)	0.062(2)	0.0046(14)	0.0284(17)	-0.0102(18)
	U^{11} 0.0144 (2) 0.0171 (3) 0.0156 (9) 0.0148 (10) 0.0196 (11) 0.0196 (11) 0.0245 (13) 0.0241 (14) 0.0189 (12) 0.0216 (13) 0.0219 (13) 0.0171 (12) 0.0228 (13) 0.0297 (15) 0.0321 (16)	U^{11} U^{22} 0.0144 (2) 0.0296 (3) 0.0171 (3) 0.0539 (6) 0.0156 (9) 0.0257 (12) 0.0148 (10) 0.0287 (12) 0.0196 (11) 0.0373 (14) 0.0168 (11) 0.0235 (14) 0.0245 (13) 0.0303 (15) 0.0241 (14) 0.0429 (18) 0.0189 (12) 0.0373 (17) 0.0216 (13) 0.0264 (14) 0.0219 (13) 0.0307 (16) 0.0171 (12) 0.0299 (15) 0.0297 (15) 0.0361 (19) 0.0321 (16) 0.046 (2)	U^{11} U^{22} U^{33} $0.0144(2)$ $0.0296(3)$ $0.0436(3)$ $0.0171(3)$ $0.0539(6)$ $0.0665(7)$ $0.0156(9)$ $0.0257(12)$ $0.0320(14)$ $0.0196(11)$ $0.0287(12)$ $0.0321(14)$ $0.0196(11)$ $0.0287(12)$ $0.0321(14)$ $0.0196(11)$ $0.0235(14)$ $0.0328(16)$ $0.0245(13)$ $0.0303(15)$ $0.0332(17)$ $0.0241(14)$ $0.0429(18)$ $0.0432(19)$ $0.0189(12)$ $0.0373(17)$ $0.0398(18)$ $0.0216(13)$ $0.0264(14)$ $0.0310(17)$ $0.0219(13)$ $0.0299(15)$ $0.0328(17)$ $0.0228(13)$ $0.0258(15)$ $0.0408(18)$ $0.0297(15)$ $0.0361(19)$ $0.063(2)$ $0.0321(16)$ $0.046(2)$ $0.062(2)$	U^{11} U^{22} U^{33} U^{12} $0.0144(2)$ $0.0296(3)$ $0.0436(3)$ 0.000 $0.0171(3)$ $0.0539(6)$ $0.0665(7)$ $-0.0064(3)$ $0.0156(9)$ $0.0257(12)$ $0.0320(14)$ $0.0020(9)$ $0.0148(10)$ $0.0287(12)$ $0.0321(14)$ $0.0015(9)$ $0.0196(11)$ $0.0373(14)$ $0.0408(16)$ $-0.0017(10)$ $0.0168(11)$ $0.0235(14)$ $0.0328(16)$ $0.0030(10)$ $0.0245(13)$ $0.0303(15)$ $0.0332(17)$ $0.0041(12)$ $0.0241(14)$ $0.0429(18)$ $0.0432(19)$ $0.0065(13)$ $0.0189(12)$ $0.0373(17)$ $0.0398(18)$ $0.0023(12)$ $0.0216(13)$ $0.0264(14)$ $0.0310(17)$ $0.0007(11)$ $0.0216(13)$ $0.0258(15)$ $0.0408(18)$ $0.0015(11)$ $0.0228(13)$ $0.0258(15)$ $0.0408(18)$ $0.0015(11)$ $0.0297(15)$ $0.0361(19)$ $0.062(2)$ $0.0046(14)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0144 (2)0.0296 (3)0.0436 (3)0.0000.0129 (2)0.0171 (3)0.0539 (6)0.0665 (7) -0.0064 (3)0.0143 (4)0.0156 (9)0.0257 (12)0.0320 (14)0.0020 (9)0.0128 (10)0.0148 (10)0.0287 (12)0.0321 (14)0.0015 (9)0.0124 (10)0.0196 (11)0.0373 (14)0.0408 (16) -0.0017 (10)0.0143 (11)0.0168 (11)0.0235 (14)0.0328 (16)0.0030 (10)0.0113 (12)0.0245 (13)0.0303 (15)0.0332 (17)0.0041 (12)0.0152 (13)0.0241 (14)0.0429 (18)0.0432 (19)0.0065 (13)0.0221 (14)0.0189 (12)0.0373 (17)0.0398 (18)0.0023 (12)0.0136 (13)0.0216 (13)0.0264 (14)0.0310 (17)0.0007 (11)0.0092 (12)0.0219 (13)0.0258 (15)0.0408 (18)0.0015 (11)0.0165 (13)0.0228 (13)0.0258 (15)0.0408 (18)0.0015 (11)0.0165 (13)0.0297 (15)0.0361 (19)0.063 (2) $-0.0023 (13)$ 0.0197 (17)0.0321 (16)0.046 (2)0.062 (2)0.0046 (14)0.0284 (17)

Geometric parameters (Å, °)

Zn1—N1	2.039 (2)	C3—C4	1.376 (5)	
Zn1—N1 ⁱ	2.039 (2)	С3—НЗА	0.9500	
Zn1—S1	2.2702 (8)	C4—C5	1.386 (4)	
Zn1—S1 ⁱ	2.2702 (8)	C4—H4	0.9500	
S1—C7	1.754 (3)	C5—C6	1.390 (4)	
N1—C8	1.281 (4)	С5—Н5	0.9500	
N1—N2	1.405 (3)	С6—Н6	0.9500	
N2—C7	1.294 (4)	C8—C9	1.492 (4)	
N3—C7	1.372 (3)	C8—C10	1.499 (4)	
N3—C1	1.413 (3)	С9—Н9А	0.9800	
N3—H3	0.8600	С9—Н9В	0.9800	
C1—C6	1.381 (4)	С9—Н9С	0.9800	
C1—C2	1.395 (4)	C10—H10A	0.9800	
С2—С3	1.384 (4)	C10—H10B	0.9800	
C2—H2	0.9500	C10—H10C	0.9800	
N1—Zn1—N1 ⁱ	118.66 (13)	C5—C4—H4	120.5	
N1—Zn1—S1	87.20 (6)	C4—C5—C6	120.9 (3)	
N1 ⁱ —Zn1—S1	123.54 (7)	C4—C5—H5	119.6	
$N1$ — $Zn1$ — $S1^i$	123.54 (7)	C6—C5—H5	119.6	
N1 ⁱ —Zn1—S1 ⁱ	87.20 (6)	C1—C6—C5	119.7 (3)	
$S1-Zn1-S1^{i}$	120.82 (6)	C1—C6—H6	120.1	
C7—S1—Zn1	92.67 (9)	С5—С6—Н6	120.1	
C8—N1—N2	115.1 (2)	N2—C7—N3	118.8 (2)	

C8—N1—Zn1	128.17 (17)	N2—C7—S1	128.47 (19)
N2—N1—Zn1	116.57 (17)	N3—C7—S1	112.8 (2)
C7—N2—N1	114.8 (2)	N1—C8—C9	123.0 (2)
C7—N3—C1	130.2 (3)	N1-C8-C10	118.8 (3)
C7—N3—H3	114.9	C9—C8—C10	118.2 (3)
C1—N3—H3	114.9	С8—С9—Н9А	109.5
C6—C1—C2	119.5 (2)	С8—С9—Н9В	109.5
C6—C1—N3	124.5 (2)	H9A—C9—H9B	109.5
C2-C1-N3	116.0 (3)	С8—С9—Н9С	109.5
C3—C2—C1	120.1 (3)	H9A—C9—H9C	109.5
С3—С2—Н2	120.0	H9B—C9—H9C	109.5
С1—С2—Н2	120.0	C8—C10—H10A	109.5
C4—C3—C2	120.8 (3)	C8—C10—H10B	109.5
С4—С3—НЗА	119.6	H10A—C10—H10B	109.5
С2—С3—НЗА	119.6	C8—C10—H10C	109.5
C3—C4—C5	119.1 (2)	H10A—C10—H10C	109.5
C3—C4—H4	120.5	H10B—C10—H10C	109.5
N1—Zn1—S1—C7	4.02 (12)	C2—C3—C4—C5	0.0 (5)
N1 ⁱ —Zn1—S1—C7	126.96 (13)	C3—C4—C5—C6	-0.6 (4)
S1 ⁱ —Zn1—S1—C7	-123.93 (11)	C2-C1-C6-C5	-0.3 (4)
N1 ⁱ —Zn1—N1—C8	52.6 (2)	N3—C1—C6—C5	177.8 (3)
S1—Zn1—N1—C8	179.7 (3)	C4—C5—C6—C1	0.7 (4)
S1 ⁱ —Zn1—N1—C8	-54.6 (3)	N1—N2—C7—N3	-179.0 (2)
N1 ⁱ —Zn1—N1—N2	-132.0 (2)	N1—N2—C7—S1	1.3 (4)
S1—Zn1—N1—N2	-4.85 (18)	C1—N3—C7—N2	3.8 (5)
$S1^{i}$ — $Zn1$ — $N1$ — $N2$	120.81 (17)	C1—N3—C7—S1	-176.5 (3)
C8—N1—N2—C7	179.4 (3)	Zn1—S1—C7—N2	-4.3 (3)
Zn1—N1—N2—C7	3.4 (3)	Zn1—S1—C7—N3	176.0 (2)
C7—N3—C1—C6	18.0 (5)	N2—N1—C8—C9	-0.7 (4)
C7—N3—C1—C2	-163.9 (3)	Zn1—N1—C8—C9	174.8 (2)
C6—C1—C2—C3	-0.3 (4)	N2—N1—C8—C10	-179.7 (3)
N3—C1—C2—C3	-178.5 (3)	Zn1—N1—C8—C10	-4.1 (4)
C1—C2—C3—C4	0.4 (5)		

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3···Cg ⁱⁱ	0.86	2.86	3.671 (3)	157

Symmetry code: (ii) –*x*+3/2, *y*–1/2, –*z*+1/2.